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Let d ≥ 0 and (t0, x0) ∈ R × Rd some fixed starting time and position.
Let f : [t0,∞)× Rd → Rd be a time dependent vector field.
A first-order differential equation is a Cauchy problem, also called initial
value problem (IVP) of the form

x ′(t) = f (t , x(t)), t ∈ [t0,∞), x(t0) = x0 ∈ Rd . (1)

Example

If f (t , y) = y then f (t , x(t)) = x(t) and hence x ′(t) = x(t). A function
who derivative is itself is of the form x(t) = Cet . If x(t0) = x0 then
x(t) = x0et−t0 , t ∈ [t0,∞).
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First-order means that only the first derivative of x appears in the equa-
tion, and higher derivatives are absent.

Higher-order differential equations can be reduced to first-order by in-
creasing the dimension.

For example, the second-order equation x ′′(t) = f (t , x(t)) can be re-
duced by defining y(t) , x ′(t).

Then y ′(t) = x ′′(t) = f (t , x(t)) and we have the equation

z ′(t) = F (t , z(t)),

where z(t) = (x(t), y(t))t and F (t ,u1,u2) = (u2, f (t ,u1))t . We managed
to do so by increasing the dimension by one.
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Euler’s method
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We know that
x ′(t) = lim

h→0

x(t + h)− x(t)
h

.

Based on

x ′(t) ≈ x(t + h)− x(t)
h

for a small h >0. Recall

x ′(t) = f (t , x(t)).
Subtitute:

x(t + h)− x(t)
h

≈ f (t , x(t)).
Isolate x(t + h):

x(t + h) ≈ x(t) + hf (t , x(t)).

If t is such that x(t) is known, then we can guess x at a later time t + h
by applying the formula above.
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At t0, x(t0) = x0 is known. Thus the value of x at time t0 + h can be
approximated by

x(t0 + h) ≈ x(t0) + hf (t , x(t0)) = x0 + hf (t , x0).

More generally, consider a partition of [t0,∞) with points defined by

ti , t0 + ih, i = 0,1, . . .

and denote
xi , x(ti)

the value of the solution at ti = t0 + ih. Then, knowing xi , that is (ti , xi),
allows us to find xi+1 by

xi+1 = xi + hf (ti , xi), i = 0,1, . . .
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Example

x ′(t) = x(t), x(0) = 1.

Partition of points: ti = ih, h >0 step size, i = 0, . . . , n.

xi is an approximation of x at ti , i.e. xi ≈ x(ti ).

The first value is known, namely x(t0) = x(0) = x0 = 1. Then

xi+1 = xi + hf (t , xi ) = xi + hxi = xi (1 + h), i = 0, . . . , n.

Recursively,
xi = (1 + h)i , i = 0, . . . , n.

David R. Banos Life Insurance and Finance STK4500 8 / 13



Example

x ′(t) = x(t), x(0) = 1.

Partition of points: ti = ih, h >0 step size, i = 0, . . . , n.

xi is an approximation of x at ti , i.e. xi ≈ x(ti ).

The first value is known, namely x(t0) = x(0) = x0 = 1. Then

xi+1 = xi + hf (t , xi ) = xi + hxi = xi (1 + h), i = 0, . . . , n.

Recursively,
xi = (1 + h)i , i = 0, . . . , n.

David R. Banos Life Insurance and Finance STK4500 8 / 13



Example

x ′(t) = x(t), x(0) = 1.

Partition of points: ti = ih, h >0 step size, i = 0, . . . , n.

xi is an approximation of x at ti , i.e. xi ≈ x(ti ).

The first value is known, namely x(t0) = x(0) = x0 = 1. Then

xi+1 = xi + hf (t , xi ) = xi + hxi = xi (1 + h), i = 0, . . . , n.

Recursively,
xi = (1 + h)i , i = 0, . . . , n.

David R. Banos Life Insurance and Finance STK4500 8 / 13



Example

x ′(t) = x(t), x(0) = 1.

Partition of points: ti = ih, h >0 step size, i = 0, . . . , n.

xi is an approximation of x at ti , i.e. xi ≈ x(ti ).

The first value is known, namely x(t0) = x(0) = x0 = 1. Then

xi+1 = xi + hf (t , xi ) = xi + hxi = xi (1 + h), i = 0, . . . , n.

Recursively,
xi = (1 + h)i , i = 0, . . . , n.

David R. Banos Life Insurance and Finance STK4500 8 / 13



Example

x ′(t) = x(t), x(0) = 1.

Partition of points: ti = ih, h >0 step size, i = 0, . . . , n.

xi is an approximation of x at ti , i.e. xi ≈ x(ti ).

The first value is known, namely x(t0) = x(0) = x0 = 1. Then

xi+1 = xi + hf (t , xi ) = xi + hxi = xi (1 + h), i = 0, . . . , n.

Recursively,
xi = (1 + h)i , i = 0, . . . , n.

David R. Banos Life Insurance and Finance STK4500 8 / 13



Example (continued)

We know x(t) = et . What is the error we commit?

The Global Truncation Error (GTE) we commit is:

GTE , max
i=0,...,n

|x(ti)− xi |

= max
i=0,...,n

|eih − (1 + h)i |

≤ |enh − (1 + h)n|

=

∣∣∣∣e − (1 +
1
n

)n∣∣∣∣ .
which goes to zero as h→ 0 or as n→∞.
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Example (Disability model)
We wish to solve

d
dt

P(s, t) = P(s, t)Λ(t)

if we go for the forward equation.

The matrix P of the unknowns (unknown functions) is given by

P(s, t) =

p∗∗(s, t) p∗�(s, t) p∗†(s, t)
p�∗(s, t) p��(s, t) p�†(s, t)
p†∗(s, t) p†�(s, t) p††(s, t)

 ,
but the last row is exactly 0 0 1 which can be omitted. Hence, we rather look
at

P(s, t) =

(
p∗∗(s, t) p∗�(s, t)
p�∗(s, t) p��(s, t)

)
.
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Example (continued)
The (matrix) vector field in this case is a linear 2× 2-transformation

f (t ,M) = M · Λ(t),
where t ≥ 0 and M is a 2× 2-matrix. NB! Respect the order of the matrices.

Λ(t) =

(
μ∗∗(t) μ∗�(t)
μ�∗(t) μ��(t)

)
.

Hence,
d
dt

P(s, t) = P(s, t)Λ(t), t ≥ 0, P(s, s) = Id .

Next step: discretize time and approximate P(s, ti ), i = 0,dots.
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Example (continued)

Take small h. Let ti , s + ih, i ≥ 0.

Denote by Pi an approximation of the matrix P(s, ti ).
Euler’s method gives the following scheme:

Pi+1 = Pi + hPi Λ(ti ) = Pi (Id + hΛ(ti )) = Pi (Id + hΛ(s + ih)) , i ≥ 0.

Let us use the matrix Λ(t) from the book, see Example 2.4.2 on page 18 and
Example 4.2.2 on page 30.

μ∗(t) = μ∗�(t) + μ∗†(t), μ∗�(t) = 0.0004 + 100.06t−5.46,
μ�∗(t) = 0.05, μ�(t) = μ�∗(t) + μ�†(t).
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Example (continued)

We start at age s = 30 and look at ti = 30 + ih with h = 1
12 monthly steps.

We run the algorithm until t = 110 years, i.e. i = 0,1, . . . , 1080 = n where
n = 120 · 1

h .

Figure: Disability model with reactivation. Euler method: starting age
s = 30, final age t = 110, step size monthly h = 1/12.
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