

## UiO : Department of Mathematics University of Oslo

## Life Insurance and Finance

Lecture 2: Numerical methods for ODEs

David R. Banos

## 1 ODEs

2 Euler's method

## UiO : Department of Mathematics

University of Oslo

## ODEs

## UiO : Department of Mathematics University of Oslo

Let $d \geq 0$ and $\left(t_{0}, x_{0}\right) \in \mathbb{R} \times \mathbb{R}^{d}$ some fixed starting time and position. Let $f:\left[t_{0}, \infty\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a time dependent vector field. A first-order differential equation is a Cauchy problem, also called initial value problem (IVP) of the form

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)), \quad t \in\left[t_{0}, \infty\right), \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

## UiO : Department of Mathematics <br> University of Oslo

Let $d \geq 0$ and $\left(t_{0}, x_{0}\right) \in \mathbb{R} \times \mathbb{R}^{d}$ some fixed starting time and position. Let $f:\left[t_{0}, \infty\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a time dependent vector field.
A first-order differential equation is a Cauchy problem, also called initial value problem (IVP) of the form

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)), \quad t \in\left[t_{0}, \infty\right), \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

## Example

If $f(t, y)=y$ then $f(t, x(t))=x(t)$ and hence $x^{\prime}(t)=x(t)$.

## UiO : Department of Mathematics University of Oslo

Let $d \geq 0$ and $\left(t_{0}, x_{0}\right) \in \mathbb{R} \times \mathbb{R}^{d}$ some fixed starting time and position. Let $f:\left[t_{0}, \infty\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a time dependent vector field.
A first-order differential equation is a Cauchy problem, also called initial value problem (IVP) of the form

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)), \quad t \in\left[t_{0}, \infty\right), \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

## Example

If $f(t, y)=y$ then $f(t, x(t))=x(t)$ and hence $x^{\prime}(t)=x(t)$. A function who derivative is itself is of the form $x(t)=C e^{t}$. If $x\left(t_{0}\right)=x_{0}$ then $x(t)=x_{0} \mathrm{e}^{t-t_{0}}, t \in\left[t_{0}, \infty\right)$.

```
UiO: Department of Mathematics
    University of Oslo
```

First-order means that only the first derivative of $x$ appears in the equation, and higher derivatives are absent.

Higher-order differential equations can be reduced to first-order by increasing the dimension.

```
UiO : Department of Mathematics University of Oslo
```

First-order means that only the first derivative of $x$ appears in the equation, and higher derivatives are absent.

Higher-order differential equations can be reduced to first-order by increasing the dimension.

For example, the second-order equation $x^{\prime \prime}(t)=f(t, x(t))$ can be reduced by defining $y(t) \triangleq x^{\prime}(t)$.

Then $y^{\prime}(t)=x^{\prime \prime}(t)=f(t, x(t))$ and we have the equation

$$
z^{\prime}(t)=F(t, z(t))
$$

where $z(t)=(x(t), y(t))^{t}$ and $F\left(t, u_{1}, u_{2}\right)=\left(u_{2}, f\left(t, u_{1}\right)\right)^{t}$. We managed to do so by increasing the dimension by one.

## UiO : Department of Mathematics

University of Oslo

## Euler's method

## UiO : Department of Mathematics

University of Oslo

## We know that

$$
x^{\prime}(t)=\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}
$$

## UiO : Department of Mathematics <br> University of Oslo

We know that

$$
x^{\prime}(t)=\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}
$$

## Based on

$$
x^{\prime}(t) \approx \frac{x(t+h)-x(t)}{h}
$$

for a small $h>0$.

## UiO : Department of Mathematics <br> University of Oslo

We know that

$$
x^{\prime}(t)=\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}
$$

## Based on

$$
x^{\prime}(t) \approx \frac{x(t+h)-x(t)}{h}
$$

for a small $h>0$. Recall

$$
x^{\prime}(t)=f(t, x(t))
$$

## UiO : Department of Mathematics <br> University of Oslo

We know that

$$
x^{\prime}(t)=\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}
$$

Based on

$$
x^{\prime}(t) \approx \frac{x(t+h)-x(t)}{h}
$$

for a small $h>0$. Recall

$$
x^{\prime}(t)=f(t, x(t))
$$

Subtitute:

$$
\frac{x(t+h)-x(t)}{h} \approx f(t, x(t))
$$

## UiO : Department of Mathematics <br> University of Oslo

We know that

$$
x^{\prime}(t)=\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}
$$

Based on

$$
x^{\prime}(t) \approx \frac{x(t+h)-x(t)}{h}
$$

for a small $h>0$. Recall

$$
x^{\prime}(t)=f(t, x(t))
$$

Subtitute:

$$
\frac{x(t+h)-x(t)}{h} \approx f(t, x(t))
$$

Isolate $x(t+h)$ :

$$
x(t+h) \approx x(t)+h f(t, x(t))
$$

## UiO : Department of Mathematics <br> University of Oslo

We know that

$$
x^{\prime}(t)=\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}
$$

Based on

$$
x^{\prime}(t) \approx \frac{x(t+h)-x(t)}{h}
$$

for a small $h>0$. Recall

$$
x^{\prime}(t)=f(t, x(t))
$$

Subtitute:

$$
\frac{x(t+h)-x(t)}{h} \approx f(t, x(t))
$$

Isolate $x(t+h)$ :

$$
x(t+h) \approx x(t)+h f(t, x(t))
$$

If $t$ is such that $x(t)$ is known then we can ouess $x$ at a later time $t+h$

## UiO : Department of Mathematics <br> University of Oslo

At $t_{0}, x\left(t_{0}\right)=x_{0}$ is known. Thus the value of $x$ at time $t_{0}+h$ can be approximated by

$$
x\left(t_{0}+h\right) \approx x\left(t_{0}\right)+h f\left(t, x\left(t_{0}\right)\right)=x_{0}+h f\left(t, x_{0}\right)
$$

## UiO : Department of Mathematics <br> University of Oslo

At $t_{0}, x\left(t_{0}\right)=x_{0}$ is known. Thus the value of $x$ at time $t_{0}+h$ can be approximated by

$$
x\left(t_{0}+h\right) \approx x\left(t_{0}\right)+h f\left(t, x\left(t_{0}\right)\right)=x_{0}+h f\left(t, x_{0}\right)
$$

More generally, consider a partition of $\left[t_{0}, \infty\right)$ with points defined by

$$
t_{i} \triangleq t_{0}+i h, \quad i=0,1, \ldots
$$

and denote

$$
x_{i} \triangleq x\left(t_{i}\right)
$$

the value of the solution at $t_{i}=t_{0}+i h$.

## UiO : Department of Mathematics <br> University of Oslo

At $t_{0}, x\left(t_{0}\right)=x_{0}$ is known. Thus the value of $x$ at time $t_{0}+h$ can be approximated by

$$
x\left(t_{0}+h\right) \approx x\left(t_{0}\right)+h f\left(t, x\left(t_{0}\right)\right)=x_{0}+h f\left(t, x_{0}\right)
$$

More generally, consider a partition of $\left[t_{0}, \infty\right)$ with points defined by

$$
t_{i} \triangleq t_{0}+i h, \quad i=0,1, \ldots
$$

and denote

$$
x_{i} \triangleq x\left(t_{i}\right)
$$

the value of the solution at $t_{i}=t_{0}+i h$. Then, knowing $x_{i}$, that is $\left(t_{i}, x_{i}\right)$, allows us to find $x_{i+1}$ by

$$
x_{i+1}=x_{i}+h f\left(t_{i}, x_{i}\right), \quad i=0,1, \ldots
$$

## UiO : Department of Mathematics

University of Oslo

## Example

$$
x^{\prime}(t)=x(t), \quad x(0)=1 .
$$

## UiO : Department of Mathematics

University of Oslo

## Example

$$
x^{\prime}(t)=x(t), \quad x(0)=1
$$

- Partition of points: $t_{i}=i h, h>0$ step size, $i=0, \ldots, n$.


## UiO : Department of Mathematics <br> University of Oslo

## Example

$$
x^{\prime}(t)=x(t), \quad x(0)=1
$$

■ Partition of points: $t_{i}=i h, h>0$ step size, $i=0, \ldots, n$.

- $x_{i}$ is an approximation of $x$ at $t_{i}$, i.e. $x_{i} \approx x\left(t_{i}\right)$.


## UiO : Department of Mathematics <br> University of Oslo

## Example

$$
x^{\prime}(t)=x(t), \quad x(0)=1
$$

■ Partition of points: $t_{i}=i h, h>0$ step size, $i=0, \ldots, n$.

- $x_{i}$ is an approximation of $x$ at $t_{i}$, i.e. $x_{i} \approx x\left(t_{i}\right)$.
- The first value is known, namely $x\left(t_{0}\right)=x(0)=x_{0}=1$. Then

$$
x_{i+1}=x_{i}+h f\left(t, x_{i}\right)=x_{i}+h x_{i}=x_{i}(1+h), \quad i=0, \ldots, n .
$$

## UiO : Department of Mathematics <br> University of Oslo

## Example

$$
x^{\prime}(t)=x(t), \quad x(0)=1
$$

■ Partition of points: $t_{i}=i h, h>0$ step size, $i=0, \ldots, n$.

- $x_{i}$ is an approximation of $x$ at $t_{i}$, i.e. $x_{i} \approx x\left(t_{i}\right)$.
- The first value is known, namely $x\left(t_{0}\right)=x(0)=x_{0}=1$. Then

$$
x_{i+1}=x_{i}+h f\left(t, x_{i}\right)=x_{i}+h x_{i}=x_{i}(1+h), \quad i=0, \ldots, n .
$$

- Recursively,

$$
x_{i}=(1+h)^{i}, \quad i=0, \ldots, n .
$$

## UiO: Department of Mathematics <br> University of Oslo

## Example (continued)

## We know $x(t)=e^{t}$. What is the error we commit?

```
UiO : Department of Mathematics
University of Oslo
```


## Example (continued)

We know $x(t)=e^{t}$. What is the error we commit?
The Global Truncation Error (GTE) we commit is:

$$
\begin{aligned}
G T E & \triangleq \max _{i=0, \ldots, n}\left|x\left(t_{i}\right)-x_{i}\right| \\
& =\max _{i=0, \ldots, n}\left|e^{i h}-(1+h)^{i}\right| \\
& \leq\left|e^{n h}-(1+h)^{n}\right| \\
& =\left|e-\left(1+\frac{1}{n}\right)^{n}\right|
\end{aligned}
$$

```
UiO : Department of Mathematics
University of Oslo
```


## Example (continued)

We know $x(t)=e^{t}$. What is the error we commit?
The Global Truncation Error (GTE) we commit is:

$$
\begin{aligned}
G T E & \triangleq \max _{i=0, \ldots, n}\left|x\left(t_{i}\right)-x_{i}\right| \\
& =\max _{i=0, \ldots, n}\left|e^{i h}-(1+h)^{i}\right| \\
& \leq\left|e^{n h}-(1+h)^{n}\right| \\
& =\left|e-\left(1+\frac{1}{n}\right)^{n}\right|
\end{aligned}
$$

which goes to zero as $h \rightarrow 0$ or as $n \rightarrow \infty$.

## UiO : Department of Mathematics

University of Oslo

## Example (Disability model)

We wish to solve

$$
\frac{d}{d t} P(s, t)=P(s, t) \wedge(t)
$$

if we go for the forward equation.

## UiO : Department of Mathematics <br> University of Oslo

## Example (Disability model)

We wish to solve

$$
\frac{d}{d t} P(s, t)=P(s, t) \Lambda(t)
$$

if we go for the forward equation.
The matrix $P$ of the unknowns (unknown functions) is given by

$$
P(s, t)=\left(\begin{array}{lll}
p_{* *}(s, t) & p_{* \diamond}(s, t) & p_{* \dagger}(s, t) \\
p_{\diamond *}(s, t) & p_{\diamond \diamond}(s, t) & p_{\diamond \dagger}(s, t) \\
p_{\dagger *}(s, t) & p_{\dagger \diamond}(s, t) & p_{\dagger \dagger}(s, t)
\end{array}\right),
$$

## UiO : Department of Mathematics <br> University of Oslo

## Example (Disability model)

We wish to solve

$$
\frac{d}{d t} P(s, t)=P(s, t) \Lambda(t)
$$

if we go for the forward equation.
The matrix $P$ of the unknowns (unknown functions) is given by

$$
P(s, t)=\left(\begin{array}{lll}
p_{* *}(s, t) & p_{* \diamond}(s, t) & p_{* \dagger}(s, t) \\
p_{\diamond *}(s, t) & p_{\diamond \diamond}(s, t) & p_{\diamond \dagger}(s, t) \\
p_{\dagger *}(s, t) & p_{\dagger \diamond}(s, t) & p_{\dagger \dagger}(s, t)
\end{array}\right),
$$

but the last row is exactly 001 which can be omitted. Hence, we rather look at

$$
P(s, t)=\left(\begin{array}{ll}
p_{* *}(s, t) & p_{* \diamond}(s, t) \\
p_{\diamond *}(s, t) & p_{\diamond \diamond}(s, t)
\end{array}\right) .
$$

```
UiO : Department of Mathematics
University of Oslo
```


## Example (continued)

The (matrix) vector field in this case is a linear $2 \times 2$-transformation

$$
f(t, M)=M \cdot \Lambda(t)
$$

where $t \geq 0$ and $M$ is a $2 \times 2$-matrix. NB! Respect the order of the matrices.

```
UiO : Department of Mathematics
University of Oslo
```


## Example (continued)

The (matrix) vector field in this case is a linear $2 \times 2$-transformation

$$
f(t, M)=M \cdot \Lambda(t)
$$

where $t \geq 0$ and $M$ is a $2 \times 2$-matrix. NB! Respect the order of the matrices.

$$
\Lambda(t)=\left(\begin{array}{ll}
\mu_{* *}(t) & \mu_{* \diamond}(t) \\
\mu_{\odot *}(t) & \mu_{\diamond \diamond}(t)
\end{array}\right) .
$$

Hence,

$$
\frac{d}{d t} P(s, t)=P(s, t) \wedge(t), \quad t \geq 0, \quad P(s, s)=I d
$$

```
UiO : Department of Mathematics
University of Oslo
```


## Example (continued)

The (matrix) vector field in this case is a linear $2 \times 2$-transformation

$$
f(t, M)=M \cdot \Lambda(t)
$$

where $t \geq 0$ and $M$ is a $2 \times 2$-matrix. NB! Respect the order of the matrices.

$$
\Lambda(t)=\left(\begin{array}{ll}
\mu_{* *}(t) & \mu_{* \diamond}(t) \\
\mu_{\diamond *}(t) & \mu_{\diamond \diamond}(t)
\end{array}\right) .
$$

Hence,

$$
\frac{d}{d t} P(s, t)=P(s, t) \wedge(t), \quad t \geq 0, \quad P(s, s)=I d
$$

Next step: discretize time and approximate $P\left(s, t_{i}\right), i=0$, dots.

## UiO : Department of Mathematics

University of Oslo

## Example (continued)

Take small $h$. Let $t_{i} \triangleq s+i h, i \geq 0$.

## UiO : Department of Mathematics

University of Oslo

## Example (continued)

Take small $h$. Let $t_{i} \triangleq s+i h, i \geq 0$.
Denote by $P_{i}$ an approximation of the matrix $P\left(s, t_{i}\right)$.

## UiO : Department of Mathematics <br> University of Oslo

## Example (continued)

Take small $h$. Let $t_{i} \triangleq s+i h, i \geq 0$.
Denote by $P_{i}$ an approximation of the matrix $P\left(s, t_{i}\right)$.
Euler's method gives the following scheme:

$$
P_{i+1}=P_{i}+h P_{i} \Lambda\left(t_{i}\right)=P_{i}\left(l d+h \wedge\left(t_{i}\right)\right)=P_{i}(l d+h \wedge(s+i h)), \quad i \geq 0 .
$$

## UiO : Department of Mathematics <br> University of Oslo

## Example (continued)

Take small $h$. Let $t_{i} \triangleq s+i h, i \geq 0$.
Denote by $P_{i}$ an approximation of the matrix $P\left(s, t_{i}\right)$.
Euler's method gives the following scheme:

$$
P_{i+1}=P_{i}+h P_{i} \Lambda\left(t_{i}\right)=P_{i}\left(l d+h \wedge\left(t_{i}\right)\right)=P_{i}(l d+h \wedge(s+i h)), \quad i \geq 0 .
$$

Let us use the matrix $\Lambda(t)$ from the book, see Example 2.4.2 on page 18 and Example 4.2.2 on page 30 .

$$
\begin{aligned}
\mu_{*}(t) & =\mu_{* \diamond}(t)+\mu_{* \dagger}(t), & & \mu_{* \diamond}(t)=0.0004+10^{0.06 t-5.46}, \\
\mu_{\diamond *}(t) & =0.05, & & \mu_{\diamond}(t)=\mu_{\diamond *}(t)+\mu_{\diamond \dagger}(t) .
\end{aligned}
$$

```
UiO: Department of Mathematics
University of Oslo
```


## Example (continued)

We start at age $s=30$ and look at $t_{i}=30+i h$ with $h=\frac{1}{12}$ monthly steps. We run the algorithm until $t=110$ years, i.e. $i=0,1, \ldots, 1080=n$ where $n=120 \cdot \frac{1}{n}$.

Transition probabilities


# UiO 8 Department of Mathematics University of Oslo 

## David R. Banos

Life Insurance and Finance
Lecture 2: Numerical methods for ODEs

