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Consider Taylor’s approximation of x

x(t + h) = x(t) + x ′(t)h + x ′′(t)
h2

2
+ O(h3). (1)

We recognize x ′(t) = f (t , x(t)) and from this, using the chain rule, we have

x ′′(t) =
d
dt

f (t , x(t))

= ∂t f (t , x(t)) + ∂x f (t , x(t))[x ′(t)]

= ∂t f (t , x(t)) + ∂x f (t , x(t))[f (t , x(t))].

Substituting,

x(t + h) = x(t) + hf (t , x(t)) + ∂t f (t , x(t))
h2

2
+ ∂x f (t , x(t))[f (t , x(t))]

h2

2
+ O(h3).

David R. Banos Life Insurance and Finance STK4500 3 / 19



Consider Taylor’s approximation of x

x(t + h) = x(t) + x ′(t)h + x ′′(t)
h2

2
+ O(h3). (1)

We recognize x ′(t) = f (t , x(t))

and from this, using the chain rule, we have

x ′′(t) =
d
dt

f (t , x(t))

= ∂t f (t , x(t)) + ∂x f (t , x(t))[x ′(t)]

= ∂t f (t , x(t)) + ∂x f (t , x(t))[f (t , x(t))].

Substituting,

x(t + h) = x(t) + hf (t , x(t)) + ∂t f (t , x(t))
h2

2
+ ∂x f (t , x(t))[f (t , x(t))]

h2

2
+ O(h3).

David R. Banos Life Insurance and Finance STK4500 3 / 19



Consider Taylor’s approximation of x

x(t + h) = x(t) + x ′(t)h + x ′′(t)
h2

2
+ O(h3). (1)

We recognize x ′(t) = f (t , x(t)) and from this, using the chain rule, we have

x ′′(t) =
d
dt

f (t , x(t))

= ∂t f (t , x(t)) + ∂x f (t , x(t))[x ′(t)]

= ∂t f (t , x(t)) + ∂x f (t , x(t))[f (t , x(t))].

Substituting,

x(t + h) = x(t) + hf (t , x(t)) + ∂t f (t , x(t))
h2

2
+ ∂x f (t , x(t))[f (t , x(t))]

h2

2
+ O(h3).

David R. Banos Life Insurance and Finance STK4500 3 / 19



Consider Taylor’s approximation of x

x(t + h) = x(t) + x ′(t)h + x ′′(t)
h2

2
+ O(h3). (1)

We recognize x ′(t) = f (t , x(t)) and from this, using the chain rule, we have

x ′′(t) =
d
dt

f (t , x(t))

= ∂t f (t , x(t)) + ∂x f (t , x(t))[x ′(t)]

= ∂t f (t , x(t)) + ∂x f (t , x(t))[f (t , x(t))].

Substituting,

x(t + h) = x(t) + hf (t , x(t)) + ∂t f (t , x(t))
h2

2
+ ∂x f (t , x(t))[f (t , x(t))]

h2

2
+ O(h3).

David R. Banos Life Insurance and Finance STK4500 3 / 19



Example (Disability model)
We have f (t ,M) = M · Λ(t) for a matrix M.

Derivative in time: ∂t f (t ,M) = M · Λ′(t).
Derivative in space: ∂M f (t ,M) is trickier.

∂M f (t ,M) is an operator T acting on matrices such that:

lim
H∈M2×2
‖H‖→0

‖f (t ,M + H)− f (t ,M)− T (H)‖
‖H‖

= 0,

where ‖ · ‖ denotes any matrix norm. We see that

‖f (t ,M + H)− f (t ,M)− T (H)‖ = ‖(M + H)Λ(t)−MΛ(t)− T (H))‖
= ‖HΛ(t)− T (H)‖

and hence the operator T (H) = HΛ(t) is the derivative of f (t ,M) = MΛ(t).
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Example (Disability model (cont.))
Using the matrix P(s, t) in place of x(t) in the formula, the Taylor expansion
becomes

P(s, t +h) = P(s, t)+hP(s, t)Λ(t)+
h2

2
P(s, t)Λ′(t)+

h2

2
T (f (t ,P(s, t))+O(h3).

Further,

P(s, t + h) = P(s, t)
(

Id + hΛ(t) +
h2

2
Λ′(t) +

h2

2
Λ(t)2

)
+ O(h3).

One can find Λ′(t) explicitly if possible, but here we will simple use the rough
approximation (Λ(t + h)− Λ(t))/h. The numerical scheme finally becomes

P(s, t + h) ≈ P(s, t)
(

Id + hΛ(t) +
h
2

[Λ(t + h)− Λ(t)] +
h2

2
Λ(t)2

)
.

David R. Banos Life Insurance and Finance STK4500 5 / 19



Example (Disability model (cont.))
Using the matrix P(s, t) in place of x(t) in the formula, the Taylor expansion
becomes

P(s, t +h) = P(s, t)+hP(s, t)Λ(t)+
h2

2
P(s, t)Λ′(t)+

h2

2
T (f (t ,P(s, t))+O(h3).

Further,

P(s, t + h) = P(s, t)
(

Id + hΛ(t) +
h2

2
Λ′(t) +

h2

2
Λ(t)2

)
+ O(h3).

One can find Λ′(t) explicitly if possible, but here we will simple use the rough
approximation (Λ(t + h)− Λ(t))/h. The numerical scheme finally becomes

P(s, t + h) ≈ P(s, t)
(

Id + hΛ(t) +
h
2

[Λ(t + h)− Λ(t)] +
h2

2
Λ(t)2

)
.

David R. Banos Life Insurance and Finance STK4500 5 / 19



Example (Disability model (cont.))
Using the matrix P(s, t) in place of x(t) in the formula, the Taylor expansion
becomes

P(s, t +h) = P(s, t)+hP(s, t)Λ(t)+
h2

2
P(s, t)Λ′(t)+

h2

2
T (f (t ,P(s, t))+O(h3).

Further,

P(s, t + h) = P(s, t)
(

Id + hΛ(t) +
h2

2
Λ′(t) +

h2

2
Λ(t)2

)
+ O(h3).

One can find Λ′(t) explicitly if possible, but here we will simple use the rough
approximation (Λ(t + h)− Λ(t))/h.

The numerical scheme finally becomes

P(s, t + h) ≈ P(s, t)
(

Id + hΛ(t) +
h
2

[Λ(t + h)− Λ(t)] +
h2

2
Λ(t)2

)
.

David R. Banos Life Insurance and Finance STK4500 5 / 19



Example (Disability model (cont.))
Using the matrix P(s, t) in place of x(t) in the formula, the Taylor expansion
becomes

P(s, t +h) = P(s, t)+hP(s, t)Λ(t)+
h2

2
P(s, t)Λ′(t)+

h2

2
T (f (t ,P(s, t))+O(h3).

Further,

P(s, t + h) = P(s, t)
(

Id + hΛ(t) +
h2

2
Λ′(t) +

h2

2
Λ(t)2

)
+ O(h3).

One can find Λ′(t) explicitly if possible, but here we will simple use the rough
approximation (Λ(t + h)− Λ(t))/h. The numerical scheme finally becomes

P(s, t + h) ≈ P(s, t)
(

Id + hΛ(t) +
h
2

[Λ(t + h)− Λ(t)] +
h2

2
Λ(t)2

)
.

David R. Banos Life Insurance and Finance STK4500 5 / 19



Example (Disability model (cont.))

Figure: Disability model with reactivation. Second-order Taylor method: starting age
s = 30, final age t = 110, step size monthly h = 1/12.
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Example (Disability model (cont.))

Figure: Difference t 7→ pEuler
∗∗ (s, t)− pTaylor

∗∗ (s, t).
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Runge-Kutta method RK4
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The Runge-Kutta methods are a extensive family of (explicit and implicit)
numerical methods for solving ODEs.

The most known among all of them is
the explicit RK4 method summarized here below.
The RK4 scheme is given by

xi+1 = xi +
h
6

(k1 + 2k2 + 2k3 + k4) , x0 = x(t0),

where

k1 = f (ti , xi )

k2 = f
(

ti +
h
2
, xi + h

k1

2

)
k3 = f

(
ti +

h
2
, xi + h

k2

2

)
k4 = f (ti + h, xi + hk3)
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Example (Disability model)
We compare all methods here below.

Figure: Difference between t 7→ p∗∗(s, t) for different methods.
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Exercise
Implement any of the above numerical integrators for the spouse and orphan
model.

Exercise
Observe that numerical methods for solving ODE’s can also be applied for
numerical integration. Indeed, imagine you want to find

x(t) =

∫ t

t0
F (s)ds,

for some fixed t. Then choose a grid as before ti = t0 + ih, i = 0, . . . , n such
that h = t0−t

n and f (t , x(t)) = F (t). Prove that Euler’s method applied to F (t)
corresponds to the left Riemann sum and Taylor’s method corresponds to the
trapezoidal rule. Use R or any other programming language to implement
these methods and apply them to some examples.
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K2013 letter and numerical integration
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Nytt dødelighetsgrunnlag i kollektiv pensjonsforsikring, usually known as
K2013 or K13 in short, is a letter published by the Financial Supervisory
Authority of Norway (Finanstilsynet) 8th of March 2013 with with the mortality
basis Norwegian insurances companies and pension funds have to comply
with.

Figure: Norwegian raw mortality from 1966 to 2020 (Source: SSB).
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Figure: Fragment from K2013.
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Exercise (Mortality basis from Finanstilsynet)
Take μ(x , t) from K2013. Here, x is the age of the insured and t is the
calendar year. As you know, mortality changes from year to year in the
sense that, a person who is x today, say t = 2023 will not have the same
mortality as a person who is x years old next year t = 2024.

(a) Consider two states S = {∗, †} and μ(t) = μ∗†(t), t ≥ 0 the mortality
rate. Use Kolmogorov’s equation to show that

p∗∗(x + t , x + s) = exp

(
−
∫ s

t
μ(x + u)du

)
, s, t ≥ 0, s ≥ t.

(b) If we take μ(t) = μKol (x , t) where μKol are the mortality rates from
Finanstilsynet, then for a life aged x in year Y ≥ 2013 we have

p∗∗(x + t , x + s) = exp

(
−
∫ s

t
μKol (x + u,Y + u)du

)
, s ≥ t. (2)
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Exercise ((cont.))
In particular, the probability of surviving one more year given that one is x
years old in 2023 is given by

p∗∗(x , x + 1) = exp

(
−
∫ 1

0
μKol (x + u,2023 + u)du

)
.

Use Taylor’s formula (of order one) to prove the (rather very rough) approxi-
mation

p∗∗(x , x + 1) ≈ exp (−μKol (x ,2023)) .
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Exercise ((cont.))
(c) In general, we prefer a more accurate integration method to find

p∗∗. Use Riemann sums, trapezoidal rule and Simpson’s method for
finding an approximate value for∫ b

a
f (t)dt ,

for a Riemann integrable function f on [a,b].
Apply this to K 2013 with mortality risk and compute

p∗∗(x , x + t), t ∈ {0,10,20,30,40,50},

where x is your age.
Plot the function t 7→ p∗∗(x , x + t) where x is your age.
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Exercise ((cont.))
(d) Write an R-code which generates random lives with the mortalities

given by Finanstilsynet. Plot many life times in a histogram.
Compute the empirical descriptive statistics and check that they are
close to the theoretical ones.
Hint: Fix x and let T be the remaining life time of an x year old
person. Then the total life time is Tx , x + T . What is the
distribution (function) of Tx ?. When you detect the distribution
function of Tx , use the inverse transform sampling method to
simulate values from Tx . The inverse transform method is based on
the following result: if Z is a random variable with distribution
function FZ then FZ (Z ) is uniformly distributed on [0,1].
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Exercise (Disability income insurance)
Assume in a disability insurance that the state of the insured Xt ∈ S is
described by a regular Markov chain with state space S = {∗, �, †} where
∗ ="healthy", � ="sick" and † ="dead". Suppose that the transition rates are
given by the Gompertz-Makeham model as follows

μ∗�(t) = a1 + b1 exp(c1t)
μ�∗(t) = 0.1μ∗�(t),
μ∗†(t) = a2 + b2 exp(c2t),
μ�†(t) = μ∗†(t),

where a1 = 4 · 10−4, b1 = 3.4674 · 10−6, c1 = 0.138155, a2 = 5 · 10−4,
b2 = 7.5858·10−5 and c2 = 0.087498. Compute p∗∗(x , x+10) and p∗�(x , x+
10) for x = 60 (years). Simulate and draw the graphs of each transition
probability for different values of x, say x ∈ [0,100].
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