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Let Ft denote the insurer’s information at time t .

Let L denote the insurer’s future liability (random variable).
The best estimate of the future liability L is given by

E[L|Ft ],

i.e. The expected liability, given all available information about the
policy of interest.

The actuarial reserve is actually

E[L|Ft ] + risk margin,

but in this course we will focus on computing E[L|Ft ] accurately.
The risk margin can for instance be

E[L|Ft ] + α
√

V[L|Ft ],

where α is some value (loading) and V[·|Ft ] stands for conditional variance.
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Modelling the information Ft is crucial for the insurer.

Ft may contain information about...
the state of the insured Xt .
the financial world.
the demographics.
the value of the money (interest rate).

We start assuming that premiums are invested in the bank at a (deterministic)
risk free rate r(t) and the only source of uncertainty is given by Xt : the state
of the insured.
Hence,

Ft = σ(Xs : 0 ≤ s ≤ t).
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Mathematical setting
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Markov process Xt : state of the insured at t ≥ 0, with states S and transition
rates

μij (t), t ≥ 0, i , j ∈ S.

Define the following two processes:
1 IX

i (t) or simply Ii (t) as

IX
i (t) = I{Xt=i}, t ≥ 0, i ∈ S.

2 NX
ij (t) or simply Nij (t) as

NX
ij (t) = #{s ∈ [0, t ] : Xs− = i ,Xs = j}, t ≥ 0, i , j ∈ S.

The process IX
i tells us whether Xt is in state i or not, i.e. 1 or 0,

respectively.
The process NX

ij (t) counts the number of transitions from i to j on
[0, t ].
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Cash flows
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A cash flow A is a (possibly stochastic) function of a.s. bounded variation.

The value A(t) tells us the accumulated cash at time t .

A(t) (cash) t (years)

Important convention: In insurance it is customary to use negative sign
for cash going from insured to insurer and positive sign for cash going from
insurer to insured.
This means that a negative cash flow is "good" for the actuary and positive is
"good" for the customer.
Let us imagine that we have two customers that are x = 30 years old and the
write a pension insurance with us. Both pay premiums as long as they are
active and pension will be paid out from retirement age: 70 years.

1 We promise customer 1 a pension of 15 000NOK/month from age 70
until death.

2 We promise customer 2 a pension of 25 000NOK/month from age 70
until death.
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Figure: Two possible cash flows for a pension scheme of a x = 30 year old contributor
at inception. Retirement at 70 years.
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Observations:
We see that since the pink contributor had a higher pension (25 000)
they needed to pay more (hence the curve is steeper during working
period).

We see that the green cash flow stagnated from 30 to 40 meaning
that the insured possibly stopped paying premiums due to illness. By
that time we had in our actuarial account 2 500 000 NOK to be used.
The green customer passes away at an age of 30 + 50 = 80 and we
still have money left in the account (negative sign).
The pink customer passes away later than estimated, at age
30 + 55 = 85 and we needed to finance the last 3 years which gave
us a loss for this specific customer.
Important: we did not deposit any money into any bank account in
this example. That means, we put the money under the mattress
(which is not realistic).
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Recall that A(t) denotes the accumulated cash flow. Hence,

A(t + h)− A(t)

is the change in cash between times t and t + h.

If h is infinitesimally small, we obtain the instantaneous change on cash flow:

dA(t) instantaneous cash change.

In our example dA(t) is constant meaning that cash flow is paid in linearly
(fixed amount monthly/yearly, etc.).
Next question: How to model/express an insurance cash flow A(t) in terms
of the states of the insured Xt?We need something called policy functions.
Policy functions are stipulated in the policy and determine completely the
type of policy. They tell us how much money to pay out to the insured at any
time for each state.
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Definition (Policy functions)
Let ai ,aij : [0,∞) → R, i , j ∈ S, j 6= i be functions of bounded variation. We
call them policy functions if they model the following quantities:

ai (t) = the accumulated payments from the insurer to the insured up to
time t , given that we know that the insured has always been in state i .

aij (t) = the punctual payments which are due when the insured switches
from state i to j at time t .

Then the (instantaneous) policy cash flow of a policy with ai , aij is given by

dA(t) =
∑

j

IX
j (t)daj (t) +

∑
j ,k

k 6=j

ajk (t)dNX
jk (t).
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dA(t) =
∑

j

IX
j (t)daj (t) +

∑
j ,k

k 6=j

ajk (t)dNX
jk (t).

aj is accumulated cash for being in j . Hence, daj is instantaneous
cash while being in j .

IX
j (t)daj (t) means: as long as being in j , pay out instantaneously daj .

NX
jk (t) is an integer (number of j → k ). Hence, dNX

jk (t) is either 0 or 1.
ajk (t)dNX

jk (t) means: if there is a transition from j to k pay out the
quantity ajk (t).
Summing over all states j ,k we obtain the total instantaneous cash
flow for the policy.
The total (accumulated) cash flow is thus

A(t) =
∑

j

∫ t

0
IX
j (s)daj (s) +

∑
j ,k

k 6=j

∫ t

0
ajk (s)dNX

jk (s).
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Discounting and present values of
liabilities
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Assume the insurer’s instantaneous return on investments at time t is given by
r(t).

A (net) liability L at time t is worth now

e−
∫ t

0 r(s)dsL.

Discrete time counterpart: liability Lk at time k ,

(1 + rk )−k Lk .
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Let A(s) denote an accumulated cash flow till time s.

Then dA(s) is formally the (net) instantaneous cash change. Discrete: Ak vs
Ak − Ak−1.
A (net) cash dA(s) at time s is worth now:

e−
∫ s

0 r(u)dudA(s).

Summing up we get the total cash (liability, benefit, etc.):∫ ∞
0

e−
∫ s

0 r(u)dudA(s).

Here,∞ is the "end of contract", note that if the cash flow A stagnates at, say
T then dA(s) = 0 for s ≥ T .
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Let v(t) = e−
∫ t

0 r(u)du be the discount factor, i.e. multiplying by v(t) means
correcting a value from t to today.

Then ∫ ∞
0

v(s)dA(s).

Let t be fixed. Then:
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Fix t and assume that t is the new present. Then, a liability or cash flow A can
be split into past and future:

1
v(t)

∫ ∞
0

v(s)dA(s)︸ ︷︷ ︸
value cash flow today︸ ︷︷ ︸

value cash flow at time t

=
1

v(t)

∫ t

0
v(s)dA(s)︸ ︷︷ ︸

retrospective value

+
1

v(t)

∫ ∞
t

v(s)dA(s)︸ ︷︷ ︸
prospective value

.

A models cash flow of a policy
v adjusts/discounts accordingly
Set a present t , then we have retrospective and prospective value.
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Summary:
Xt Markov chain with states i , j and transition rates μij .

Processes:

IX
i (t) : tells whether Xt is in i or not.

NX
ij (t) : counts number of transitions i → j by t.

Policy functions:

ai (t) : accumulated cash while being in i.
aij (t) : payment for a transition from i to j.

(Instantaneous) policy cash flow A associated to policy functions ai
and aij :

dA(t) =
∑

j

IX
j (t)daj (t) +

∑
j ,k

k 6=j

ajk (t)dNX
jk (t).

David R. Banos Life Insurance and Finance STK4500 19 / 39



Summary:
Xt Markov chain with states i , j and transition rates μij .
Processes:

IX
i (t) : tells whether Xt is in i or not.

NX
ij (t) : counts number of transitions i → j by t.

Policy functions:

ai (t) : accumulated cash while being in i.
aij (t) : payment for a transition from i to j.

(Instantaneous) policy cash flow A associated to policy functions ai
and aij :

dA(t) =
∑

j

IX
j (t)daj (t) +

∑
j ,k

k 6=j

ajk (t)dNX
jk (t).

David R. Banos Life Insurance and Finance STK4500 19 / 39



Summary:
Xt Markov chain with states i , j and transition rates μij .
Processes:

IX
i (t) : tells whether Xt is in i or not.

NX
ij (t) : counts number of transitions i → j by t.

Policy functions:

ai (t) : accumulated cash while being in i.
aij (t) : payment for a transition from i to j.

(Instantaneous) policy cash flow A associated to policy functions ai
and aij :

dA(t) =
∑

j

IX
j (t)daj (t) +

∑
j ,k

k 6=j

ajk (t)dNX
jk (t).

David R. Banos Life Insurance and Finance STK4500 19 / 39



Summary:
Xt Markov chain with states i , j and transition rates μij .
Processes:

IX
i (t) : tells whether Xt is in i or not.

NX
ij (t) : counts number of transitions i → j by t.

Policy functions:

ai (t) : accumulated cash while being in i.
aij (t) : payment for a transition from i to j.

(Instantaneous) policy cash flow A associated to policy functions ai
and aij :

dA(t) =
∑

j

IX
j (t)daj (t) +

∑
j ,k

k 6=j

ajk (t)dNX
jk (t).

David R. Banos Life Insurance and Finance STK4500 19 / 39



Summary (cont.)
Time value corrected:

v(s)dA(s) =
∑

j

v(s)IX
j (s)daj (s) +

∑
j ,k

k 6=j

v(s)ajk (s)dNX
jk (s).

Accumulated after time value correcting (present value of total future
liability):

L =
∑

j

∫ ∞
0

v(s)IX
j (s)daj (s) +

∑
j ,k

k 6=j

∫ ∞
0

v(s)ajk (s)dNX
jk (s).

Assuming t is the new present. The prospective value of our liabilities
is

V+
t =

1
v(t)

∑
j

∫ ∞
t

v(s)IX
j (s)daj (s) +

1
v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)ajk (s)dNX
jk (s).
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A quick overview on Riemann-Stieltjes
integral
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Sometimes we are interested in expressions like∫ b

a
f (t)dg(t),

where [a,b] is an interval and f and g functions.
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Sometimes we are interested in expressions like∫ b

a
f (t)dg(t),

where [a,b] is an interval and f and g functions.

We are used to the case g(t) = t (Riemann integral), but in economic frame-
work, f (t) can model a multiplicative factor at time t and dg(t) a change of
cash flow at t . Then

∫
[a,b] f (t)dg(t) is the total accumulated cash flow during

the time [a,b] compounded with f .
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work, f (t) can model a multiplicative factor at time t and dg(t) a change of
cash flow at t . Then

∫
[a,b] f (t)dg(t) is the total accumulated cash flow during

the time [a,b] compounded with f .

You know that the Riemann integral is constructed by taking a partition of
points {ti}n

i=0 ⊂ [a,b], t0 = a, tn = b such that maxi=1,...,n |ti − ti−1| → 0 as
n→∞ and ∫ b

a
f (t)dt = lim

n

n∑
i=1

f (ci )(ti − ti−1), ci ∈ [ti−1, ti ].

If ci = ti−1 (left/lower Riemann), if ci = ti (right/upper Riemann).
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∫
[a,b] f (t)dg(t) is the total accumulated cash flow during

the time [a,b] compounded with f .

Then the Riemann-Stieltjes integral is just the same, replacing ti − ti−1 by
g(ti )− g(ti−1). As easy as that!∫ b

a
f (t)dg(t) = lim

n
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Assume that f is continuous then Cf , maxt∈[a,b] |f (t)| <∞ due to the extreme
value theorem. Then∣∣∣∣∣

∫ b

a
f (t)dg(t)

∣∣∣∣∣ ≤ Cf sup
P([a,b])

n∑
i=1

|g(ti )− g(ti−1)|.

Hence, a sufficient condition for
∫ b

a f (t)dg(t) to exist is that f is continuous and
supP([a,b])

∑n
i=1 |g(ti ) − g(ti−1)| < ∞, where the supremum is taken over all

possible partitions of [a,b] with maxi=1,...,n |ti − ti−1| → 0. The latter property
defines a class of functions known as functions of bounded variation.

Functions of bounded variation is a big class. They are functions that "cannot
vary too much or too roughly". This class is far good enough for our purposes.
An example of a function of unbounded variation on any [−a,a], a >0 is

f (x) =

{
0, if x = 0,
sin(1/x), if x 6= 0

,

while it is indeed of bounded variation on any [a,b] for 0 <a <b <∞.
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If g is a.e. differentiable with no discontinuities and g′ denotes the a.e. deriva-
tive of g then it is easy to prove that (try it)∫ b

a
f (t)dg(t) =

∫ b

a
f (t)g′(t)dt ,

But if g is a.e. differentiable with a discontinuity at say, t = t1 ∈ [a,b] then∫ b

a
f (t)dg(t) =

∫ b

a
f (t)g′(t)dt + f (t1)∆g(t1),

where ∆g(t) = g(t)− g(t−), the jump size of g at the jump time t1.

Example: a∗(t) = EI[T ,∞)(t) then for any continuous function f , we have∫ ∞
0

f (s)da∗(s) = f (T )∆a∗(T ) = Ef (T ).
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Examples
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Example (Pure endowment insurance)

A pure endowment insurance is possibly one of the simplest ones. An
x-year old individual enters a contract today t = 0 and the insurance pays
them a lump sum of E monetary units if they survive up to time T >0. Hence,
their age goes from x to x + T (it is important to distinguish between age of
the insured and age of the contract whose difference is obviously x . This
contract pays nothing to the insured in case they die before time T .
In some sense, this insurance is a "bet". The insured bets that they will
survive to time T . The insurance company bets the opposite and pays E in
case of "losing". So the relevant question is:

What is the fair price of this bet, all things taken into account?

By all things we mean: value of money (interest), mortality and amount E .
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Example (Pure endowment (cont.))
How do policy functions look like in this case? Well, this insurance has only
two relevant states: ∗ "alive" and † "dead". This insurance pays no benefits
for changing from ∗ to †, only for being in ∗, at least, passed time T . Hence,
a∗† ≡ 0. On the other hand, while the insured is alive during the time interval
[0,T ) (note open interval), then the insured gets no benefits and hence, the
accumulated benefits are 0. This means that a∗(t) = 0 for every t ∈ [0,T ).
At time t = T the insured gets a lump sum of E , so the accumulated benefits
at time t = T are obviously a∗(T ) = E . The insured gets no further benefits
passed this time, upon survival, so the accumulated payments stay at E
forever. All together, this insurance is completely determined by the following
policy function:

a∗(t) =

{
0, t ∈ [0,T )

E , t ∈ [T ,∞)
.
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Example (Term insurance)

This insurance has also a specified period of time [0,T ] and pays a benefit
B to the insured only during the time span [0,T ) in the only case of death.
The only relevant states are ∗ and † and hence a∗(t) ≡ 0 since there are no
benefits for the mere fact of being at ∗. There is one benefit for a sudden
transition from ∗ to † if this happens during [0,T ). Hence, this insurance is
completely determined by the following policy function:

a∗†(t) =

{
B, t ∈ [0,T )

0, t ∈ [T ,∞)
.
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Example (Endowment insurance)

The endowment insurance is the classic example of a life insurance. It is
the sum of a pure endowment insurance and a term insurance. This means
that it yields a payout in the case of an early death and also in the case of
reaching the fixed age of maturity. If T is such maturity as before, then this
insurance is completely determined by the following policy functions:

a∗(t) =

{
0, t ∈ [0,T )

E , t ∈ [T ,∞)
, a∗†(t) =

{
B, t ∈ [0,T )

0, t ∈ [T ,∞)
.
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Example (Pension insurance)

This insurance has typically a period of time where the insured pays regular
premiums and if a retirement age is reached, then premium payments stop
and pensions are paid to the insured. If T0 denotes the age of the contract
where we start paying pensions, then if we imagine that we a pay pension P
continuously (as the model setting in this section assumes) then the accu-
mulated payments are P×"time". If t ∈ [0,∞) then the accumulated pension
payments on [0,T0] are 0. At time t = T0 we start paying the first pension
P, but this happens continuously in time, this means that at time t = T0 we
have still not started, while at time t = T0 + ε a portion of εP is paid out. At
time t = T0 + 2 we have an accumulated payment of 2P, and so on. Hence,
the accumulated payments for being both alive and in the time span [T0,∞)
are determined by the policy function

a∗(t) =

{
0, t ∈ [0,T0)

P(t − T0), t ∈ [T0,∞)
.
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Example (Pension insurance (cont.))
Observe that the function satisfies the discussion made above. Also, ob-
serve that in this specific case, unlike in the previous one, the function a∗
is continuous and even almost everywhere differentiable with almost every-
where derivative given by

ȧ∗(t) = P.
Whenever our policy functions are almost everywhere differentiable with at
most, a finite number of discontinuities, we will exploit this fact.
Note that this insurance model pays pensions up to infinity, since the function
a∗ is unbounded. In reality this is fine since nobody lives forever. But in
practice, insurance companies usually set the maximum pension age to 114
or around that.
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Example (Disability insurance)

This policy has three relevant states (or maybe more, but at minimum three),
∗ "alive", � "disabled" and † "dead". A disability insurance pays a periodic
benefit for disability D as long as the insured is on sick leave, even from the
very entry of the contract. Hence, this insurance is completely determined
by the following policy function:

a�(t) =

{
Dt , t ∈ [0,T ]

DT , t ∈ (T ,∞)
,

where T is the time where the contract expires, if any. Otherwise, T can
be infinity. Note again that a� models the accumulated payments during the
policy time, that is why we have Dt which accumulated in time and, after T
no more payments are due and hence DT , the totality of payments received,
stays constant.
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Exercise
Find the policy functions which completely determine a spouse insurance
which pays a pension P to the remaining spouse in the case that the other
passes away.

Exercise
In the examples above we have not included the payment of premiums. Letπ
denote a periodically paid-in premium. How would you include the payment
of premiums in the policy functions? Hint: premiums are usually only paid
while the insured is in state ∗ and the sign is negative according to actuarial
convention.
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Example of cash flow
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Example: Endowment insurance
We pay out E1 in case of survival or E2 in case of death before T . State ∗
denotes alive and † deceased. Then using the formula for A(t) from slide p.13,

A(t) =
∑

j

∫ t

0
IX
j (s)daj (s) +

∑
j ,k

k 6=j

∫ t

0
ajk (s)dNX

jk (s).

Then

A(t) =

∫ t

0
IX
∗ (s)da∗(s) +

∫ t

0
a∗†(s)dNX

∗†(s).

We insert the policy functions and use the property of the Riemann-Stieltjes
integral from slide p.24 bottom line.

A(t) = E1IX
∗ (T )I[T ,∞)(t) + E2

∫ t

0
I[0,T ](s)dNX

∗†(s).

Hence,
A(t) = E1IX

∗ (T ) + E2NX
∗†(t ∧ T ).
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If τ is the (random) death time, then

A(t) = I[0,T ](τ)
(
I[τ,∞)(t)E2

)
+ I(T ,∞)(τ)

(
I(T ,∞)(t)E1

)
.
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We need to take into account interest rate, so we use the formula

L =
∑

j

∫ ∞
0

v(s)IX
j (s)daj (s) +

∑
j ,k

k 6=j

∫ ∞
0

v(s)ajk (s)dNX
jk (s),

where interest rate r is taken into account.

In our case:

L =

∫ ∞
0

v(s)IX
∗ (s)da∗(s) +

∫ ∞
0

v(s)a∗†(s)dNX
∗†(s).

Observe that a∗ jumps at T and N∗† jumps at a (random) time τ. Hence again
by the property of the Riemann-Stieltjes integral,

L = v(T ) IX
∗ (T )︸ ︷︷ ︸

=I(T ,∞)(τ)

∆a∗(T )︸ ︷︷ ︸
=E1

+v(τ) a∗†(τ)︸ ︷︷ ︸
=E2I[0,T ](τ)

∆NX
∗†(τ)︸ ︷︷ ︸
=1

.

Or rather,
L = v(T )E1I(T ,∞)(τ) + v(τ)E2I[0,T ](τ).
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We need to take into account interest rate, so we use the formula
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Age insured today x0 = 50, T = 20, E1 = 500 000, E2 = 2 000 000. Constant r = 3%.
Mortalities from Finanstilsynet (K2013). We obtained 5.74% of mortality in the sample
(death risk). Premium: 336 651 NOK. (Exact: 337 919.8 NOK).
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Final comments:
The liability at contract inception:

L = v(T )E1I(T ,∞)(τ) + v(τ)E2I[0,T ](τ)

is random! Because we do not know what will happen.

the part v(T )E1 is the discounted E1 to T years accounting for
survival benefit.
the part v(τ)E2 is the discounted E2 to (random) τ years accounting
for death benefit.
A reasonable (net) premium would be E[L|X0 = ∗], i.e. expected
liability given that the insured enters the contract alive.
In the example, we computed E[L|X0 = ∗] using a Monte-Carlo
method (generated 1 000 lives), but in reality, it can be computed
theoretically! (Next lecture).
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