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Summary:
m X; Markov chain with states /, j and transition rates uj.
m Processes:

IX(t) : tells whether X; is in i or not.
N,-f(t) : counts number of transitions i — j by t.

m Policy functions:

a;(t) : accumulated cash while being in i.
aji(t) : payment for a transition from / to j.

m (Instantaneous) policy cash flow A associated to policy functions a;
and aj:

ZIX )da;(t +Zajk
k?'fl
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Summary (cont.)
m Time value corrected:

v(s)dA(s) = Y _ v(s)I¥(s)day(s) Z s)aj(s)dNx (s).
J
k#/
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Summary (cont.)
m Time value corrected:

v(s)dA(s) = Y _ v(s)I¥(s)day(s) Z s)aj(s)dNx (s).
J
k#/

m Accumulated after time value correcting (present value of total future
liability):

L= Z/ v(s)I¥(s)day(s +Z/ 5)a(S)aNX(s).
k;é/
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Summary (cont.)
m Time value corrected:

v(s)dA(s) = Y _ v(s)I¥(s)day(s) Z s)aj(s)dNx (s).
J
k#/

m Accumulated after time value correcting (present value of total future
liability):

L= Z/ v(s)I¥(s)day(s +Z/ 5)a(S)aNX(s).
k;é/

m Assuming t is the new present. The prospective value of our liabilities
is

Z / s)daj(s Z / s)ai(s)dNx(s).
k#/
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We start with the example: endowment.

Our liability at policy inception is given by

ge.el

L= / v(s)/X(s)da.(s) + / v(s)a.(s)dNX (s),
JO JO
which leads to
L= V( T)EﬂI(TVOC)(T) + V(T) Eg]I[O,T] (T),
where recall that T is the (random) death time.
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We start with the example: endowment.

Our liability at policy inception is given by

ge.el

L— /O T U(s)X(s)da(s) + /O v(s)a.(s)dNX (s),
which leads to
L= V( T)EﬂI(TVOC)(T) + V(T) Eg]I[O,T] (T),

where recall that T is the (random) death time.
L is a random quantity depending on the individual performance of the policy-
holder.

A reasonable premium for the policy is thus
mo 2 E[L|Xo = %] (net premium).

This means, expected value of (future) liability assuming that the insured is
alive at contract inception.
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Let us do the computation!

What is the distribution of 7: the remaining life time of an x year old Norwe-
gian?

Plr > 1] = P[X; = #|Xo = #] = pos(X, X + 1) = @~ Jo it
where u.+(X + U) = pkor(X + U, Y + u). So
Blr <f] =1 e~ Jsuiervpa
As a result, the density function of T is given by
(1) = oy (x + 1) S HOFIN = p_ (%, x + D (x + 1),
Aim: compute

1o = E[L|1Xo = #].
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We have
L= v(T)EL(100)(T) + v(T)E2lo,71(T).

Then

E[L|Xo = +] = V(T)E1E[I(7,00)(T)| X0 = *] + E2E[v(T)Ijo,71(T)[ X0 = #]
= V(T)E1pus(X, X + T) + EE[V(T)Io, 1y (T)| Xo = #].
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We have
L= v(T)EL(100)(T) + v(T)E2lo,71(T).

Then

E[L|Xo = +] = V(T)E1E[I(7,00)(T)| X0 = *] + E2E[v(T)Ijo,71(T)[ X0 = #]
= V(T)E1pus(X, X + T) + EE[V(T)Io, 1y (T)| Xo = #].

Then, -
E[v(1)lp 1y (7)|Xo = #] = /o V(S)To.7)(8)f(s)ds.

Altogether,

7
mo = V(T)E1pur(X, X+ T) + E> / V(8)Psr(X, X + )t (X + S)dS |.
JO
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The net premium of an endowment policy:

;
mo= V(T)E; puc(X, X+ T)+ / Eov(8)pus(X, X + 8)uii(X + 8)dS.
~—— 0

PV of E;
for T years
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The net premium of an endowment policy:

-
mo= V(T)E1 pux(X, X+ T)+/ Eov(s) pus(X, X+ 8)ui(X + 5)ds.
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.
mo = V(T)E1 pux(X, X+ T)+/ Esv(S) Ppus(X, X + S)uwt(X + 8) ds.
—— ——— Jo N——
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Imagine that we find ourselves at time ¢ >0 and our insured is still alive. How
does that change our liability?
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The net premium of an endowment policy:

T
mo= V(T)E; pu(X,x+T) +/ Eov(S) pus(X, X + S)u(x + 8) ds.
—_— — 0 S~

PV of E;  proportion PV of Eo  prob. of surviving to s
for T years of survivors for s years then dying at s

Imagine that we find ourselves at time t € (0, T] and our insured is still alive.
How does that change our liability?

At time t the remaining liability (prospective value) is given by

1t) /t ~ V(s)dA(s)

Vit =
t V(
which in our case is
v(T) v(T)
V;r = WE1 ]I(T,oo)(T)H[t,oo)(T) + WEZH[LT](T)'
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+_v(l) v(T)
Vt = V(t) E1I[(T,oc)(T) + V(t) Egﬂ[tlr](T).
Assuming we are at t and X; = *, how much money should we expectto spend
in the policy?
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+_v(l) v(T)
Vt = V(t) E1I[(T,oc)(T) + V(t) Egﬂ[tlr](T).
Assuming we are at t and X; = *, how much money should we expectto spend
in the policy?
E[V;F X = #].
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‘:/((7;)) Eil(r)(T) + “//((-:))Ezﬂ[r,r]('f)-

Assuming we are at t and X; = *, how much money should we expectto spend
in the policy?

Vit =

E[V;F X = #].

The above quantity is what we (in this course) refer to as prospective reserve,
that is
VIi(t) £ E[VTX = «].

David R. Banos Life Insurance and Finance STK4500 10/26



UiO ¢ Department of Mathematics
University of Oslo

v(T) v(7)

V(t) E1I[(T,oc)(T) + WEZH[T,T](T)'

Assuming we are at t and X; = *, how much money should we expectto spend
in the policy?

Vit =

E[V;F X = #].

The above quantity is what we (in this course) refer to as prospective reserve,
that is
VIi(t) £ E[VTX = «].

We can repeat the computation for the endowment case. You will obtain:

_v(T) " v(s)
VI(t) = WE1P**(X+ Lx+T) +/t mEgp**(er t, X + S)usi (X + s)ds.
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Premium and reserve (general
definition)
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Net premium

In general, the policy’s future liability (prospective value) is

Z/ s)da(s Z/ 5)a(s)aNX(s).
k#/
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Z / s)daj(s Z / s)aj(s)aNx (s).
k#/
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Z/ s)da;(s +Z/ s)ai(s)dNX(s).
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Net premium

In general, the policy’s future liability (prospective value) is

Z / s)daj(s Z / s)aj(s)aNx (s).
k#/

The value at inception t =0 is

Z/ s)daj(s +Z/ s)ai(s)dNX(s).
k#l

The one-time net premium g is thus given by

7T0:E[VO+‘X0:*} .
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Prospective reserve

Again, the policy’s future liability (prospective value) is

Vi v(t Z/ s)daj(s Z/ s)a(s k(S)-
P
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Prospective reserve

Again, the policy’s future liability (prospective value) is

Vi v(t Z/ s)daj(s Z/ s)a(s k(S)-
P

The expected remaining future liability from t, assuming that the insured is in
a specific state i is given by

V() 2 B[V IX =1
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Prospective reserve

Again, the policy’s future liability (prospective value) is

Vi 0] Z/ §)daj(s Z/ s)aj(s)dNk (s).
P

The expected remaining future liability from t, assuming that the insured is in
a specific state i is given by

Vi'(t) = B[V, [ X =1]|

In some situations one really needs to stress the cash flow A and you may
instead see:

Vit A) |
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Prospective reserve

Again, the policy’s future liability (prospective value) is

Vi 0] Z/ §)daj(s Z/ s)aj(s)dNk (s).
P

The expected remaining future liability from t, assuming that the insured is in
a specific state i is given by

Vi'(t) = B[V, [ X =1]|

In some situations one really needs to stress the cash flow A and you may
instead see:

Vit A) |

Observation: The prospective reserve at time t = 0 and state i = x is the net
premium, reasonably.
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Prospective reserve (explicit formula)
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Take a look at the prospective value:

Z / s)da(s Z / 5)a(s)aNX(s).
k;é/
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Take a look at the prospective value:

Z/ s)daj(s +—Z/ s)ajk ()N (s).
k;é/

The prospective reserve is obtained by taking E[-| X; = i].
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Take a look at the prospective value:

Z/ s)daj(s +—Z/ s)aj(s)aNx (s).
k;é/

The prospective reserve is obtained by taking E[-| X; = i].

Hence, we need to compute things like:

R UOOC 1()1X(s)da(s) X, = i} ,

E UOOO f(s)aN(s)|X; = i} ,

and

for functions f and a.
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Take a look at the prospective value:

Z/ s)daj(s +—Z/ s)aj(s)aNx (s).
k;é/

The prospective reserve is obtained by taking E[-| X; = i].

Hence, we need to compute things like:

R UOOC 1()1X(s)da(s) X, = i} ,

E UOOO f(s)aN(s)|X; = i} ,

for functions f and a. The first one is trivial. Let us focus on the second one.

and

David R. Banos Life Insurance and Finance STK4500 15/26



UiO ¢ Department of Mathematics
University of Oslo

Proof of E[ [y~ f(s)dNj(s)| X = 1.
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Proof of E[ [y~ f(s)dNj(s)| X = 1.
It is sufficient to assume that 7(s) = I}, (s). Define

9(s) £ EINK(s)| X =1], s>t

the expected number of jumps from j to k in [0, s] given X; = i.
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Proof of E[ [y~ f(s)dNj(s)| X = 1.
It is sufficient to assume that 7(s) = I}, (s). Define

9(s) £ EINK(s)| X =1], s>t

the expected number of jumps from j to k in [0, s] given X; = i.

g(s+h)—g(s) = E| 'X(S+h)— NX(8)|X; = 1]
= ZE[H{XS n(NK(s + h) — NX(8))|X; = i]

1e8
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Proof of E[ [y~ f(s)dNj(s)| X = 1.
It is sufficient to assume that 7(s) = I}, 4(s). Define

a(s) 2 E[N{(s)| X; = 1], s>t

the expected number of jumps from j to k in [0, s] given X; = i.

a(s+ h) — g(s) = E[Ng(s + h) — Nx(s)|X; = i]
= ZE[H{Xs n(NiK(s + h) = NX(8))[X; = 1]

le8

- Z IP’[X ]E[H{Xs ’}(N (s+h)— Nj)/f(s))ﬂ{x,:i}]

le8
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Proof of E[ [y~ f(s)dNj(s)| X = 1.
It is sufficient to assume that 7(s) = I}, (s). Define

9(s) £ EINK(s)| X =1], s>t

the expected number of jumps from j to k in [0, s] given X; = i.

a(s+ h) — g(s) = E[Ny (s + h) — Ni(s)|X; = 1]
= Ellix—n(Nx(s+ h) — NX(s))|X; = ]

1e8

_Z}P’[X1 ]E[H{Xs ’}(N (s+h)— N/')IS(S))H{Xt:i}]
1e8
= 3 V= Ty + ) Moo e =
1e8
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Nj?,f(s + h) — N},f(s) number of jumps from j to k in [s, s + h] is independent of
Xi =i, given Xg = .

Xe=i Xs=1

N (s + h) - Nii(s)

t s s+h
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Nj?,f(s + h) — Nj’,f(s) number of jumps from j to k in [s, s + h] is independent of
Xi =i, given Xg = .

Xf:f X5=l

N (s + h) - Nii(s)

t s s+h

Hence,

E[(N(s + h) — NE() x| Xs = N =
= E[(N(s + h) — NE(8))IXs = NE[L x| Xs = 1
— E[(N(s + h) — NX(8))|Xe = NIB[X; = i1Xs = I
PIX; = i, Xs = ]

= E[(Nj(s + h) — Ni(8))|Xs = 1] P[X; = /]
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ols-+ )~ 9(5) = 3 52— AEINK(s + h) ~ NX(O)Eix— X = )
1e8
=3 B LN (s + )~ N(sIxe = 1t =
les s
=Y E[(Nj(s + h) — NX(s))|Xs = Nlpu(t, s).
le8
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g(s+h) — Z:Ei_WEK
1e8
P[Xs =
N =

=Y E[(Nj(s+h) -

les
Observe that
Z(h) £ E[(Nj(s+ h) —

K(s+h) — NE(S) x| Xs = 1]

Nix(s + h) — Ni(8))|Xs = 1]

NK(8)IXs = lpi(t, s).

David R. Banos Life Insurance and Finance STK4500

PIX; = i, Xs = /]

P[Xs = []

/?k((s))\Xs =1 = o(h), forall | #j.
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ols-+ )~ 9(5) = 3 52— AEINK(s + h) ~ NX(O)Eix— X = )
1e8
PXs =1 PX; =i, Xs =1
%; B ELM (s + ) — NS (8)) 6 = =]
=Y E[(Nj(s + h) — NX(s))|Xs = Nlpu(t, s).
1e8
Observe that

Z(h) £ E[(NX(s+ h) — Ni(s))|Xs =[] = o(h), for all | # j.

Taking into account that X:(c) is right-continuous with left limits and 8 finite we

find that
Z(h) mo | uKk(s), if =],
h 0, else

David R. Banos Life Insurance and Finance STK4500 18/26
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Hence,
9(s+h) —g(s)

= lim h = pi(t, S)ui(s).

David R. Banos Life Insurance and Finance STK4500 19/26
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Hence,
, . s+ h)—9g(s
g'(5) = lim SEEN =IO _ bt 5)(s).
Integrating,
a(b) - / g(s)ds = / Pt Shus(s)ds = [ HPi(t s)un(s)ds:
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Hence,
’ s+ h)—9g(s
g'(5) = lim SEEN =IO _ bt 5)(s).
Integrating,
a(b) - / g(s)ds = / Pt Shus(s)ds = [ HPi(t s)un(s)ds:
On the other hand,

b
a(b) — o(a) = E[NX(b) — NX(@)X; = i] = E [ [ sy = /}

_E UOOO F(s)dNX(8)| X = /] .
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Hence,
’ s+ h)—9g(s
g'(5) = lim SEEN =IO _ bt 5)(s).
Integrating,
a(b) - / g(s)ds = / Pt Shus(s)ds = [ HPi(t s)un(s)ds:
On the other hand,
b
a(b) — g(a) = EINJ(b) — NX(a)|X; =] = E [ [ sy = /}
a
_E U F(S)dNX ()| X = /] .
0
Therefore,

B | [T oM@ = i| = [T Hept Shun(s)ds

for f(s) = Ija5(S). Hence, for linear combinations of f as well and by a density argu-
ment, for integrable functions.
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Back to the prospective value again:

Vi 70) Z/ s)da;(s Z/ s)aj(s)dNj (s).
k#/

Apply conditional expectation E[-|X; = /] in order to obtain

B[V |X =] = 0l Z/ )X = idaj(s) + %;E{/,% v(8)aj()aN ()| X, = i
A

57

David R. Banos Life Insurance and Finance STK4500 20/26



UiO ¢ Department of Mathematics
University of Oslo

Back to the prospective value again:

Vi 70) Z/ s)da;(s Z/ s)aj(s)dNj (s).
k#/

Apply conditional expectation E[-|X; = /] in order to obtain

B[V X =] = —— 70 Z/ )X = ilda(s) + %;E{/,% v(s)aj(s)aNiX (s)|X; = i
i
k|

Et voila,
1 oo
ACEETDY / v(s)py(t, s)day(s Z / V(S)pi(t, $)1e(s)ax(s)ds |
>
k#/

Look at the formula, listen to it, what does it tell you? (Interpret).
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Back to endowment example
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Applying the previous theoretical formula, the prospective reserve for an en-
dowment is

_v(T) " v(s)
VI () = e B (x b+ T+ Ez/t D P L+ S (x+ s)as
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Applying the previous theoretical formula, the prospective reserve for an en-
dowment is

_v(T) " v(s)
VI () = e B (x b+ T+ Ez/t D P L+ S (x+ s)as

and the single premium:

T

mo = V(T)Eipur(X, X+ T) + E> / V(8)Pss (X, X + )t (X + S)dS.
JOo
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Expected prospective value (no premiums)
500-

450-

x1000

400-

(4]
[
=

0 5 10 1
Palicy time

Figure: Endowment: x =50, G=1,Y =2023, G=0, T = 20, r = 3%,
E; = 0.5MNOK, E, = 2MNOK. Single premium 1y = 337 545NOK.
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Recall the PV of the policy (endowment) is

T
VE(t, AToermenty = v(( )) Eipu(X+tx+T)+ E / 0 p**(er t, X + S)u«+(x + 8)ds.
t

It is the sum of a pure endowment and a term insurance:

-
Vi (1, A = “//((t)) Evpoc(X+ L Xx+T).

Vi Ay = [ A9 t el
(AT = Be | gy P (X LX A+ St (X + 5)ds.
t
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Prospective values
500-

— Pure endowment

Term insurance

— Endowment

o
(=
[=1

0 5 10 1
Policy time

Figure: x=50,G=1,Y =2023,G=0, T =20, r = 3%, E; = 0.5MNOK,
E> = 2MNOK. g™ = 78 887NOK, 13" = 258 658NOK, g ™" = 337 545NOK.
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Back to the endowment policy, with cash flow A*"*. Recall that the (stochastic)
value of this policy is

.
Vit = Vzt) /[ v(s)dA™(s) = “’/((g) EiT(7,00)(T) + “//((?))Ezﬂu,r)(ﬂ-
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Back to the endowment policy, with cash flow A*"*. Recall that the (stochastic)
value of this policy is

.
Vit = Vzt) /[ v(s)dA™(s) = “’/(J)) EiT(7,00)(T) + “//((?))Ezﬂu,r)(ﬂ-

The value V;f(t, A*) is the mean of the above distribution, given the event
X; = . We can also estimate the whole distribution V;L for a sample of times
t using Monte Carlo simulation, then look at the 95% intervals, i.e. I.(t), u.(t)
such that

P[L(t) < Vi < u. ()| X; = ] = 0.95.

Then 1,(t) < V(1) < u.(t).
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