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Summary:
Xt Markov chain with states i , j and transition rates μij .

Processes:

IX
i (t) : tells whether Xt is in i or not.

NX
ij (t) : counts number of transitions i → j by t.

Policy functions:

ai(t) : accumulated cash while being in i.
aij(t) : payment for a transition from i to j.

(Instantaneous) policy cash flow A associated to policy functions ai
and aij :

dA(t) =
∑

j

IX
j (t)daj(t) +

∑
j ,k

k 6=j

ajk (t)dNX
jk (t).
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Summary (cont.)
Time value corrected:

v(s)dA(s) =
∑

j

v(s)IX
j (s)daj(s) +

∑
j ,k

k 6=j

v(s)ajk (s)dNX
jk (s).

Accumulated after time value correcting (present value of total future
liability):

L =
∑

j

∫ ∞
0

v(s)IX
j (s)daj(s) +

∑
j ,k

k 6=j

∫ ∞
0

v(s)ajk (s)dNX
jk (s).

Assuming t is the new present. The prospective value of our liabilities
is

V+
t =

1
v(t)

∑
j

∫ ∞
t

v(s)IX
j (s)daj(s) +

1
v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)ajk (s)dNX
jk (s).
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Premium and reserve for the
endowment policy
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We start with the example: endowment.

Our liability at policy inception is given by

L =

∫ ∞
0

v(s)IX
∗ (s)da∗(s) +

∫ ∞
0

v(s)a∗†(s)dNX
∗†(s),

which leads to
L = v(T )E1I(T ,∞)(τ) + v(τ)E2I[0,T ](τ),

where recall that τ is the (random) death time.

L is a random quantity depending on the individual performance of the policy-
holder.

A reasonable premium for the policy is thus

π0 , E[L|X0 = ∗] (net premium).

This means, expected value of (future) liability assuming that the insured is
alive at contract inception.
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Let us do the computation!

What is the distribution of τ: the remaining life time of an x year old Norwe-
gian?

P[τ >t ] = P[Xt = ∗|X0 = ∗] = p∗∗(x , x + t) = e−
∫ t

0 μ∗†(x+u)du ,

where μ∗†(x + u) = μKol(x + u,Y + u). So

P[τ < t ] = 1− e−
∫ t

0 μ∗†(x+u)du.

As a result, the density function of τ is given by

fτ(t) = μ∗†(x + t)e−
∫ t

0 μ(x+u)du = p∗∗(x , x + t)μ∗†(x + t).

Aim: compute
π0 = E[L|X0 = ∗].
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We have
L = v(T )E1I(T ,∞)(τ) + v(τ)E2I[0,T ](τ).

Then

E[L|X0 = ∗] = v(T )E1E[I(T ,∞)(τ)|X0 = ∗] + E2E[v(τ)I[0,T ](τ)|X0 = ∗]
= v(T )E1p∗∗(x , x + T ) + E2E[v(τ)I[0,T ](τ)|X0 = ∗].

Then,

E[v(τ)I[0,T ](τ)|X0 = ∗] =
∫ ∞

0
v(s)I[0,T ](s)fτ(s)ds.

Altogether,

π0 = v(T )E1p∗∗(x , x + T ) + E2

∫ T

0
v(s)p∗∗(x , x + s)μ∗†(x + s)ds .
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The net premium of an endowment policy:

π0 = v(T )E1︸ ︷︷ ︸
PV of E1

for T years

p∗∗(x , x + T ) +

∫ T

0
E2v(s)p∗∗(x , x + s)μ∗†(x + s)ds.
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does that change our liability?
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Imagine that we find ourselves at time t ∈ (0,T ] and our insured is still alive.
How does that change our liability?

At time t the remaining liability (prospective value) is given by

V+
t =

1
v(t)

∫ ∞
t

v(s)dA(s),

which in our case is

V+
t =

v(T )

v(t)
E1I(T ,∞)(τ)I[t ,∞)(T ) +

v(τ)
v(t)

E2I[t ,T ](τ).
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V+
t =

v(T )

v(t)
E1I(T ,∞)(τ) +

v(τ)
v(t)

E2I[t ,T ](τ).

Assuming we are at t and Xt = ∗, how much money should we expect to spend
in the policy?

E[V+
t |Xt = ∗].

The above quantity is what we (in this course) refer to as prospective reserve,
that is

V+
∗ (t) , E[V+

t |Xt = ∗].
We can repeat the computation for the endowment case. You will obtain:

V+
∗ (t) =

v(T )

v(t)
E1p∗∗(x + t , x + T ) +

∫ T

t

v(s)
v(t)

E2p∗∗(x + t , x + s)μ∗†(x + s)ds.
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Premium and reserve (general
definition)
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Net premium
In general, the policy’s future liability (prospective value) is

V+
t =

1
v(t)

∑
j

∫ ∞
t

v(s)IX
j (s)daj(s) +

1
v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)ajk (s)dNX
jk (s).

The value at inception t = 0 is

V+
0 =

∑
j

∫ ∞
0

v(s)IX
j (s)daj(s) +

∑
j ,k

k 6=j

∫ ∞
0

v(s)ajk (s)dNX
jk (s).

The one-time net premium π0 is thus given by

π0 = E
[
V+

0 |X0 = ∗
]
.

David R. Banos Life Insurance and Finance STK4500 12 / 26



Net premium
In general, the policy’s future liability (prospective value) is

V+
t =

1
v(t)

∑
j

∫ ∞
t

v(s)IX
j (s)daj(s) +

1
v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)ajk (s)dNX
jk (s).

The value at inception t = 0 is

V+
0 =

∑
j

∫ ∞
0

v(s)IX
j (s)daj(s) +

∑
j ,k

k 6=j

∫ ∞
0

v(s)ajk (s)dNX
jk (s).

The one-time net premium π0 is thus given by

π0 = E
[
V+

0 |X0 = ∗
]
.

David R. Banos Life Insurance and Finance STK4500 12 / 26



Net premium
In general, the policy’s future liability (prospective value) is

V+
t =

1
v(t)

∑
j

∫ ∞
t

v(s)IX
j (s)daj(s) +

1
v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)ajk (s)dNX
jk (s).

The value at inception t = 0 is

V+
0 =

∑
j

∫ ∞
0

v(s)IX
j (s)daj(s) +

∑
j ,k

k 6=j

∫ ∞
0

v(s)ajk (s)dNX
jk (s).

The one-time net premium π0 is thus given by

π0 = E
[
V+

0 |X0 = ∗
]
.

David R. Banos Life Insurance and Finance STK4500 12 / 26



Prospective reserve
Again, the policy’s future liability (prospective value) is

V+
t =

1
v(t)

∑
j

∫ ∞
t

v(s)IX
j (s)daj(s) +

1
v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)ajk (s)dNX
jk (s).

The expected remaining future liability from t , assuming that the insured is in
a specific state i is given by

V+
i (t) , E[V+

t |Xt = i] .

In some situations one really needs to stress the cash flow A and you may
instead see:

V+
i (t ,A) .

Observation: The prospective reserve at time t = 0 and state i = ∗ is the net
premium, reasonably.
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Prospective reserve (explicit formula)
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Take a look at the prospective value:

V+
t =

1
v(t)

∑
j

∫ ∞
t

v(s)IX
j (s)daj(s) +

1
v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)ajk (s)dNX
jk (s).

The prospective reserve is obtained by taking E[·|Xt = i].

Hence, we need to compute things like:

E
[∫ ∞

0
f (s)IX

j (s)da(s)
∣∣∣Xt = i

]
,

and

E
[∫ ∞

0
f (s)dNX

jk (s)
∣∣∣Xt = i

]
,

for functions f and a. The first one is trivial. Let us focus on the second one.
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Proof of E[
∫∞

0 f (s)dNX
jk (s)|Xt = i].
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NX
jk (s + h)− NX

jk (s) number of jumps from j to k in [s, s + h] is independent of
Xt = i , given Xs = l .

Hence,

E[(NX
jk (s + h)− NX

jk (s))I{Xt=i}|Xs = l] =

= E[(NX
jk (s + h)− NX

jk (s))|Xs = l]E[I{Xt=i}|Xs = l]

= E[(NX
jk (s + h)− NX

jk (s))|Xs = l]P[Xt = i |Xs = l]

= E[(NX
jk (s + h)− NX

jk (s))|Xs = l]
P[Xt = i ,Xs = l]

P[Xs = l]
.
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g(s + h)− g(s) =
∑
l∈S

P[Xs = l]
P[Xt = i]

E[(NX
jk (s + h)− NX

jk (s))I{Xt=i}|Xs = l]

=
∑
l∈S

P[Xs = l]
P[Xt = i]

E[(NX
jk (s + h)− NX

jk (s))|Xs = l]
P[Xt = i ,Xs = l]

P[Xs = l]

=
∑
l∈S

E[(NX
jk (s + h)− NX

jk (s))|Xs = l]pil(t , s).

Observe that

Z (h) , E[(NX
jk (s + h)− NX

jk (s))|Xs = l] = o(h), for all l 6= j.

Taking into account that Xt(ω) is right-continuous with left limits and S finite we
find that

Z (h)
h

h↘0−−−→

{
μlk (s), if l = j ,
0, else

.
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Hence,

g′(s) = lim
h→0

g(s + h)− g(s)
h

= pij(t , s)μjk (s).

Integrating,

g(b)− g(a) =
∫ b

a
g′(s)ds =

∫ b

a
pij(t , s)μjk (s)ds =

∫ ∞
0

f (s)pij(t , s)μjk (s)ds.

On the other hand,

g(b)− g(a) = E[NX
jk (b)− NX

jk (a)|Xt = i] = E
[∫ b

a
dNX

jk (s)|Xt = i
]

= E
[∫ ∞

0
f (s)dNX

jk (s)|Xt = i
]
.

Therefore,

E
[∫ ∞

0
f (s)dNX

jk (s)|Xt = i
]
=

∫ ∞
0

f (s)pij(t , s)μjk (s)ds,

for f (s) = I[a,b](s). Hence, for linear combinations of f as well and by a density argu-
ment, for integrable functions.
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Back to the prospective value again:

V+
t =

1
v(t)

∑
j

∫ ∞
t

v(s)IX
j (s)daj(s) +

1
v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)ajk (s)dNX
jk (s).

Apply conditional expectation E[·|Xt = i] in order to obtain

E[V+
t |Xt = i] =

1
v(t)

∑
j

∫ ∞
t

v(s)E[IX
j (s)|Xt = i]daj (s) +

1
v(t)

∑
j ,k

k 6=j

E
[∫ ∞

t
v(s)ajk (s)dNX

jk (s)|Xt = i

]
.

Et voilà,

V+
i (t) =

1
v(t)

∑
j

∫ ∞
t

v(s)pij(t , s)daj(s) +
1

v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)pij(t , s)μjk (s)ajk (s)ds .

Look at the formula, listen to it, what does it tell you? (Interpret).

David R. Banos Life Insurance and Finance STK4500 20 / 26



Back to the prospective value again:

V+
t =

1
v(t)

∑
j

∫ ∞
t

v(s)IX
j (s)daj(s) +

1
v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)ajk (s)dNX
jk (s).

Apply conditional expectation E[·|Xt = i] in order to obtain

E[V+
t |Xt = i] =

1
v(t)

∑
j

∫ ∞
t

v(s)E[IX
j (s)|Xt = i]daj (s) +

1
v(t)

∑
j ,k

k 6=j

E
[∫ ∞

t
v(s)ajk (s)dNX

jk (s)|Xt = i

]
.

Et voilà,

V+
i (t) =

1
v(t)

∑
j

∫ ∞
t

v(s)pij(t , s)daj(s) +
1

v(t)

∑
j ,k

k 6=j

∫ ∞
t

v(s)pij(t , s)μjk (s)ajk (s)ds .

Look at the formula, listen to it, what does it tell you? (Interpret).

David R. Banos Life Insurance and Finance STK4500 20 / 26



Back to endowment example
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Applying the previous theoretical formula, the prospective reserve for an en-
dowment is

V+
∗ (t) =

v(T )

v(t)
E1p∗∗(x + t , x + T ) + E2

∫ T

t

v(s)
v(t)

p∗∗(x + t , x + s)μ∗†(x + s)ds,

and the single premium:

π0 = v(T )E1p∗∗(x , x + T ) + E2

∫ T

0
v(s)p∗∗(x , x + s)μ∗†(x + s)ds.
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Figure: Endowment: x = 50, G = 1, Y = 2023, G = 0, T = 20, r = 3%,
E1 = 0.5MNOK, E2 = 2MNOK. Single premium π0 = 337 545NOK.
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Recall the PV of the policy (endowment) is

V+
∗ (t ,Aendowment) =

v(T )

v(t)
E1p∗∗(x + t , x + T ) + E2

∫ T

t

v(s)
v(t)

p∗∗(x + t , x + s)μ∗†(x + s)ds.

It is the sum of a pure endowment and a term insurance:

V+
∗ (t ,Apure) =

v(T )

v(t)
E1p∗∗(x + t , x + T ).

V+
∗ (t ,Aterm) = E2

∫ T

t

v(s)
v(t)

p∗∗(x + t , x + s)μ∗†(x + s)ds.
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Figure: x = 50, G = 1, Y = 2023, G = 0, T = 20, r = 3%, E1 = 0.5MNOK,
E2 = 2MNOK. πterm

0 = 78 887NOK, πpure
0 = 258 658NOK, πendowment

0 = 337 545NOK.
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Back to the endowment policy, with cash flow Aend.. Recall that the (stochastic)
value of this policy is

V+
t =

1
v(t)

∫ T

t
v(s)dAend.(s) =

v(T )

v(t)
E1I(T ,∞)(τ) +

v(τ)
v(t)

E2I(t ,T )(τ).

The value V+
∗ (t ,Aend.) is the mean of the above distribution, given the event

Xt = ∗. We can also estimate the whole distribution V+
t for a sample of times

t using Monte Carlo simulation, then look at the 95% intervals, i.e. l∗(t),u∗(t)
such that

P[l∗(t) ≤ V+
t ≤ u∗(t)|Xt = ∗] = 0.95.

Then l∗(t) ≤ V+
∗ (t) ≤ u∗(t).
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