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What we have learnt so far...
To model the states of the insured with a Markov chain Xt .

To model cash flows, denoted by A, with policy functions according
to the states of the insured.
To defined stochastic prospective value V+

t and the expected
prospective value given a state i , V+

i (t).
To include periodic premiums and determine their value by using the
actuarial equivalence principle.
All this, under a continuous time setting and a discrete time setting.
Next:

Thiele’s differential equation (continuous time setting)
Thiele’s difference equation (discrete time setting)
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Transition rates vs. transition
probabilities
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Thiele’s differential equation (Thiele’s ODE) is:

a differential equation for the quantity V+
i (t).

So, for each state i ∈ S we have an equation for V+
i (t).

Idea of Thiele’s ODE: Start from the end of the contract t = T where
you know its exact value (either 0 or some survival benefit) and work
your way backwards to t = 0.
Why bother about a differential equation for V+

i (t) when we actually
have a nice explicit formula for V+

i (t)?
Look at the explicit formula for expected prospective value:

V+
i (t) =

∑
j

∫ ∞
t

v(s)

v(t)
pij (t , s)daj (s) +

∑
j ,k

k 6=j

∫ ∞
t

v(s)

v(t)
pij (t , s)μjk (s)ajk (s)ds.

It depends on all pij (t , s) which is tricky...
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The statistician can "easily" estimate the transition rates μij by observing at
each time how many immigrations and emigrations there are.

Let S = {1, . . . ,m}, m states and we have a cohort of individuals X 1, . . . ,X n

(i.e. with the same age and characteristics). Here X k
t is the state in S at time t

of the individual k = 1, . . . , n.

Let

RX k

i (h) =

∫ h

0
IX k

i (s)ds

be the time spent by individual k in state i during [0,h] and

NX k

ij (h)

be the number of transitions i  j on [0,h] by individual k .
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Rk
i (h) =

∫ h

0
IX k

i (s)ds NX k

ij (h)

Furthermore, define the total number of time spend in i and transitions i  j
during [0,h] as

Ri (h) =
n∑

k=1

RX k

i (h) Nij (h) =
n∑

k=1

NX k

ij (h).

Assume that μij is constant and that we observe what happens on an interval
[0,h], h >0.

Then the MLE estimator of μij based on the time interval [0,h] is given by

μ̂ij = μ̂ij (h) =
Nij (h)

Ri (h)
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Figure: In this realization observed on [0, h] we have Nij = 2. If h = 1 then the orange
lines account for around Ri ≈ 0.32, so μ̂ij = 2/0.32 = 6.25.

In general, μij is not time homogeneous. To estimate μij (t), t ≥ 0 one may
split time into intervals where it is plausible to assume constant rates or to use
a parametric family for μij (t).
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Recall that μij (t)h ≈ pij (t , t + h) for small h. Hence, estimating μij (t) by observ-
ing what happens around t seems easier. Once we get μij we can obtain pij
through Kolmogorov’s equations.

This suggests that a formula for V+
i (t) which is independent of pij (t , s) for

arbitrary t , s would be nice.

This is the point of Thiele’s equations. Let’s start!
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Thiele’s differential equation
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Recall the explicit formula for the expected prospective value, given Xt = i ,

V+
i (t) =

∑
j

∫ ∞
t

v(s)

v(t)
pij (t , s)daj (s) +

∑
j ,k

k 6=j

∫ ∞
t

v(s)

v(t)
pij (t , s)μjk (s)ajk (s)ds.
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From now on we will assume that the policy function ai is almost everywhere
differentiable with at most, one discontinuity at maturity time T . This means
dai (s) = ȧi (s)ds for a.e. s and ∆ai (s) = 0 for every s ∈ [0,T ) and ∆ai (T ) 6= 0.
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Now, let us compactify things in the formula:

V+
i (t) =

∑
j

v(T )

v(t)
pij (t ,T )∆aj (T ) +

∑
j

∫ T

t

v(s)

v(t)
pij (t , s)ȧj (s)ds

+
∑
j ,k

k 6=j

∫ T

t

v(s)

v(t)
pij (t , s)μjk (s)ajk (s)ds.

Observe that the integrals in ds can be put under one and the sums over j can
be merged together:

V+
i (t) =

∑
j

v(T )

v(t)
pij (t ,T )∆aj (T )

+
∑

j

∫ T

t

v(s)

v(t)
pij (t , s)

ȧj (s)ds +
∑
k 6=j

μjk (s)ajk (s)


︸ ︷︷ ︸

=θj (s)

ds
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So far we have

V+
i (t) =

∑
j

v(T )

v(t)
pij (t ,T )∆aj (T ) +

∑
j

∫ T

t

v(s)

v(t)
pij (t , s)θj (s)ds,

where
θj (s) , ȧj (s) +

∑
k 6=j

μjk (s)ajk (s).
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Recall Kolmogorov’s backward equation:

d
dt

pij (t , s) = −
∑
k∈S

μik (t)pkj (t , s).

Separate the case k = i :

d
dt

pij (t , s) = −μii (t)pij (t , s)−
∑
k 6=i

μik (t)pkj (t , s).

Now recall that the sum of μik over k is 0:∑
k

μik (t) =
∑
k 6=i

μik (t) + μii (t) = 0 ⇐⇒ μii (t) = −
∑
k 6=i

μik (t).

Hence,
d
dt

pij (t , s) =
∑
k 6=i

μik (t)pij (t , s)−
∑
k 6=i

μik (t)pkj (t , s).

Finally, put together under the same sum:

d
dt

pij (t , s) =
∑
k 6=i

μik (t) (pij (t , s)− pkj (t , s)).
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Back to V+
i (t):

V+
i (t) =
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θj (s) , ȧj (s)ds +

∑
k 6=j
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Define the following function

H(t) =

∫ T

t
f (t , s)ds

for an integrable function f (t , ·) for every t . What is H ′(t)?

Define the following bivariate function

F (x , y) =

∫ T

y
f (x , s)ds.

Then, clearly H(t) = F (t , t). To compute H ′(t) we can use the (bivariate) chain
rule:

H ′(t) =
∂
∂x

F (x , y)|(x ,y)=(t ,t) +
∂
∂y

F (x , y)|(x ,y)=(t ,t).

We have

∂
∂x

F (x , y) =

∫ T

y

∂
∂x

f (x , s)ds, ∂
∂y

F (x , y) = −f (x , y).
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F (x , y) =

∫ T

y
f (x , s)ds ⇒ H(t) = F (t , t).

As a result,

H ′(t) =

∫ T

t

∂
∂x

f (x , s)|x=tds − f (t , t).

That is

H ′(t) =

∫ T

t

d
dt

f (t , s)ds − f (t , t).

In the case where f (t , s) = v(s)pij (t , s)θj (s) we have

d
dt

∫ T

t
v(s)pij (t , s)θj (s)ds =

∫ T

t
v(s)

d
dt

pij (t , s)θj (s)ds − v(t)pij (t , t)θj (t).
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Back to:

v(t)V+
i (t) =

∑
j

v(T )pij (t ,T )∆aj (T ) +
∑

j

∫ T

t
v(s)pij (t , s)θj (s)ds,

The derivative of the right-hand side is:

−r(t)v(t)V+
i (t) + v(t)

d
dt

V+
i (t).

The derivative of the left-hand side is:

v(T )
∑

j

d
dt

pij (t ,T )∆aj (T ) +
∑

j

∫ T

t
v(s)

d
dt

pij (t , s)θj (s)ds − v(t)
∑

j

pij (t , t)θj (t)︸ ︷︷ ︸
=θi (t)

.

So far,

−r(t)v(t)V+
i (t) + v(t)

d
dt

V+
i (t) =

v(T )
∑

j

d
dt

pij (t ,T )∆aj (T ) +
∑

j

∫ T

t
v(s)

d
dt

pij (t , s)θj (s)ds − v(t)θi (t).
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So far,

−r(t)v(t)V+
i (t) + v(t)

d
dt

V+
i (t) =

v(T )
∑

j

d
dt

pij (t ,T )∆aj (T ) +
∑

j

∫ T

t
v(s)

d
dt

pij (t , s)θj (s)ds − v(t)θi (t).

Recall that
d
dt

pij (t , s) =
∑
k 6=i

μik (t) (pij (t , s)− pkj (t , s)) .

Let us look at the terms with d
dt pij . Substituting:

v(T )
∑

j

∑
k 6=i

μik (t) (pij (t ,T )− pkj (t ,T ))∆aj (T )

+
∑

j

∫ T

t
v(s)

∑
k 6=i

μik (t) (pij (t , s)− pkj (t , s))θj (s)ds.

Now, the sum
∑

k 6=i μik (t) can be moved completely out:
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μik (t)

[
v(T )

∑
j

(pij (t ,T )− pkj (t ,T )) ∆aj (T )

+
∑

j

∫ T

t
v(s) (pij (t , s)− pkj (t , s)) θj (s)ds

]
.
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Observe that we can recover the expression for V+
i (t) and V+

k (t).

∑
k 6=i
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v(T )
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j
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j

∫ T

t
v(s) (pij (t , s)− pkj (t , s)) θj (s)ds

]
.

David R. Banos Life Insurance and Finance STK4500 21 / 30



Observe that we can recover the expression for V+
i (t) and V+

k (t).

∑
k 6=i

μik (t)

[
v(T )

∑
j

(pij (t ,T )− pkj (t ,T )) ∆aj (T )

+
∑

j

∫ T

t
v(s) (pij (t , s)− pkj (t , s)) θj (s)ds

]
.

David R. Banos Life Insurance and Finance STK4500 21 / 30



Observe that we can recover the expression for V+
i (t) and V+

k (t).

∑
k 6=i

μik (t)

[
v(T )

∑
j

(pij (t ,T )− pkj (t ,T )) ∆aj (T )

+
∑

j

∫ T

t
v(s) (pij (t , s)− pkj (t , s)) θj (s)ds

]
.

Thus, ∑
k 6=i

μik (t)
(
V+

i (t)− V+
k (t)

)
.

David R. Banos Life Insurance and Finance STK4500 21 / 30



Observe that we can recover the expression for v(t)V+
i (t) and v(t)V+

k (t).

∑
k 6=i

μik (t)

[
v(T )

∑
j

(pij (t ,T )− pkj (t ,T )) ∆aj (T )

+
∑

j

∫ T

t
v(s) (pij (t , s)− pkj (t , s)) θj (s)ds

]
.

Thus,
v(t)

∑
k 6=i

μik (t)
(
V+

i (t)− V+
k (t)

)
.

So far,

−r(t)v(t)V+
i (t) + v(t)

d
dt

V+
i (t) =

v(T )
∑

j

d
dt

pij (t ,T )∆aj (T ) +
∑

j

∫ T

t
v(s)

d
dt

pij (t , s)θj (s)ds − v(t)θi (t).

David R. Banos Life Insurance and Finance STK4500 21 / 30



Observe that we can recover the expression for v(t)V+
i (t) and v(t)V+

k (t).

∑
k 6=i

μik (t)

[
v(T )

∑
j

(pij (t ,T )− pkj (t ,T )) ∆aj (T )

+
∑

j

∫ T

t
v(s) (pij (t , s)− pkj (t , s)) θj (s)ds

]
.

Thus,
v(t)

∑
k 6=i

μik (t)
(
V+

i (t)− V+
k (t)

)
.

So far,

−r(t)v(t)V+
i (t) + v(t)

d
dt

V+
i (t) = v(t)

∑
k 6=i

μik (t)
(
V+

i (t)− V+
k (t)

)
− v(t)θi (t).

David R. Banos Life Insurance and Finance STK4500 21 / 30



Observe that we can recover the expression for v(t)V+
i (t) and v(t)V+

k (t).

∑
k 6=i

μik (t)

[
v(T )

∑
j

(pij (t ,T )− pkj (t ,T )) ∆aj (T )

+
∑

j

∫ T

t
v(s) (pij (t , s)− pkj (t , s)) θj (s)ds

]
.

Thus,
v(t)

∑
k 6=i

μik (t)
(
V+

i (t)− V+
k (t)

)
.

So far,

−r(t)��v(t)V+
i (t) +��v(t)

d
dt

V+
i (t) =��v(t)

∑
k 6=i

μik (t)
(
V+

i (t)− V+
k (t)

)
−��v(t)θi (t).

David R. Banos Life Insurance and Finance STK4500 21 / 30



In a summary,

−r(t)V+
i (t) +

d
dt

V+
i (t) =

∑
k 6=i

μik (t)
(
V+

i (t)− V+
k (t)

)
− θi (t).

Remember that
θi (t) , ȧi (t) +

∑
k 6=i

μik (t)aik (t).

Therefore,

d
dt

V+
i (t) = r(t)V+

i (t)− ȧi (t) +
∑
k 6=i

μik (t)
(
V+
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Simplifying we finally get Thiele’s differential equation:

d
dt

V+
i (t) = r(t)V+

i (t)− ȧi (t)−
∑
k 6=i

μik (t)
(
aik (t) + V+

k (t)− V+
i (t)

)
Observe that the final condition is given by

V+
i (T ) = ∆ai (T ).

Remark: The equation does not depend on transition probabilities, only rates.
Thus, the equation produces V+

i (t) from the rates {μij (t)}ij without having to
go through Kolmogorov’s equation. In some sense, Kolmogorov’s equation is
already embedded into Thiele’s equation.
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Examples
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Pure endowment
Thiele:

d
dt

V+
i (t) = r(t)V+

i (t)− ȧi (t)−
∑
k 6=i

μik (t)
(
aik (t) + V+

k (t)− V+
i (t)

)
.

Only two states: S = {∗, †} and V+
† ≡ 0, hence we only have one function

V+
∗ (t). Moreover all aij are 0. The equation reduces to:

d
dt

V+
∗ (t) = r(t)V+

∗ (t)− ȧ∗(t)−
∑
k 6=∗

μ∗k (t)
(
V+

k (t)− V+
∗ (t)

)
.

Sine k 6= ∗ means k = † we have

d
dt

V+
∗ (t) = r(t)V+

∗ (t)− ȧ∗(t)− μ∗†(t)
(

V+
† (t)− V+

∗ (t)
)
.

Moreover, V† ≡ 0 and ȧ∗(t) = 0 for all t 6= T . Hence,

d
dt

V+
∗ (t) = r(t)V+

∗ (t) + μ∗†(t)V+
∗ (t), V+

∗ (T ) = ∆a∗(T ) = E ,

where E is the survival benefit to be paid out at time T in case of survival.
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Term insurance
Thiele:

d
dt

V+
i (t) = r(t)V+

i (t)− ȧi (t)−
∑
k 6=i

μik (t)
(
aik (t) + V+

k (t)− V+
i (t)

)
.

Only two states: S = {∗, †} and V+
† ≡ 0, hence we only have one function

V+
∗ (t). Moreover all ai and aik are 0 except for a∗†(t) = B for t ∈ [0,T ]. The

equation reduces to:
d
dt

V+
∗ (t) = r(t)V+

∗ (t)−
∑
k 6=∗

μ∗k (t)
(
a∗k (t) + V+

k (t)− V+
∗ (t)

)
.

Sine k 6= ∗ means k = † we have

d
dt

V+
∗ (t) = r(t)V+

∗ (t)− μ∗†(t)
(
B − V+

∗ (t)
)
.

Hence,
d
dt

V+
∗ (t) = r(t)V+

∗ (t) + (μ∗†(t) + B)V+
∗ (t), V+

∗ (T ) = ∆a∗(T ) = 0,

where B is the death benefit to be paid out at time t in case of death.
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Endowment insurance
Thiele:

d
dt

V+
i (t) = r(t)V+

i (t)− ȧi (t)−
∑
k 6=i

μik (t)
(
aik (t) + V+

k (t)− V+
i (t)

)
.

It’s a combination of a pure endowment and a term insurance, hence:

d
dt

V+
∗ (t) = r(t)V+

∗ (t) + (μ∗†(t) + B)V+
∗ (t), V+

∗ (T ) = ∆a∗(T ) = E.
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i (t)− ȧi (t)−
∑
k 6=i

μik (t)
(
aik (t) + V+

k (t)− V+
i (t)

)
.

It’s a combination of a pure endowment and a term insurance, hence:

d
dt

V+
∗ (t) = r(t)V+

∗ (t) + (μ∗†(t) + B)V+
∗ (t), V+

∗ (T ) = ∆a∗(T ) = E.

David R. Banos Life Insurance and Finance STK4500 27 / 30



Pension
Thiele:

d
dt

V+
i (t) = r(t)V+

i (t)− ȧi (t)−
∑
k 6=i

μik (t)
(
aik (t) + V+

k (t)− V+
i (t)

)
.

Two states:

d
dt

V+
∗ (t) = r(t)V+

∗ (t)− ȧ∗(t)− μ∗†(t)
(

a∗†(t) + V+
† (t)− V+

∗ (t)
)
.

In a pension we have ȧ∗(t) = P during the retirement time t ∈ [T0,T ). Hence,

d
dt

V+
∗ (t) = (r(t) + μ∗†(t))V+

∗ (t)− PI[T0 ,T )(t), V+
∗ (T ) = 0.
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Premiums
Thiele:

d
dt

V+
i (t) = r(t)V+

i (t)− ȧi (t)−
∑
k 6=i

μik (t)
(
aik (t) + V+

k (t)− V+
i (t)

)
.

Then we assume ȧ∗(t) = −πI[0,T0)(t). Hence,

d
dt

V+
i (t) = r(t)V+

i (t) +π+ μik (t)V+
i (t), V+

∗ (T0) = 0, t ∈ [0,T0].
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Disability insurance
Thiele:

d
dt

V+
i (t) = r(t)V+

i (t)− ȧi (t)−
∑
k 6=i

μik (t)
(
aik (t) + V+

k (t)− V+
i (t)

)
.
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(
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∗ (t)

)
,

d
dt

V+
� (t) = r(t)V+

� (t)− ȧ�(t)−
∑
k 6=�

μ�k (t)
(
a�k (t) + V+

k (t)− V+
� (t)

)
.

The pensions/premiums would go in ȧ∗ and the disability pensions in ȧ�.
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∗ (t)− ȧ∗(t)− μ∗�(t)
(
a∗�(t) + V+

� (t)− V+
∗ (t)

)
− μ∗†(t)

(
a∗†(t) + V+

† (t)− V+
∗ (t)

)
,

d
dt

V+
� (t) = r(t)V+
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