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m To model the states of the insured with a Markov chain X;.

David R. Banos Life Insurance and Finance STK4500 3/30



UiO ¢ Department of Mathematics
University of Oslo

What we have learnt so far...
m To model the states of the insured with a Markov chain X;.

m To model cash flows, denoted by A, with policy functions according
to the states of the insured.

David R. Banos Life Insurance and Finance STK4500 3/30



UiO ¢ Department of Mathematics
University of Oslo

What we have learnt so far...
m To model the states of the insured with a Markov chain X;.
m To model cash flows, denoted by A, with policy functions according
to the states of the insured.

= To defined stochastic prospective value V," and the expected
prospective value given a state i, V" (t).

I

David R. Banos Life Insurance and Finance STK4500 3/30



UiO ¢ Department of Mathematics
University of Oslo

What we have learnt so far...
m To model the states of the insured with a Markov chain X;.

m To model cash flows, denoted by A, with policy functions according
to the states of the insured.

= To defined stochastic prospective value V," and the expected
prospective value given a state i, V" (t).

I
m To include periodic premiums and determine their value by using the
actuarial equivalence principle.

David R. Banos Life Insurance and Finance STK4500 3/30



UiO ¢ Department of Mathematics
University of Oslo

What we have learnt so far...
m To model the states of the insured with a Markov chain X;.

m To model cash flows, denoted by A, with policy functions according
to the states of the insured.

= To defined stochastic prospective value V," and the expected
prospective value given a state i, V" (t).

I
m To include periodic premiums and determine their value by using the

actuarial equivalence principle.
m All this, under a continuous time setting and a discrete time setting.

David R. Banos Life Insurance and Finance STK4500 3/30



UiO ¢ Department of Mathematics
University of Oslo

What we have learnt so far...
m To model the states of the insured with a Markov chain X;.
m To model cash flows, denoted by A, with policy functions according
to the states of the insured.
= To defined stochastic prospective value V," and the expected
prospective value given a state i, V" (t).

I
m To include periodic premiums and determine their value by using the
actuarial equivalence principle.
m All this, under a continuous time setting and a discrete time setting.
m Next:

m Thiele’s differential equation (continuous time setting)
m Thiele’s difference equation (discrete time setting)
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m |dea of Thiele’'s ODE: Start from the end of the contract t = T where
you know its exact value (either 0 or some survival benefit) and work
your way backwards to t = 0.
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Thiele’s differential equation (Thiele’s ODE) is:
m a differential equation for the quantity V" (t).
m So, for each state i € 8 we have an equation for V,"(t).

m |dea of Thiele’'s ODE: Start from the end of the contract t = T where
you know its exact value (either 0 or some survival benefit) and work
your way backwards to t = 0.

m Why bother about a differential equation for V."(t) when we actually
have a nice explicit formula for V."(t)?

Look at the explicit formula for expected prospective value:

S S
> | o A9) b1, s)day(s) + +3 | o AS) b (1, () ax(s)ds.
o

It depends on all p;(, s) which is tricky...
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The statistician can "easily" estimate the transition rates u; by observing at
each time how many immigrations and emigrations there are.

Let 8 = {1,...,m}, m states and we have a cohort of individuals X',..., X"
(i.e. with the same age and characteristics). Here X/ is the state in § at time ¢
of the individual k =1, ..., n.

Let .
RY(h) = [ 1 (s)ds
0
be the time spent by individual k in state i/ during [0, h] and
k
Ni© ()

be the number of transitions i ~~ j on [0, h] by individual k.
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/ X (s)ds NX“(h)
Furthermore, define the total number of time spend in / and transitions i ~~ j
during [0, h] as

n n

Ri(h)=>_"RX'(h) Ny(h)=S"NX(h).

k=1 k=1

Assume that u; is constant and that we observe what happens on an interval
[0, h], h >0.

Then the MLE estimator of u;; based on the time interval [0, h] is given by

dj = dii(h) = R(h)
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Figure: In this realization observed on [0, h] we have N; = 2. If h = 1 then the orange
lines account for around R; = 0.32, so u; = 2/0.32 = 6.25.
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Figure: In this realization observed on [0, h] we have N; = 2. If h = 1 then the orange
lines account for around R; = 0.32, so u; = 2/0.32 = 6.25.

In general, uj; is not time homogeneous. To estimate u;(t), t > 0 one may
split time into intervals where it is plausible to assume constant rates or to use
a parametric family for u;(t).
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Recall that wj(t)h ~ p;(t, t + h) for small h. Hence, estimating w;i(t) by observ-
ing what happens around t seems easier. Once we get uj; we can obtain p;
through Kolmogorov’s equations.

This suggests that a formula for V."(t) which is independent of pj(t,s) for
arbitrary t, s would be nice.
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Recall that wj(t)h ~ p;(t, t + h) for small h. Hence, estimating w;i(t) by observ-
ing what happens around t seems easier. Once we get uj; we can obtain p;
through Kolmogorov’s equations.

This suggests that a formula for V."(t) which is independent of pj(t,s) for
arbitrary t, s would be nice.

This is the point of Thiele’s equations. Let’s start!
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Thiele’s differential equation
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Recall the explicit formula for the expected prospective value, given X; = |,
Z/ Sp, t, s) daj(s +Z Sp, (t, $)ujx(S)ai(s)ds.
t / / t Iy )/ !
) k?'él
From now on we will assume that the policy function a; is almost everywhere
differentiable with at most, one discontinuity at maturity time T. This means

daj(s) = a;(s)ds for a.e. sand Aa;(s) = 0forevery s € [0, T) and Aa;(T) # 0.

Following the ingredients of Riemann-Stieltjes integration we have that for ev-
ery function f:

T T
/ f(s)daj(s) = f(T)Aai(T) +/ f(s)ai(s)ds.
0 J0
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Recall the explicit formula for the expected prospective value, given X; = |,

Z/ p,, (,s) daj(s +Z p,, (t, s)ui(s)aK(s)ds.
=f(s) !

From now on we will assume that the policy function a; is almost everywhere
differentiable with at most, one discontinuity at maturity time T. This means
da;(s) = aj(s)ds fora.e. sand Ag;(s) =0foreverys e [0, T)and Agi(T) # 0.

Hence, under this assumption on a;, the expected prospective value can now
be written in terms of Riemann as follows:

Vit(t) = Z (( ))P//(t TAa(T JFZ/ f pj(t, s)a;(s)ds

v(s)
+Z/ 0 — = Pi(t, S)uk(s)aj(s)ds.
k#/
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Now, let us compactify things in the formula:

V(L) = Z (( ))pq(t T)Ag(T +Z/ ? pj(t, s)aj(s)ds

S
+ / e ) b (¢, ()i (s)s.
o
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Now, let us compactify things in the formula:

V(L) = Z (( ))pq(t T)Ag(T +Z/ ‘? pj(t, s)aj(s)ds

S
+ / e ) b (¢, ()i (s)s.
o

Observe that the integrals in ds can be put under one and the sums over j can
be merged together:

Vi =% VV((pr,-(t, T)68(T)
j

ki

+Z/ ?p,,ts( s)ds+ > pk(s)a(s )

=9;(s)
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So far we have

N | Tv(s) .
Vi =Y Y0 pi(t, T)Aa(T) + Z]:/t Wp,,(t, s)0;(s)ds,

where

9 + Z ,u/k ajk
k#j
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Recall Kolmogorov’s backward equation:
dpr/ t,s) ik (1) pxi(t, s).
dt

kes
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Recall Kolmogorov’s backward equation:

d
dtp’/ (t.s) Z,u,k(t Pxi(t, S).

kes
Separate the case k = i:

d
api/'(t: s) = —ui(t)pi(t, s) E ik (B)pig(t, s).
k#i
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Recall Kolmogorov’s backward equation:

d
dtp’/ (t.s) Z,u,k(t Pxi(t, S).

kes
Separate the case k = i:

dtpl/(t s) = —ui(t)pj(t, s) Z,U/k )P (t, S).
k#i

Now recall that the sum of uj over k is 0:

Z Hik Z ,U/k + /J/I =0 <~ ,U/I Z /Jlk
k

k#i k#i
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Recall Kolmogorov’s backward equation:

d
dtp’/ (t.s) Z,u,k(t Pxi(t, S).

kes
Separate the case k = i:

dtpl/(t s) = —ui(t)pj(t, s) Z,U/k )P (t, S).
k#i

Now recall that the sum of uj over k is 0:
Z Hik Z ,U/k + /J/I =0 <~ ,U/I Z /Jlk
k k#i k#i
Hence,

d
dtp” (t,s) Z:U/k tpj(t, s) ZNIK )P (t,S).
k#i k#i
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Recall Kolmogorov’s backward equation:

d
dtp’/ (t,s) Z,u,k(t Pki(t, S).

kes
Separate the case k = i:

d
giPi(t.8) = —ui(t)pi(t, s) = " uk(t)py(t, s).
k#i

Now recall that the sum of uj over k is 0:
Z Hik Z ,U/k + ,U/I =0 <~ ,U/I Z /Jlk
k k#i k#i
Hence, d
dt'ou (t,s) Z:U/k tpj(t, s) Z wik )Pk (L, 5).

k#i k#i
Finally, put together under the same sum:

S pi(ts) = 3 un(0) (Py(1,5) ~ pu(t.5)).
k#i
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Back to V" (t):

() . Tv(s) .
Vih(t) _Z v(t) Pi(t, T)AaJ(T)+Zj:/t Wpu(t: s)0;(s)ds,

where

6i(s) £ ai(s)ds + Y _ uk(s)ax(s
k#]
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Back to V" (t):

() . Tv(s) .
Vi) =32 g Pt T)Aa,(T)+Zj:/t TPl 98 ()

where

6i(s) £ ai(s)ds + Y _ uk(s)ax(s
k#]

Next step: pass v(t) over to the left side:

)=>_v(T)py(t, T)Aa(T +Z/ s)pj(t, 8)8;(s)ds,
J
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Back to V" (t):

() . Tv(s) .
Vi) =32 g Pt T)Aa,(T)+Zj:/t TPl 98 ()

where

6i(s) £ ai(s)ds + Y _ uk(s)ax(s
k#]

Next step: pass v(t) over to the left side:
)=>_v(T)py(t, T)Aa(T +Z/ s)pj(t, 8)8;(s)ds,
J

Next step: differentiate both sides with respect to t.
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Define the following function

H(t) = /tTf(t, s)ds

for an integrable function f(¢, ) for every t. What is H'(t)?
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F(x,y) = /y ", 5)ds.
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Define the following function
-
H(t) = / f(t, 5)ds
t
for an integrable function f(¢, ) for every t. What is H'(t)?

Define the following bivariate function

F(x,y) = /y ", 5)ds.

Then, clearly H(t) = F(¢,1).
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Define the following function
-
mn:/fa@w
t
for an integrable function f(¢, ) for every t. What is H'(t)?

Define the following bivariate function
.

Hxn—Arm@%.

Then, clearly H(t) = F(t,t). To compute H'(t) we can use the (bivariate) chain
rule:

, o] o)
H'(t) = &F(Xf Yooy)=o + @F(Xf Yooy)=(t)-
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Define the following function

-
H(t) = / f(t, 5)ds
t
for an integrable function f(¢, ) for every t. What is H'(t)?

Define the following bivariate function

F(x,y) = /y ", 5)ds.

Then, clearly H(t) = F(t,t). To compute H'(t) we can use the (bivariate) chain
rule:

, o] o)
H'(t) = &F(Xf Yooy)=o + @F(Xf Yooy)=(t)-

We have
0 T 0
&F(x, y) = /y &f(x, S)ds, aF(X, y)=—f(x,y).

David R. Banos Life Insurance and Finance STK4500 16/30
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)
F(x,y) = /y f(x, s)ds = H(t) = F(1,1).

As a result, .
/ _ (5
H(t)—/t 5% 8)lxmtds = £(1.1).
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)
F(x,y) = / f(x, s)ds = H(t) = F(1,1).

y
As a result,
L)
H (1) :/t S F(X, S)ctdls — (8, 1).
That is
T
H'(t) = —f(t,8)ds — f(t,1).
¢ dt
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)
F(x,y) = /y f(x, s)ds = H(t) = F(4,1).

As a result,
L)
H (t) :/t S F(X, S)ctdls — (8, 1).
That is
T d
H'(t)= | —=f(ts)ds—f(t¢1).
. at

In the case where f(t, s) = v(s)p;(t, s)8;(s) we have

T T
% /t v(s)pj(t, s)0;(s)ds = /t v(s)%p,—,-(t,s)@,-(s)ds—v(t)p,-j(t, 1)6;(t).
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Back to:

vV (1) = v(T)py(t, T)Ag(T) +Z/ (s)pj(t, s)8;(s)ds
i
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Back to:

vV (1) = v(T)py(t, T)Ag(T) +Z/ (s)pj(t, s)8;(s)ds
i

The derivative of the right-hand side is:

VOV (1) + V(D) TV (1),
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Back to:
vV (1) = v(T)py(t, T)Ag(T) +Z/ (s)pj(t, )8;(s)ds,
i

The derivative of the right-hand side is:

VOV (1) + V(D) TV (1),

The derivative of the left-hand side is:

T)Z dtp,,(t T)Aa( T)+Z/ v(s) p,,(t s)0;(s)ds — v(t Zp,,(tt

=8;(1)
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Back to:
vV (1) = v(T)py(t, T)Ag(T) +Z/ (s)pj(t, )8;(s)ds,
i

The derivative of the right-hand side is:

VOV (1) + V(D) TV (1),

The derivative of the left-hand side is:

T)Zdtp,,(tTAa, T)+Z/ v(s) p,,(t $)6,(s)ds — v(t Zp,,(tt (1),

=8;(1)

So far,
V() + v(t)ﬁ Vi (t) =
Z @ pit, T2 T)+Z/ p,, (1, 5)6,(5)ds — v(1)6i(t).
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So far,
OV V() + v(t)ﬁ Vi (t) =
Z GPi(t TAa( T)+Z/ p,, (t,5)0;(s)ds — v(t)8i(t).
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So far,
OV V() + v(t)ﬁ Vi (t) =
Z GPi(t TAa( T)+Z/ p,, (t,5)0;(s)ds — v(t)8i(t).

Recall that d
dtpU (ts) Z:U/k t) (pi(t, s) — py(t,s)) -

ki
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So far,
—r(Hv(H) V() + v(t) V*(t) =

Z Pt T)Aa( T)+Z/ p,, (t,8)8,(s)ds — v(1)8i(t).

Recall that d
dtpU (ts) Z:U/k t) (pi(t, s) — py(t,s)) -

ki
Let us look at the terms with % p;. Substituting:

V(T) DD w(t) (py(t. T) — pig(t, T))Ag(T)

j o ki

+Z / v($)>_ ui(1) (Py(t, $) — Py (1, 5))8;(s)ds.
k#i
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So far,
—r(Hv(H) V() + v(t) V*(t) =

Z Pt T)Aa( T)+Z/ p,, (t,8)8,(s)ds — v(1)8i(t).

Recall that d
dtpU (ts) Z:U/k t) (pi(t, s) — py(t,s)) -
ki
Let us look at the terms with % p;. Substituting:
V(T) D> wi() (Pi(t. T) = pi(t, T))Aa(T)

j o ki

+Z / v($)>_ ui(1) (Py(t, $) — Py (1, 5))8;(s)ds.
k#i

Now, the sum -, ; ui(t) can be moved completely out:

David R. Banos Life Insurance and Finance STK4500 19/30
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Now, the sum 3, ; uik(f) can be moved completely out:

7)Y > ui(t) (pi(t, T) — py(t, T)) Agy(T)

j k#i

;
+Z/t Z“'k (pj(t, s) — pki(t, s)) B(s)ds.
j

K#i
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Now, the sum 3, ; uik(f) can be moved completely out:

7)Y > ui(t) (pi(t, T) — py(t, T)) Agy(T)

j k#i

+Z/t Z“'k (pj(t, s) — pki(t, s)) B(s)ds.
j

K#i
Indeed,

> it [ )Y (pi(t. T) — py(t, T)) Agy(T)

k#i J

+Z / ) (Pi(t 5) — py(t,5)) B(s)ds

David R. Banos Life Insurance and Finance STK4500 20/30
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Observe that we can recover the expression for and

Z.Uik(t) ( — Pxi(t. T))

ki

+ ( - Py(t. s))
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Observe that we can recover the expression for and

S ui(t) (pi(t, T) - )

ki

+ (pj(t, 8) — )
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Observe that we can recover the expression for V' (t) and V,"(t).

> Hi(t) [ )Y (pi(t, T) = pi(t, T)) Aay(T)

k#i j

+Z/ ) (pii(t, s) — pxi(t, s)) Bi(s)ds| .

Thus,
D ui(t) (Vi) = Vi (1))

k#i
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Observe that we can recover the expression for v(t) V" (t) and v(t) V,/ (t).

> ui() l )Y (Pi(t, T) — py(t, T)) Ag(T)

k#i j

+Z/ ) (pii(t, 8) — pxi(t, 8)) 6;(s)ds| .

Thus,

Z;U/k V+( ))

k#i
So far,

AV V() + V() SV () =

> 9 py(t, T)Aa(T) + > / & pi(1,5)61()5 — V(i)
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Observe that we can recover the expression for v(t) V" (t) and v(t) V,/ (t).

> Hi(t) [ )Y (pi(t, T) = pi(t, T)) Aay(T)

k#i j

+Z/ ) (pi(t, s) — pxi(t, s)) Bi(s)ds| .

Thus,
Z,U/k V+( ))
k#i
So far,
—r(t)v(t) V(1) + v(t )% =v(1)> ux(t) = Vi (1) — v(Dei(h).

k#i
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Observe that we can recover the expression for v(t) V" (t) and v(t) V,/ (t).

> Hi(t) [ )Y (pi(t, T) = pi(t, T)) Aay(T)

k#i j

+Z/ ) (pi(t, s) — pxi(t, s)) Bi(s)ds| .

Thus,
Z;U/k V+( ))
k#i
So far,
()y@’TVW)Jr/@’TO,tV+ = vbt) > ui(t) (Vi () = VE(1)) — wtibi(t).

k#i
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In a summary,

—rOVi() + 5 V-* = w(t) — V(1) - 6i(1).

k#i
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In a summary,

V() + V) = S ) (V) Vi (1) — 6i)

k#i

B+ mi(t)a(t)

ki

Remember that
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In a summary,

—rVi (0 + 5 V-* = u(t) — V(1) - 6i(1).

k#i

Remember that
)+ > ui(t)aw(t)

ki
Therefore,
%V*( ) ( )V+ _a, +Z,u,k Vlj(t)) _Z;u/k(t)aik(t)-
k#i k#i
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Simplifying we finally get Thiele’s differential equation:

%‘/:+( t) = r(t)V;"(t) — a(t ;N:k (aw(t) + Vi" (1) = V" (1))

Observe that the final condition is given by

VH(T) = Aay(T).

1

David R. Banos Life Insurance and Finance STK4500 23/30



UiO ¢ Department of Mathematics
University of Oslo

Simplifying we finally get Thiele’s differential equation:

%‘/:+( t) = r(t)V;"(t) — a(t ;N:k (aw(t) + Vi" (1) = V" (1))

Observe that the final condition is given by

VH(T) = Aay(T).

1

Remark: The equation does not depend on transition probabilities, only rates.
Thus, the equation produces V,"(t) from the rates {u;(t)}; without having to
go through Kolmogorov’s equation. In some sense, Kolmogorov’s equation is
already embedded into Thiele’s equation.
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Pure endowment
Thiele:
d
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Pure endowment
Thiele:

d
V() = r() V() — ai(t) = D mi(t) (@) + Vi (1) = Vi (D).
at

k#i

Only two states: 8§ = {x,{} and VT+ = 0, hence we only have one function
V.7 (t). Moreover all g; are 0. The equation reduces to:
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Pure endowment
Thiele:
d

V() = r() Vi (D) — ai(t) = > pi(t) (aw(t) + Vi (1) = Vi (D).
at poy
Only two states: 8§ = {x,{} and Vﬁ = 0, hence we only have one function

V.7 (t). Moreover all g; are 0. The equation reduces to:
d

SV = V() — a0~ 3 ) (Ve () — VI (D).
Kt

Sine k # x means k = 1 we have

SV = rOVE(0) — () — (1) (V) - VE).
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Pure endowment
Thiele:

d
V() = r(O V() = ai(t) = Y wi(t) (@u(t) + ViE() = ViH (D).
at
k#i
Only two states: 8§ = {x,{} and Vﬁ = 0, hence we only have one function
V.7 (t). Moreover all g; are 0. The equation reduces to:

V) = V(D) — () — Y ) (W () — V2 (1),
ko

Sine k # x means k = 1 we have

SV = rOVE(0) — () — (1) (V) - VE).
Moreover, V; =0 and a.(t) =0 for all t # T. Hence,
SV = MOV + (VD). VA(T) = Ba(T) = E,

where E is the survival benefit to be paid out at time T in case of survival.
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Term insurance
Thiele:
d
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Term insurance
Thiele:

d
V() = r() Vi (D) — ai(t) = > pi(t) (aw(t) + Vi (1) = Vi (D).
at

k#i

Only two states: 8§ = {x,{} and VT+ = 0, hence we only have one function
V. (t). Moreover all a; and aj are 0 except for a.;(f) = Bfort € [0, T]. The
equation reduces to:
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Term insurance
Thiele:
d
V() = r() Vi (D) — ai(t) = > pi(t) (aw(t) + Vi (1) = Vi (D).
at poy
Only two states: 8§ = {x,{} and Vﬁ = 0, hence we only have one function

V. (t). Moreover all a; and aj are 0 except for a.;(f) = Bfort € [0, T]. The
equation reduces to:

v = ()= 3 aalt) (@) + Vi 0= VI (0),
Sine k # x means k = 1 we have
d
VO = i V(1) = () (B— VI (1)
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Term insurance
Thiele:

d
V() = r() Vi (D) — ai(t) = > pi(t) (aw(t) + Vi (1) = Vi (D).
at poy
Only two states: 8§ = {x,{} and Vﬁ = 0, hence we only have one function

V. (t). Moreover all a; and aj are 0 except for a.;(f) = Bfort € [0, T]. The
equation reduces to:

%vm) g;u*k (au(t) + Vi (t) = V(D).
Sine k # = means k = { we have
V() = r(OVE (D) — (1) (B~ V(D).
Hence,
%Vj(t) = r(VE() + (et (D) + B)VI (D), VIH(T) = Aa(T) =0,
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Endowment insurance
Thiele:

SV = V(0 - an - ) (@) + Vi 0= V().
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Endowment insurance
Thiele:

d

i Vi () =@V (1) - alt ) =D uik(t) (a(t) + Vi (1) = ViF(1).
k#i

It's a combination of a pure endowment and a term insurance, hence:

%Vf(f) = r()VI(1) + (uat () + B)VI(D),  VI(T) = da(T) = E.
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Pension
Thiele:

d .
E\//+( ) = r(t)V; (1) — ai(t Zlulk

David R. Banos Life Insurance and Finance

STK4500

28/30



UiO ¢ Department of Mathematics
University of Oslo

Pension
Thiele:

d .
dt V/+( ) =r(t )V+ — a(t
Two states:

d
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Pension
Thiele:

d

&W( ) = r(t) Vi (t) — &t kg,“’k (aw(t) + V(1) = Vi (D).
Two states:

%vm = (VI (1) = a.(t) = e (1) (@1(0) + V(1) = V(D))

In a pension we have a.(t) = P during the retirement time t € [Ty, T). Hence,

%Vf()—(()+ﬂ*f())V() Plir, (1), VIA(T)=0.
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Premiums
Thiele:

S V() = rV(n) - e )= 3 (0 (@0 + W0~ V7 (1)

Then we assume a.(t) = —lg 7,)(t). Hence,

DVt = OV ()4 DV (), VI(To) =0, 1[0, T
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Disability insurance
Thiele:

9y F(0) = rOV () - ailt) = > ui(t) (an(t
at i / o i i
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Disability insurance

Thiele:
dV()_r(t)W —ai(t) = > uw(t) (an(t
dt l k#l 1 1
Three states: 8§ = {x,¢, {}. Hence,
—V+(t)7r( A t)_z,u*k (a.(t
k%
d
EV() () ) — & t)*zluok aok
k#o

The pensions/premiums would go in a. and the disability pensions in a..
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Disability insurance
Thiele:

S V() = r( V(1) - at )= (0 a0 + 0~ V).

Three states: 8§ = {x,¢, {}. Hence,

GV = rOVE) ~ 80(0) o) (ara(0) + VI ()~ V(0) — pag (1) (2250 V() Vi)
Q) = Vs () - a0 -

o= (1) (@0-(8) + VI (1) = Vi (1) — ko (1) (010 + Vi (1) = V&£ ()

The pensions/premiums would go in a. and the disability pensions in a..
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Disability insurance
Thiele:

S V() = r( V(1) - at )= (0 a0 + 0~ V).

Three states: 8§ = {x,¢, {}. Hence,

%W(t) = r()VE() = &u(t) = teo(t) (@no(t) + VI (1) = VI (1)) — pat () (@ut (1) = VI (1)),
%W(n = (VI (1) = @(1) — o () (o (1) + V(1) = VI (1)) — por (1) (@01(1) = V(1)) -

The pensions/premiums would go in a. and the disability pensions in a,.
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