
$\mathrm{UiO}:$ Department of Mathematics University of Oslo

Life Insurance and Finance

Lecture 8: Thiele's differential equation

```
UiO: Department of Mathematics
    University of Oslo
```

1 Introduction

2 Transition rates vs. transition probabilities

3 Thiele's differential equation

4 Examples
■ Pure endowment

- Term insurance

■ Endowment insurance

- Pension
- Premiums

■ Disability insurance

UiO: Department of Mathematics

University of Oslo

Introduction

UiO : Department of Mathematics

University of Oslo
What we have learnt so far...
■ To model the states of the insured with a Markov chain X_{t}.

UiO : Department of Mathematics
 University of Oslo

What we have learnt so far...
■ To model the states of the insured with a Markov chain X_{t}.

- To model cash flows, denoted by A, with policy functions according to the states of the insured.

UiO : Department of Mathematics
 University of Oslo

What we have learnt so far...
■ To model the states of the insured with a Markov chain X_{t}.
■ To model cash flows, denoted by A, with policy functions according to the states of the insured.

- To defined stochastic prospective value V_{t}^{+}and the expected prospective value given a state $i, V_{i}^{+}(t)$.

```
\(\mathrm{UiO}:\) Department of Mathematics
University of Oslo
```

What we have learnt so far...
■ To model the states of the insured with a Markov chain X_{t}.
■ To model cash flows, denoted by A, with policy functions according to the states of the insured.

- To defined stochastic prospective value V_{t}^{+}and the expected prospective value given a state $i, V_{i}^{+}(t)$.
- To include periodic premiums and determine their value by using the actuarial equivalence principle.

What we have learnt so far...

- To model the states of the insured with a Markov chain X_{t}.
- To model cash flows, denoted by A, with policy functions according to the states of the insured.
- To defined stochastic prospective value V_{t}^{+}and the expected prospective value given a state $i, V_{i}^{+}(t)$.
- To include periodic premiums and determine their value by using the actuarial equivalence principle.
\square All this, under a continuous time setting and a discrete time setting.

What we have learnt so far...

- To model the states of the insured with a Markov chain X_{t}.

■ To model cash flows, denoted by A, with policy functions according to the states of the insured.

- To defined stochastic prospective value V_{t}^{+}and the expected prospective value given a state $i, V_{i}^{+}(t)$.
- To include periodic premiums and determine their value by using the actuarial equivalence principle.
\square All this, under a continuous time setting and a discrete time setting.
- Next:

■ Thiele's differential equation (continuous time setting)
■ Thiele's difference equation (discrete time setting)

UiO: Department of Mathematics

University of Oslo

Transition rates vs. transition probabilities

UiO: Department of Mathematics

University of Oslo
Thiele's differential equation (Thiele's ODE) is:

UiO : Department of Mathematics

University of Oslo
Thiele's differential equation (Thiele's ODE) is:

- a differential equation for the quantity $V_{i}^{+}(t)$.

UiO : Department of Mathematics
 University of Oslo

Thiele's differential equation (Thiele's ODE) is:

- a differential equation for the quantity $V_{i}^{+}(t)$.
\square So, for each state $i \in \mathcal{S}$ we have an equation for $V_{i}^{+}(t)$.

UiO : Department of Mathematics
 University of Oslo

Thiele's differential equation (Thiele's ODE) is:

- a differential equation for the quantity $V_{i}^{+}(t)$.

■ So, for each state $i \in \mathcal{S}$ we have an equation for $V_{i}^{+}(t)$.
■ Idea of Thiele's ODE: Start from the end of the contract $t=T$ where you know its exact value (either 0 or some survival benefit) and work your way backwards to $t=0$.

UiO : Department of Mathematics
 University of Oslo

Thiele's differential equation (Thiele's ODE) is:

- a differential equation for the quantity $V_{i}^{+}(t)$.
\square So, for each state $i \in \mathcal{S}$ we have an equation for $V_{i}^{+}(t)$.
■ Idea of Thiele's ODE: Start from the end of the contract $t=T$ where you know its exact value (either 0 or some survival benefit) and work your way backwards to $t=0$.
- Why bother about a differential equation for $V_{i}^{+}(t)$ when we actually have a nice explicit formula for $V_{i}^{+}(t)$?

UiO : Department of Mathematics
 University of Oslo

Thiele's differential equation (Thiele's ODE) is:

- a differential equation for the quantity $V_{i}^{+}(t)$.
\square So, for each state $i \in \mathcal{S}$ we have an equation for $V_{i}^{+}(t)$.
■ Idea of Thiele's ODE: Start from the end of the contract $t=T$ where you know its exact value (either 0 or some survival benefit) and work your way backwards to $t=0$.
- Why bother about a differential equation for $V_{i}^{+}(t)$ when we actually have a nice explicit formula for $V_{i}^{+}(t)$?
Look at the explicit formula for expected prospective value:

$$
V_{i}^{+}(t)=\sum_{j} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{i j}(t, s) d a_{j}(s)+\sum_{\substack{j, k \\ k \neq j}} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{i j}(t, s) \mu_{j k}(s) a_{j k}(s) d s
$$

UiO : Department of Mathematics
 University of Oslo

Thiele's differential equation (Thiele's ODE) is:
■ a differential equation for the quantity $V_{i}^{+}(t)$.
■ So, for each state $i \in \mathcal{S}$ we have an equation for $V_{i}^{+}(t)$.
■ Idea of Thiele's ODE: Start from the end of the contract $t=T$ where you know its exact value (either 0 or some survival benefit) and work your way backwards to $t=0$.

- Why bother about a differential equation for $V_{i}^{+}(t)$ when we actually have a nice explicit formula for $V_{i}^{+}(t)$?
Look at the explicit formula for expected prospective value:

$$
V_{i}^{+}(t)=\sum_{j} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{i j}(t, s) d a_{j}(s)+\sum_{\substack{j, k \\ k \neq j}} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{i j}(t, s) \mu_{j k}(s) a_{j k}(s) d s
$$

It depends on all $p_{i j}(t, s)$ which is tricky...

UiO : Department of Mathematics
 University of Oslo

The statistician can "easily" estimate the transition rates $\mu_{i j}$ by observing at each time how many immigrations and emigrations there are.

UiO : Department of Mathematics
 University of Oslo

The statistician can "easily" estimate the transition rates $\mu_{i j}$ by observing at each time how many immigrations and emigrations there are.

Let $\mathcal{S}=\{1, \ldots, m\}, m$ states and we have a cohort of individuals X^{1}, \ldots, X^{n} (i.e. with the same age and characteristics). Here X_{t}^{k} is the state in δ at time t of the individual $k=1, \ldots, n$.

$\mathrm{UiO}:$ Department of Mathematics
 University of Oslo

The statistician can "easily" estimate the transition rates $\mu_{i j}$ by observing at each time how many immigrations and emigrations there are.

Let $\mathcal{S}=\{1, \ldots, m\}, m$ states and we have a cohort of individuals X^{1}, \ldots, X^{n} (i.e. with the same age and characteristics). Here X_{t}^{k} is the state in \mathcal{S} at time t of the individual $k=1, \ldots, n$.

Let

$$
R_{i}^{X^{k}}(h)=\int_{0}^{h} l_{i}^{\chi^{k}}(s) d s
$$

be the time spent by individual k in state i during $[0, h]$ and

$$
N_{i j}^{X^{k}}(h)
$$

be the number of transitions $i \rightsquigarrow j$ on $[0, h]$ by individual k.

UiO : Department of Mathematics
 University of Oslo

$$
R_{i}^{k}(h)=\int_{0}^{h} l_{i}^{X^{k}}(s) d s \quad N_{i j}^{X^{k}}(h)
$$

Furthermore, define the total number of time spend in i and transitions $i \rightsquigarrow j$ during $[0, h]$ as

$$
R_{i}(h)=\sum_{k=1}^{n} R_{i}^{X^{k}}(h) \quad N_{i j}(h)=\sum_{k=1}^{n} N_{i j}^{X^{k}}(h) .
$$

Assume that $\mu_{i j}$ is constant and that we observe what happens on an interval $[0, h], h>0$.

Then the MLE estimator of $\mu_{i j}$ based on the time interval $[0, h]$ is given by

$$
\widehat{\mu}_{i j}=\widehat{\mu}_{i j}(h)=\frac{N_{i j}(h)}{R_{i}(h)}
$$

UiO : Department of Mathematics

University of Oslo

Figure: In this realization observed on $[0, h]$ we have $N_{i j}=2$. If $h=1$ then the orange lines account for around $R_{i} \approx 0.32$, so $\widehat{\mu}_{i j}=2 / 0.32=6.25$.

UiO : Department of Mathematics

University of Oslo

Figure: In this realization observed on $[0, h]$ we have $N_{i j}=2$. If $h=1$ then the orange lines account for around $R_{i} \approx 0.32$, so $\widehat{\mu}_{i j}=2 / 0.32=6.25$.

In general, $\mu_{i j}$ is not time homogeneous. To estimate $\mu_{i j}(t), t \geq 0$ one may split time into intervals where it is plausible to assume constant rates or to use a parametric family for $\mu_{i j}(t)$.

UiO : Department of Mathematics
 University of Oslo

Recall that $\mu_{i j}(t) h \approx p_{i j}(t, t+h)$ for small h. Hence, estimating $\mu_{i j}(t)$ by observing what happens around t seems easier. Once we get $\mu_{i j}$ we can obtain $p_{i j}$ through Kolmogorov's equations.

This suggests that a formula for $V_{i}^{+}(t)$ which is independent of $p_{i j}(t, s)$ for arbitrary t, s would be nice.

UiO : Department of Mathematics
 University of Oslo

Recall that $\mu_{i j}(t) h \approx p_{i j}(t, t+h)$ for small h. Hence, estimating $\mu_{i j}(t)$ by observing what happens around t seems easier. Once we get $\mu_{i j}$ we can obtain $p_{i j}$ through Kolmogorov's equations.

This suggests that a formula for $V_{i}^{+}(t)$ which is independent of $p_{i j}(t, s)$ for arbitrary t, s would be nice.

This is the point of Thiele's equations. Let's start!

UiO: Department of Mathematics

University of Oslo

Thiele's differential equation

UiO: Department of Mathematics

University of Oslo
Recall the explicit formula for the expected prospective value, given $X_{t}=i$,

$$
V_{i}^{+}(t)=\sum_{j} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{i j}(t, s) d a_{j}(s)+\sum_{\substack{j, k \\ k \neq j}} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{i j}(t, s) \mu_{j k}(s) a_{j k}(s) d s
$$

UiO : Department of Mathematics
 University of Oslo

Recall the explicit formula for the expected prospective value, given $X_{t}=i$,

$$
V_{i}^{+}(t)=\sum_{j} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{i j}(t, s) d a_{j}(s)+\sum_{\substack{j, k \\ k \neq j}} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{i j}(t, s) \mu_{j k}(s) a_{j k}(s) d s
$$

From now on we will assume that the policy function a_{i} is almost everywhere differentiable with at most, one discontinuity at maturity time T. This means $d a_{i}(s)=\dot{a}_{i}(s) d s$ for a.e. s and $\Delta a_{i}(s)=0$ for every $s \in[0, T)$ and $\Delta a_{i}(T) \neq 0$.

UiO : Department of Mathematics
 University of Oslo

Recall the explicit formula for the expected prospective value, given $X_{t}=i$,

$$
V_{i}^{+}(t)=\sum_{j} \int_{t}^{\infty} \underbrace{\frac{v(s)}{v(t)} p_{i j}(t, s)}_{=f(s)} d a_{j}(s)+\sum_{\substack{j, k \\ k \neq j}} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{i j}(t, s) \mu_{j k}(s) a_{j k}(s) d s
$$

From now on we will assume that the policy function a_{i} is almost everywhere differentiable with at most, one discontinuity at maturity time T. This means $d a_{i}(s)=\dot{a}_{i}(s) d s$ for a.e. s and $\Delta a_{i}(s)=0$ for every $s \in[0, T)$ and $\Delta a_{i}(T) \neq 0$.

Following the ingredients of Riemann-Stieltjes integration we have that for every function f :

$$
\int_{0}^{T} f(s) d a_{i}(s)=f(T) \Delta a_{i}(T)+\int_{0}^{T} f(s) \dot{a}_{i}(s) d s
$$

UiO : Department of Mathematics
 University of Oslo

Recall the explicit formula for the expected prospective value, given $X_{t}=i$,

$$
V_{i}^{+}(t)=\sum_{j} \int_{t}^{\infty} \underbrace{\frac{v(s)}{v(t)} p_{i j}(t, s)}_{=f(s)} d a_{j}(s)+\sum_{\substack{j, k \\ k \neq j}} \int_{t}^{\infty} \frac{v(s)}{v(t)} p_{i j}(t, s) \mu_{j k}(s) a_{j k}(s) d s
$$

From now on we will assume that the policy function a_{i} is almost everywhere differentiable with at most, one discontinuity at maturity time T. This means $d a_{i}(s)=\dot{a}_{i}(s) d s$ for a.e. s and $\Delta a_{i}(s)=0$ for every $s \in[0, T)$ and $\Delta a_{i}(T) \neq 0$.

Hence, under this assumption on a_{i}, the expected prospective value can now be written in terms of Riemann as follows:

$$
\begin{aligned}
V_{i}^{+}(t)= & \sum_{j} \frac{v(T)}{v(t)} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \dot{a}_{j}(s) d s \\
& +\sum_{\substack{j, k \\
k \neq j}} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \mu_{j k}(s) a_{j k}(s) d s .
\end{aligned}
$$

UiO: Department of Mathematics

University of Oslo
Now, let us compactify things in the formula:

$$
\begin{aligned}
V_{i}^{+}(t)= & \sum_{j} \frac{v(T)}{v(t)} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \dot{a}_{j}(s) d s \\
& +\sum_{\substack{j, k \\
k \neq j}} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \mu_{j k}(s) a_{j k}(s) d s .
\end{aligned}
$$

UiO: Department of Mathematics
 University of Oslo

Now, let us compactify things in the formula:

$$
\begin{aligned}
V_{i}^{+}(t)= & \sum_{j} \frac{v(T)}{v(t)} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \dot{a}_{j}(s) d s \\
& +\sum_{\substack{j, k \\
k \neq j}} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \mu_{j k}(s) a_{j k}(s) d s .
\end{aligned}
$$

Observe that the integrals in ds can be put under one and the sums over j can be merged together:

$$
\begin{aligned}
V_{i}^{+}(t)= & \sum_{j} \frac{v(T)}{v(t)} p_{i j}(t, T) \Delta a_{j}(T) \\
& +\sum_{j} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \underbrace{\left(\dot{a}_{j}(s) d s+\sum_{k \neq j} \mu_{j k}(s) a_{j k}(s)\right)}_{=\theta_{j}(s)} d s
\end{aligned}
$$

UiO : Department of Mathematics

University of Oslo
So far we have

$$
V_{i}^{+}(t)=\sum_{j} \frac{v(T)}{v(t)} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \theta_{j}(s) d s,
$$

where

$$
\theta_{j}(s) \triangleq \dot{a}_{j}(s)+\sum_{k \neq j} \mu_{j k}(s) a_{j k}(s) .
$$

UiO : Department of Mathematics

University of Oslo

Recall Kolmogorov's backward equation:

$$
\frac{d}{d t} p_{i j}(t, s)=-\sum_{k \in \mathcal{S}} \mu_{i k}(t) p_{k j}(t, s)
$$

UiO: Department of Mathematics

University of Oslo

Recall Kolmogorov's backward equation:

$$
\frac{d}{d t} p_{i j}(t, s)=-\sum_{k \in \mathcal{S}} \mu_{i k}(t) p_{k j}(t, s)
$$

Separate the case $k=i$:

$$
\frac{d}{d t} p_{i j}(t, s)=-\mu_{i i}(t) p_{i j}(t, s)-\sum_{k \neq i} \mu_{i k}(t) p_{k j}(t, s)
$$

UiO: Department of Mathematics
 University of Oslo

Recall Kolmogorov's backward equation:

$$
\frac{d}{d t} p_{i j}(t, s)=-\sum_{k \in \mathcal{S}} \mu_{i k}(t) p_{k j}(t, s)
$$

Separate the case $k=i$:

$$
\frac{d}{d t} p_{i j}(t, s)=-\mu_{i i}(t) p_{i j}(t, s)-\sum_{k \neq i} \mu_{i k}(t) p_{k j}(t, s)
$$

Now recall that the sum of $\mu_{i k}$ over k is 0 :

$$
\sum_{k} \mu_{i k}(t)=\sum_{k \neq i} \mu_{i k}(t)+\mu_{i i}(t)=0 \Longleftrightarrow \mu_{i i}(t)=-\sum_{k \neq i} \mu_{i k}(t)
$$

UiO: Department of Mathematics
 University of Oslo

Recall Kolmogorov's backward equation:

$$
\frac{d}{d t} p_{i j}(t, s)=-\sum_{k \in \mathcal{S}} \mu_{i k}(t) p_{k j}(t, s)
$$

Separate the case $k=i$:

$$
\frac{d}{d t} p_{i j}(t, s)=-\mu_{i j}(t) p_{i j}(t, s)-\sum_{k \neq i} \mu_{i k}(t) p_{k j}(t, s)
$$

Now recall that the sum of $\mu_{i k}$ over k is 0 :

$$
\sum_{k} \mu_{i k}(t)=\sum_{k \neq i} \mu_{i k}(t)+\mu_{i i}(t)=0 \Longleftrightarrow \mu_{i i}(t)=-\sum_{k \neq i} \mu_{i k}(t)
$$

Hence,

$$
\frac{d}{d t} p_{i j}(t, s)=\sum_{k \neq i} \mu_{i k}(t) p_{i j}(t, s)-\sum_{k \neq i} \mu_{i k}(t) p_{k j}(t, s)
$$

UiO: Department of Mathematics
 University of Oslo

Recall Kolmogorov's backward equation:

$$
\frac{d}{d t} p_{i j}(t, s)=-\sum_{k \in \mathcal{S}} \mu_{i k}(t) p_{k j}(t, s)
$$

Separate the case $k=i$:

$$
\frac{d}{d t} p_{i j}(t, s)=-\mu_{i i}(t) p_{i j}(t, s)-\sum_{k \neq i} \mu_{i k}(t) p_{k j}(t, s)
$$

Now recall that the sum of $\mu_{i k}$ over k is 0 :

$$
\sum_{k} \mu_{i k}(t)=\sum_{k \neq i} \mu_{i k}(t)+\mu_{i i}(t)=0 \Longleftrightarrow \mu_{i i}(t)=-\sum_{k \neq i} \mu_{i k}(t)
$$

Hence,

$$
\frac{d}{d t} p_{i j}(t, s)=\sum_{k \neq i} \mu_{i k}(t) p_{i j}(t, s)-\sum_{k \neq i} \mu_{i k}(t) p_{k j}(t, s)
$$

Finally, put together under the same sum:

$$
\frac{d}{d t} p_{i j}(t, s)=\sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, s)-p_{k j}(t, s)\right)
$$

UiO : Department of Mathematics

University of Oslo
Back to $V_{i}^{+}(t)$:

$$
V_{i}^{+}(t)=\sum_{j} \frac{v(T)}{v(t)} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \theta_{j}(s) d s,
$$

where

$$
\theta_{j}(s) \triangleq \dot{a}_{j}(s) d s+\sum_{k \neq j} \mu_{j k}(s) a_{j k}(s) .
$$

UiO: Department of Mathematics

University of Oslo
Back to $V_{i}^{+}(t)$:

$$
V_{i}^{+}(t)=\sum_{j} \frac{v(T)}{v(t)} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \theta_{j}(s) d s,
$$

where

$$
\theta_{j}(s) \triangleq \dot{a}_{j}(s) d s+\sum_{k \neq j} \mu_{j k}(s) a_{j k}(s) .
$$

Next step: pass $v(t)$ over to the left side:

$$
v(t) V_{i}^{+}(t)=\sum_{j} v(T) p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) p_{i j}(t, s) \theta_{j}(s) d s
$$

UiO: Department of Mathematics
 University of Oslo

Back to $V_{i}^{+}(t)$:

$$
V_{i}^{+}(t)=\sum_{j} \frac{v(T)}{v(t)} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} \frac{v(s)}{v(t)} p_{i j}(t, s) \theta_{j}(s) d s,
$$

where

$$
\theta_{j}(s) \triangleq \dot{a}_{j}(s) d s+\sum_{k \neq j} \mu_{j k}(s) a_{j k}(s) .
$$

Next step: pass $v(t)$ over to the left side:

$$
v(t) V_{i}^{+}(t)=\sum_{j} v(T) p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) p_{i j}(t, s) \theta_{j}(s) d s,
$$

Next step: differentiate both sides with respect to t.

UiO : Department of Mathematics
 University of Oslo

Define the following function

$$
H(t)=\int_{t}^{T} f(t, s) d s
$$

for an integrable function $f(t, \cdot)$ for every t. What is $H^{\prime}(t)$?

UiO : Department of Mathematics
 University of Oslo

Define the following function

$$
H(t)=\int_{t}^{T} f(t, s) d s
$$

for an integrable function $f(t, \cdot)$ for every t. What is $H^{\prime}(t)$?
Define the following bivariate function

$$
F(x, y)=\int_{y}^{T} f(x, s) d s
$$

UiO: Department of Mathematics
 University of Oslo

Define the following function

$$
H(t)=\int_{t}^{T} f(t, s) d s
$$

for an integrable function $f(t, \cdot)$ for every t. What is $H^{\prime}(t)$?
Define the following bivariate function

$$
F(x, y)=\int_{y}^{T} f(x, s) d s
$$

Then, clearly $H(t)=F(t, t)$.

UiO : Department of Mathematics
 University of Oslo

Define the following function

$$
H(t)=\int_{t}^{T} f(t, s) d s
$$

for an integrable function $f(t, \cdot)$ for every t. What is $H^{\prime}(t)$?
Define the following bivariate function

$$
F(x, y)=\int_{y}^{T} f(x, s) d s
$$

Then, clearly $H(t)=F(t, t)$. To compute $H^{\prime}(t)$ we can use the (bivariate) chain rule:

$$
H^{\prime}(t)=\left.\frac{\partial}{\partial x} F(x, y)\right|_{(x, y)=(t, t)}+\left.\frac{\partial}{\partial y} F(x, y)\right|_{(x, y)=(t, t)} .
$$

UiO : Department of Mathematics
 University of Oslo

Define the following function

$$
H(t)=\int_{t}^{T} f(t, s) d s
$$

for an integrable function $f(t, \cdot)$ for every t. What is $H^{\prime}(t)$?
Define the following bivariate function

$$
F(x, y)=\int_{y}^{T} f(x, s) d s
$$

Then, clearly $H(t)=F(t, t)$. To compute $H^{\prime}(t)$ we can use the (bivariate) chain rule:

$$
H^{\prime}(t)=\left.\frac{\partial}{\partial x} F(x, y)\right|_{(x, y)=(t, t)}+\left.\frac{\partial}{\partial y} F(x, y)\right|_{(x, y)=(t, t)} .
$$

We have

$$
\frac{\partial}{\partial x} F(x, y)=\int_{y}^{T} \frac{\partial}{\partial x} f(x, s) d s, \quad \frac{\partial}{\partial y} F(x, y)=-f(x, y) .
$$

UiO : Department of Mathematics

University of Oslo

$$
F(x, y)=\int_{y}^{T} f(x, s) d s \Rightarrow H(t)=F(t, t)
$$

As a result,

$$
H^{\prime}(t)=\left.\int_{t}^{T} \frac{\partial}{\partial x} f(x, s)\right|_{x=t} d s-f(t, t)
$$

UiO: Department of Mathematics

University of Oslo

$$
F(x, y)=\int_{y}^{T} f(x, s) d s \Rightarrow H(t)=F(t, t)
$$

As a result,

$$
H^{\prime}(t)=\left.\int_{t}^{T} \frac{\partial}{\partial x} f(x, s)\right|_{x=t} d s-f(t, t)
$$

That is

$$
H^{\prime}(t)=\int_{t}^{T} \frac{d}{d t} f(t, s) d s-f(t, t)
$$

UiO: Department of Mathematics

University of Oslo

$$
F(x, y)=\int_{y}^{T} f(x, s) d s \Rightarrow H(t)=F(t, t)
$$

As a result,

$$
H^{\prime}(t)=\left.\int_{t}^{T} \frac{\partial}{\partial x} f(x, s)\right|_{x=t} d s-f(t, t)
$$

That is

$$
H^{\prime}(t)=\int_{t}^{T} \frac{d}{d t} f(t, s) d s-f(t, t)
$$

In the case where $f(t, s)=v(s) p_{i j}(t, s) \theta_{j}(s)$ we have

$$
\frac{d}{d t} \int_{t}^{T} v(s) p_{i j}(t, s) \theta_{j}(s) d s=\int_{t}^{T} v(s) \frac{d}{d t} p_{i j}(t, s) \theta_{j}(s) d s-v(t) p_{i j}(t, t) \theta_{j}(t)
$$

UiO : Department of Mathematics

University of Oslo

Back to:

$$
v(t) V_{i}^{+}(t)=\sum_{j} v(T) p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) p_{i j}(t, s) \theta_{j}(s) d s
$$

UiO : Department of Mathematics

University of Oslo

Back to:

$$
v(t) V_{i}^{+}(t)=\sum_{j} v(T) p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) p_{i j}(t, s) \theta_{j}(s) d s
$$

The derivative of the right-hand side is:

$$
-r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} v_{i}^{+}(t) .
$$

UiO: Department of Mathematics

University of Oslo

Back to:

$$
v(t) V_{i}^{+}(t)=\sum_{j} v(T) p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) p_{i j}(t, s) \theta_{j}(s) d s
$$

The derivative of the right-hand side is:

$$
-r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} V_{i}^{+}(t)
$$

The derivative of the left-hand side is:

$$
v(T) \sum_{j} \frac{d}{d t} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) \frac{d}{d t} p_{i j}(t, s) \theta_{j}(s) d s-v(t) \underbrace{\sum_{j} p_{i j}(t, t) \theta_{j}(t)}_{=\theta_{i}(t)}
$$

UiO: Department of Mathematics

University of Oslo

Back to:

$$
v(t) V_{i}^{+}(t)=\sum_{j} v(T) p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) p_{i j}(t, s) \theta_{j}(s) d s
$$

The derivative of the right-hand side is:

$$
-r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} V_{i}^{+}(t)
$$

The derivative of the left-hand side is:

$$
v(T) \sum_{j} \frac{d}{d t} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) \frac{d}{d t} p_{i j}(t, s) \theta_{j}(s) d s-v(t) \underbrace{\sum_{j} p_{i j}(t, t) \theta_{j}(t)}_{=\theta_{i}(t)}
$$

So far,

$$
\begin{aligned}
& -r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} V_{i}^{+}(t)= \\
& v(T) \sum_{j} \frac{d}{d t} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) \frac{d}{d t} p_{i j}(t, s) \theta_{j}(s) d s-v(t) \theta_{i}(t)
\end{aligned}
$$

UiO : Department of Mathematics

University of Oslo
So far,

$$
\begin{aligned}
& -r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} v_{i}^{+}(t)= \\
& \quad v(T) \sum_{j} \frac{d}{d t} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) \frac{d}{d t} p_{i j}(t, s) \theta_{j}(s) d s-v(t) \theta_{i}(t)
\end{aligned}
$$

UiO : Department of Mathematics

University of Oslo
So far,

$$
\begin{aligned}
& -r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} V_{i}^{+}(t)= \\
& \quad v(T) \sum_{j} \frac{d}{d t} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) \frac{d}{d t} p_{i j}(t, s) \theta_{j}(s) d s-v(t) \theta_{i}(t)
\end{aligned}
$$

Recall that

$$
\frac{d}{d t} p_{i j}(t, s)=\sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) .
$$

UiO: Department of Mathematics

University of Oslo
So far,

$$
\begin{aligned}
& -r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} v_{i}^{+}(t)= \\
& \quad v(T) \sum_{j} \frac{d}{d t} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) \frac{d}{d t} p_{i j}(t, s) \theta_{j}(s) d s-v(t) \theta_{i}(t)
\end{aligned}
$$

Recall that

$$
\frac{d}{d t} p_{i j}(t, s)=\sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, s)-p_{k j}(t, s)\right)
$$

Let us look at the terms with $\frac{d}{d t} p_{i j}$. Substituting:

$$
\begin{aligned}
& v(T) \sum_{j} \sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta a_{j}(T) \\
& \quad+\sum_{j} \int_{t}^{T} v(s) \sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s .
\end{aligned}
$$

UiO: Department of Mathematics
 University of Oslo

So far,

$$
\begin{aligned}
& -r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} v_{i}^{+}(t)= \\
& \quad v(T) \sum_{j} \frac{d}{d t} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) \frac{d}{d t} p_{i j}(t, s) \theta_{j}(s) d s-v(t) \theta_{i}(t)
\end{aligned}
$$

Recall that

$$
\frac{d}{d t} p_{i j}(t, s)=\sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) .
$$

Let us look at the terms with $\frac{d}{d t} p_{i j}$. Substituting:

$$
\begin{aligned}
& v(T) \sum_{j} \sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta a_{j}(T) \\
& \quad+\sum_{j} \int_{t}^{T} v(s) \sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s .
\end{aligned}
$$

Now, the sum $\sum_{k \neq i} \mu_{i k}(t)$ can be moved completely out:

UiO: Department of Mathematics

University of Oslo
Now, the sum $\sum_{k \neq i} \mu_{i k}(t)$ can be moved completely out:

$$
\begin{aligned}
& v(T) \sum_{j} \sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta a_{j}(T) \\
& \quad+\sum_{j} \int_{t}^{T} v(s) \sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s
\end{aligned}
$$

UiO: Department of Mathematics
 University of Oslo

Now, the sum $\sum_{k \neq i} \mu_{i k}(t)$ can be moved completely out:

$$
\begin{aligned}
& v(T) \sum_{j} \sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta a_{j}(T) \\
& \quad+\sum_{j} \int_{t}^{T} v(s) \sum_{k \neq i} \mu_{i k}(t)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s
\end{aligned}
$$

Indeed,

$$
\begin{aligned}
\sum_{k \neq i} \mu_{i k}(t)[v(T) & \sum_{j}\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta \mathrm{a}_{j}(T) \\
& \left.+\sum_{j} \int_{t}^{T} v(s)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s\right]
\end{aligned}
$$

UiO: Department of Mathematics

University of Oslo
Observe that we can recover the expression for $V_{i}^{+}(t)$ and $V_{k}^{+}(t)$.

$$
\begin{aligned}
\sum_{k \neq i} \mu_{i k}(t)[v(T) & \sum_{j}\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta a_{j}(T) \\
& \left.+\sum_{j} \int_{t}^{T} v(s)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s\right]
\end{aligned}
$$

UiO: Department of Mathematics

University of Oslo
Observe that we can recover the expression for $V_{i}^{+}(t)$ and $V_{k}^{+}(t)$.

$$
\begin{aligned}
\sum_{k \neq i} \mu_{i k}(t)[v(T) & \sum_{j}\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta a_{j}(T) \\
& \left.+\sum_{j} \int_{t}^{T} v(s)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s\right]
\end{aligned}
$$

UiO: Department of Mathematics

University of Oslo
Observe that we can recover the expression for $V_{i}^{+}(t)$ and $V_{k}^{+}(t)$.

$$
\begin{aligned}
\sum_{k \neq i} \mu_{i k}(t)[v(T) & \sum_{j}\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta a_{j}(T) \\
& \left.+\sum_{j} \int_{t}^{T} v(s)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s\right]
\end{aligned}
$$

Thus,

$$
\sum_{k \neq i} \mu_{i k}(t)\left(V_{i}^{+}(t)-V_{k}^{+}(t)\right) .
$$

UiO: Department of Mathematics
 University of Oslo

Observe that we can recover the expression for $v(t) V_{i}^{+}(t)$ and $v(t) V_{k}^{+}(t)$.

$$
\begin{aligned}
\sum_{k \neq i} \mu_{i k}(t)[v(T) & \sum_{j}\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta a_{j}(T) \\
& \left.+\sum_{j} \int_{t}^{T} v(s)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s\right]
\end{aligned}
$$

Thus,

$$
v(t) \sum_{k \neq i} \mu_{i k}(t)\left(V_{i}^{+}(t)-V_{k}^{+}(t)\right) .
$$

So far,

$$
\begin{aligned}
& -r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} v_{i}^{+}(t)= \\
& \quad v(T) \sum_{j} \frac{d}{d t} p_{i j}(t, T) \Delta a_{j}(T)+\sum_{j} \int_{t}^{T} v(s) \frac{d}{d t} p_{i j}(t, s) \theta_{j}(s) d s-v(t) \theta_{i}(t)
\end{aligned}
$$

UiO: Department of Mathematics
 University of Oslo

Observe that we can recover the expression for $v(t) V_{i}^{+}(t)$ and $v(t) V_{k}^{+}(t)$.

$$
\begin{aligned}
\sum_{k \neq i} \mu_{i k}(t)[v(T) & \sum_{j}\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta a_{j}(T) \\
& \left.+\sum_{j} \int_{t}^{T} v(s)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s\right]
\end{aligned}
$$

Thus,

$$
v(t) \sum_{k \neq i} \mu_{i k}(t)\left(V_{i}^{+}(t)-V_{k}^{+}(t)\right) .
$$

So far,

$$
-r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} V_{i}^{+}(t)=v(t) \sum_{k \neq i} \mu_{i k}(t)\left(V_{i}^{+}(t)-V_{k}^{+}(t)\right)-v(t) \theta_{i}(t)
$$

UiO: Department of Mathematics
 University of Oslo

Observe that we can recover the expression for $v(t) V_{i}^{+}(t)$ and $v(t) V_{k}^{+}(t)$.

$$
\begin{aligned}
\sum_{k \neq i} \mu_{i k}(t)[v(T) & \sum_{j}\left(p_{i j}(t, T)-p_{k j}(t, T)\right) \Delta a_{j}(T) \\
& \left.+\sum_{j} \int_{t}^{T} v(s)\left(p_{i j}(t, s)-p_{k j}(t, s)\right) \theta_{j}(s) d s\right]
\end{aligned}
$$

Thus,

$$
v(t) \sum_{k \neq i} \mu_{i k}(t)\left(V_{i}^{+}(t)-V_{k}^{+}(t)\right) .
$$

So far,

$$
-r(t) v(t) V_{i}^{+}(t)+v(t) \frac{d}{d t} V_{i}^{+}(t)=v(t) \sum_{k \neq i} \mu_{i k}(t)\left(V_{i}^{+}(t)-V_{k}^{+}(t)\right)-v(t) \theta_{i}(t)
$$

UiO : Department of Mathematics

University of Oslo
In a summary,

$$
-r(t) V_{i}^{+}(t)+\frac{d}{d t} V_{i}^{+}(t)=\sum_{k \neq i} \mu_{i k}(t)\left(V_{i}^{+}(t)-V_{k}^{+}(t)\right)-\theta_{i}(t)
$$

UiO : Department of Mathematics

University of Oslo
In a summary,

$$
-r(t) V_{i}^{+}(t)+\frac{d}{d t} V_{i}^{+}(t)=\sum_{k \neq i} \mu_{i k}(t)\left(V_{i}^{+}(t)-V_{k}^{+}(t)\right)-\theta_{i}(t)
$$

Remember that

$$
\theta_{i}(t) \triangleq \dot{a}_{i}(t)+\sum_{k \neq i} \mu_{i k}(t) a_{i k}(t) .
$$

UiO : Department of Mathematics

University of Oslo
In a summary,

$$
-r(t) V_{i}^{+}(t)+\frac{d}{d t} V_{i}^{+}(t)=\sum_{k \neq i} \mu_{i k}(t)\left(V_{i}^{+}(t)-V_{k}^{+}(t)\right)-\theta_{i}(t)
$$

Remember that

$$
\theta_{i}(t) \triangleq \dot{a}_{i}(t)+\sum_{k \neq i} \mu_{i k}(t) a_{i k}(t)
$$

Therefore,

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)+\sum_{k \neq i} \mu_{i k}(t)\left(V_{i}^{+}(t)-V_{k}^{+}(t)\right)-\sum_{k \neq i} \mu_{i k}(t) a_{i k}(t)
$$

UiO : Department of Mathematics
 University of Oslo

Simplifying we finally get Thiele's differential equation:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Observe that the final condition is given by

$$
V_{i}^{+}(T)=\Delta a_{i}(T)
$$

UiO : Department of Mathematics
 University of Oslo

Simplifying we finally get Thiele's differential equation:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Observe that the final condition is given by

$$
V_{i}^{+}(T)=\Delta a_{i}(T)
$$

Remark: The equation does not depend on transition probabilities, only rates. Thus, the equation produces $V_{i}^{+}(t)$ from the rates $\left\{\mu_{i j}(t)\right\}_{i j}$ without having to go through Kolmogorov's equation. In some sense, Kolmogorov's equation is already embedded into Thiele's equation.

UiO: Department of Mathematics

University of Oslo

Examples

UiO : Department of Mathematics

University of Oslo

Pure endowment

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right) .
$$

UiO: Department of Mathematics
 University of Oslo

Pure endowment

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}$ are 0 . The equation reduces to:

UiO : Department of Mathematics
 University of Oslo

Pure endowment

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}$ are 0 . The equation reduces to:

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\dot{a}_{*}(t)-\sum_{k \neq *} \mu_{* k}(t)\left(V_{k}^{+}(t)-V_{*}^{+}(t)\right)
$$

Sine $k \neq *$ means $k=\dagger$ we have

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\dot{a}_{*}(t)-\mu_{* \dagger}(t)\left(V_{\dagger}^{+}(t)-V_{*}^{+}(t)\right)
$$

UiO : Department of Mathematics
 University of Oslo

Pure endowment

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}$ are 0 . The equation reduces to:

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\dot{a}_{*}(t)-\sum_{k \neq *} \mu_{* k}(t)\left(V_{k}^{+}(t)-V_{*}^{+}(t)\right)
$$

Sine $k \neq *$ means $k=\dagger$ we have

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\dot{a}_{*}(t)-\mu_{* \dagger}(t)\left(V_{\dagger}^{+}(t)-V_{*}^{+}(t)\right)
$$

Moreover, $V_{\dagger} \equiv 0$ and $\dot{a}_{*}(t)=0$ for all $t \neq T$. Hence,

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)+\mu_{* 十}(t) V_{*}^{+}(t), \quad V_{*}^{+}(T)=\Delta a_{*}(T)=E,
$$

where E is the survival benefit to be paid out at time T in case of survival.

UiO : Department of Mathematics

University of Oslo

Term insurance

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

UiO: Department of Mathematics
 University of Oslo

Term insurance

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all a_{i} and $a_{i k}$ are 0 except for $a_{*+}(t)=B$ for $t \in[0, T]$. The equation reduces to:

UiO : Department of Mathematics
 University of Oslo

Term insurance

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all a_{i} and $a_{i k}$ are 0 except for $a_{* \dagger}(t)=B$ for $t \in[0, T]$. The equation reduces to:

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\sum_{k \neq *} \mu_{* k}(t)\left(a_{* k}(t)+V_{k}^{+}(t)-V_{*}^{+}(t)\right)
$$

Sine $k \neq *$ means $k=\dagger$ we have

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\mu_{* \dagger}(t)\left(B-V_{*}^{+}(t)\right)
$$

UiO : Department of Mathematics
 University of Oslo

Term insurance

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all a_{i} and $a_{i k}$ are 0 except for $a_{* \dagger}(t)=B$ for $t \in[0, T]$. The equation reduces to:

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\sum_{k \neq *} \mu_{* k}(t)\left(a_{* k}(t)+V_{k}^{+}(t)-V_{*}^{+}(t)\right)
$$

Sine $k \neq *$ means $k=\dagger$ we have

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\mu_{* \dagger}(t)\left(B-V_{*}^{+}(t)\right) .
$$

Hence,

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)+\left(\mu_{*+}(t)+B\right) V_{*}^{+}(t), \quad V_{*}^{+}(T)=\Delta a_{*}(T)=0
$$

UiO : Department of Mathematics

University of Oslo

Endowment insurance

 Thiele:$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

UiO : Department of Mathematics
 University of Oslo

Endowment insurance

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

It's a combination of a pure endowment and a term insurance, hence:

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)+\left(\mu_{* 广}(t)+B\right) V_{*}^{+}(t), \quad V_{*}^{+}(T)=\Delta a_{*}(T)=E .
$$

UiO : Department of Mathematics

University of Oslo

Pension

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

UiO : Department of Mathematics

University of Oslo

Pension

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Two states:

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\dot{a}_{*}(t)-\mu_{* \dagger}(t)\left(a_{* \dagger}(t)+V_{\dagger}^{+}(t)-V_{*}^{+}(t)\right) .
$$

UiO: Department of Mathematics

University of Oslo

Pension

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Two states:

$$
\frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\dot{a}_{*}(t)-\mu_{* \dagger}(t)\left(a_{* \dagger}(t)+V_{\dagger}^{+}(t)-V_{*}^{+}(t)\right) .
$$

In a pension we have $\dot{a}_{*}(t)=P$ during the retirement time $t \in\left[T_{0}, T\right)$. Hence,

$$
\frac{d}{d t} V_{*}^{+}(t)=\left(r(t)+\mu_{* 广}(t)\right) V_{*}^{+}(t)-P \mathbb{I}_{\left[T_{0}, T\right)}(t), \quad V_{*}^{+}(T)=0
$$

UiO : Department of Mathematics

University of Oslo

Premiums

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Then we assume $\dot{a}_{*}(t)=-\pi \mathbb{I}_{\left[0, T_{0}\right)}(t)$. Hence,

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)+\pi+\mu_{i k}(t) V_{i}^{+}(t), \quad V_{*}^{+}\left(T_{0}\right)=0, \quad t \in\left[0, T_{0}\right]
$$

UiO : Department of Mathematics

University of Oslo

Disability insurance

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

UiO: Department of Mathematics

University of Oslo

Disability insurance

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right)
$$

Three states: $\mathcal{S}=\{*, \diamond, \dagger\}$. Hence,

$$
\begin{aligned}
& \frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\dot{a}_{*}(t)-\sum_{k \neq *} \mu_{* k}(t)\left(a_{* k}(t)+V_{k}^{+}(t)-V_{*}^{+}(t)\right), \\
& \frac{d}{d t} V_{\diamond}^{+}(t)=r(t) V_{\diamond}^{+}(t)-\dot{a}_{\diamond}(t)-\sum_{k \neq \diamond} \mu_{\diamond k}(t)\left(a_{\diamond k}(t)+V_{k}^{+}(t)-V_{\diamond}^{+}(t)\right) .
\end{aligned}
$$

The pensions/premiums would go in \dot{a}_{*} and the disability pensions in \dot{a}_{\diamond}.

UiO: Department of Mathematics

University of Oslo

Disability insurance

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right) .
$$

Three states: $\mathcal{S}=\{*, \diamond, \dagger\}$. Hence,

$$
\begin{aligned}
& \frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\dot{a}_{*}(t)-\mu_{* \diamond}(t)\left(a_{* \diamond}(t)+V_{\diamond}^{+}(t)-V_{*}^{+}(t)\right)-\mu_{* \dagger}(t)\left(a_{* \dagger}(t)+V_{\dagger}^{+}(t)-V_{*}^{+}(t)\right) \\
& \frac{d}{d t} V_{\odot}^{+}(t)=r(t) V_{\odot}^{+}(t)-\dot{a}_{\diamond}(t)-\mu_{\odot *}(t)\left(a_{\odot *}(t)+V_{*}^{+}(t)-V_{\odot}^{+}(t)\right)-\mu_{\odot \dagger}(t)\left(a_{\odot \dagger}(t)+V_{\dagger}^{+}(t)-V_{\odot}^{+}(t)\right)
\end{aligned}
$$

The pensions/premiums would go in \dot{a}_{*} and the disability pensions in \dot{a}_{\circ}.

UiO: Department of Mathematics

University of Oslo

Disability insurance

Thiele:

$$
\frac{d}{d t} V_{i}^{+}(t)=r(t) V_{i}^{+}(t)-\dot{a}_{i}(t)-\sum_{k \neq i} \mu_{i k}(t)\left(a_{i k}(t)+V_{k}^{+}(t)-V_{i}^{+}(t)\right) .
$$

Three states: $\mathcal{S}=\{*, \diamond, \dagger\}$. Hence,

$$
\begin{aligned}
& \frac{d}{d t} V_{*}^{+}(t)=r(t) V_{*}^{+}(t)-\dot{a}_{*}(t)-\mu_{* \diamond}(t)\left(a_{* \diamond}(t)+V_{\diamond}^{+}(t)-V_{*}^{+}(t)\right)-\mu_{* \dagger}(t)\left(a_{* \dagger}(t)-V_{*}^{+}(t)\right), \\
& \frac{d}{d t} V_{\diamond}^{+}(t)=r(t) V_{\odot}^{+}(t)-\dot{a}_{\diamond}(t)-\mu_{\odot *}(t)\left(a_{\odot *}(t)+V_{*}^{+}(t)-V_{\diamond}^{+}(t)\right)-\mu_{\diamond \dagger}(t)\left(a_{\diamond \dagger}(t)-V_{\odot}^{+}(t)\right) .
\end{aligned}
$$

The pensions/premiums would go in \dot{a}_{*} and the disability pensions in \dot{a}_{0}.

UiO 8 Department of Mathematics University of Oslo

David R. Banos

Life Insurance and Finance

Lecture 8: Thiele's differential equation

