
$\mathrm{UiO}:$ Department of Mathematics University of Oslo

Life Insurance and Finance

Lecture 9: Thiele's difference equation

David R. Banos

UiO : Department of Mathematics
 University of Oslo

1 Introduction

2 Thiele's difference equation

3 Examples
■ Pure endowment

- Pure endowment

■ Term insurance

UiO: Department of Mathematics

University of Oslo

Introduction

UiO : Department of Mathematics

University of Oslo
What we have learnt so far...
■ To model the states of the insured with a Markov chain X_{t}.

UiO : Department of Mathematics
 University of Oslo

What we have learnt so far...
■ To model the states of the insured with a Markov chain X_{t}.
■ To model cash flows, denoted by A, with policy functions according to the states of the insured.

UiO : Department of Mathematics
 University of Oslo

What we have learnt so far...
■ To model the states of the insured with a Markov chain X_{t}.
■ To model cash flows, denoted by A, with policy functions according to the states of the insured.

- To defined stochastic prospective value V_{t}^{+}and the expected prospective value given a state $i, V_{i}^{+}(t)$.

```
\(\mathrm{UiO}:\) Department of Mathematics
University of Oslo
```

What we have learnt so far...
■ To model the states of the insured with a Markov chain X_{t}.
■ To model cash flows, denoted by A, with policy functions according to the states of the insured.

- To defined stochastic prospective value V_{t}^{+}and the expected prospective value given a state $i, V_{i}^{+}(t)$.
- To include periodic premiums and determine their value by using the actuarial equivalence principle.

What we have learnt so far...

- To model the states of the insured with a Markov chain X_{t}.
- To model cash flows, denoted by A, with policy functions according to the states of the insured.
- To defined stochastic prospective value V_{t}^{+}and the expected prospective value given a state $i, V_{i}^{+}(t)$.
- To include periodic premiums and determine their value by using the actuarial equivalence principle.
\square All this, under a continuous time setting and a discrete time setting.

What we have learnt so far...

- To model the states of the insured with a Markov chain X_{t}.
- To model cash flows, denoted by A, with policy functions according to the states of the insured.
- To defined stochastic prospective value V_{t}^{+}and the expected prospective value given a state $i, V_{i}^{+}(t)$.
- To include periodic premiums and determine their value by using the actuarial equivalence principle.
\square All this, under a continuous time setting and a discrete time setting.
- Thiele's differential equation (continuous time setting) for $V_{i}^{+}(t), t \geq 0$.

What we have learnt so far...

- To model the states of the insured with a Markov chain X_{t}.

■ To model cash flows, denoted by A, with policy functions according to the states of the insured.
\square To defined stochastic prospective value V_{t}^{+}and the expected prospective value given a state $i, V_{i}^{+}(t)$.
■ To include periodic premiums and determine their value by using the actuarial equivalence principle.
■ All this, under a continuous time setting and a discrete time setting.
■ Thiele's differential equation (continuous time setting) for $V_{i}^{+}(t), t \geq 0$.

- Next:

■ Thiele's difference equation (discrete time setting) for $V_{i}^{+}(t), t \in \mathbb{N}$.

- Examples.

UiO: Department of Mathematics

University of Oslo

Thiele's difference equation

UiO: Department of Mathematics

University of Oslo

Recall the expected prospective value at discrete times $t \in \mathbb{N}$, assuming $X_{t}=i$, is given by
$V_{i}^{+}(t)=\frac{1}{v(t)}\left[\sum_{j} \sum_{n=t}^{\infty} v(n) p_{i j}(t, n) a_{j}^{\text {Pre }}(n)+\sum_{j, k} \sum_{n=t}^{\infty} v(n+1) p_{i j}(t, n) p_{j k}(n, n+1) a_{j k}^{\text {Post }}(n)\right]$

UiO: Department of Mathematics
 University of Oslo

Recall the expected prospective value at discrete times $t \in \mathbb{N}$, assuming $X_{t}=i$, is given by
$V_{i}^{+}(t)=\frac{1}{v(t)}\left[\sum_{j} \sum_{n=t}^{\infty} v(n) p_{i j}(t, n) a_{j}^{\text {Pre }}(n)+\sum_{j, k} \sum_{n=t}^{\infty} v(n+1) p_{i j}(t, n) p_{j k}(n, n+1) a_{j k}^{\text {Post }}(n)\right]$
Steps to prove Thiele's difference equation:
1 Compactify the expression for $V_{i}^{+}(t), t \in \mathbb{N}$.
2 Separate the sum over n into one summand $n=t$ and the rest $n \geq t+1$.
3 Use Chapman-Kolmogorov equation to go from t to n via $t+1$, i.e.

$$
p_{i j}(t, n)=\sum_{k} p_{i k}(t, t+1) p_{k j}(t+1, n) .
$$

4 Put things back together.

UiO: Department of Mathematics

University of Oslo

Recall the expected prospective value at discrete times $t \in \mathbb{N}$, assuming $X_{t}=i$, is given by
$V_{i}^{+}(t)=\frac{1}{v(t)}\left[\sum_{j} \sum_{n=t}^{\infty} v(n) p_{i j}(t, n) a_{j}^{\mathrm{Pre}}(n)+\sum_{j, k} \sum_{n=t}^{\infty} v(n+1) p_{i j}(t, n) p_{j k}(n, n+1) a_{j k}^{\text {Post }}(n)\right]$
We can express $V_{i}^{+}(t)$ as

$$
V_{i}^{+}(t)=\frac{1}{v(t)} \sum_{j} \sum_{n=t}^{\infty} v(n) p_{i j}(t, n) \underbrace{\left(a_{j}^{\mathrm{Pre}}(n)+\sum_{k} \frac{v(n+1)}{v(n)} p_{j k}(n, n+1) a_{j k}^{\mathrm{Post}}(n)\right)}_{=\theta_{j}(n)} .
$$

UiO: Department of Mathematics

University of Oslo

Recall the expected prospective value at discrete times $t \in \mathbb{N}$, assuming $X_{t}=i$, is given by
$V_{i}^{+}(t)=\frac{1}{v(t)}\left[\sum_{j} \sum_{n=t}^{\infty} v(n) p_{i j}(t, n) a_{j}^{\text {Pre }}(n)+\sum_{j, k} \sum_{n=t}^{\infty} v(n+1) p_{i j}(t, n) p_{j k}(n, n+1) a_{j k}^{\text {Post }}(n)\right]$
We can express $V_{i}^{+}(t)$ as

$$
V_{i}^{+}(t)=\frac{1}{v(t)} \sum_{j} \sum_{n=t}^{\infty} v(n) p_{i j}(t, n) \underbrace{\left(a_{j}^{\mathrm{Pre}}(n)+\sum_{k} \frac{v(n+1)}{v(n)} p_{j k}(n, n+1) a_{j k}^{\mathrm{Post}}(n)\right)}_{=\theta_{j}(n)} .
$$

That is,

$$
V_{i}^{+}(t)=\frac{1}{v(t)} \sum_{j} \sum_{n=t}^{\infty} v(n) p_{i j}(t, n) \theta_{j}(n)
$$

where

$$
\theta_{j}(n) \triangleq a_{j}^{\text {Pre }}(n)+\sum_{k} v_{n} p_{j k}(n, n+1) a_{j k}^{\text {Post }}(n)
$$

where $v_{n}=\frac{v(n+1)}{v(n)}$ is the one-step discount factor.

UiO : Department of Mathematics

University of Oslo

$$
v_{i}^{+}(t)=\frac{1}{v(t)} \sum_{j} \sum_{n=t}^{\infty} v(n) p_{i j}(t, n) \theta_{j}(n),
$$

where

$$
\theta_{j}(n) \triangleq a_{j}^{\mathrm{Pre}}(n)+\sum_{k} v_{n} p_{j k}(n, n+1) a_{j k}^{\text {Post }}(n)
$$

Now, separate the sum $\sum_{n=t}^{\infty} a(n)=a(t)+\sum_{n=t+1}^{\infty} a(n)$.

$$
\begin{aligned}
V_{i}^{+}(t) & =\frac{1}{v(t)}[\sum_{j} v(t) \underbrace{p_{i j}(t, t)}_{\mathbf{1}_{j=i}} \theta_{j}(t)+\sum_{j} \sum_{n=t+1}^{\infty} v(n) p_{i j}(t, n) \theta_{j}(n)] \\
& =\frac{1}{v(t)}\left[v(t) \theta_{i}(t)+\sum_{j} \sum_{n=t+1}^{\infty} v(n) p_{i j}(t, n) \theta_{j}(n)\right] \\
& =\theta_{i}(t)+\frac{1}{v(t)} \sum_{j} \sum_{n=t+1}^{\infty} v(n) p_{i j}(t, n) \theta_{j}(n) .
\end{aligned}
$$

UiO : Department of Mathematics

University of Oslo
So far,

$$
v_{i}^{+}(t)=\theta_{i}(t)+\frac{1}{v(t)} \sum_{j} \sum_{n=t+1}^{\infty} v(n) p_{i j}(t, n) \theta_{j}(n),
$$

where

$$
\theta_{j}(n) \triangleq a_{j}^{\text {Pre }}(n)+\sum_{k} v_{n} p_{j k}(n, n+1) a_{j k}^{\text {Post }}(n) .
$$

UiO: Department of Mathematics

University of Oslo
So far,

$$
v_{i}^{+}(t)=\theta_{i}(t)+\frac{1}{v(t)} \sum_{j} \sum_{n=t+1}^{\infty} v(n) p_{i j}(t, n) \theta_{j}(n),
$$

where

$$
\theta_{j}(n) \triangleq a_{j}^{\text {Pre }}(n)+\sum_{k} v_{n} p_{j k}(n, n+1) a_{j k}^{\text {Post }}(n)
$$

Now use Chapman-Kolmogorov equation to go from t to n via $t+1$, that is $p_{i j}(t, n)=$ $\sum_{k} p_{i k}(t, t+1) p_{k j}(t+1, n)$. Then,

$$
V_{i}^{+}(t)=\theta_{i}(t)+\frac{1}{v(t)} \sum_{j} \sum_{n=t+1}^{\infty} v(n) \sum_{k} p_{i k}(t, t+1) p_{k j}(t+1, n) \theta_{j}(n) .
$$

UiO: Department of Mathematics

University of Oslo
So far,

$$
v_{i}^{+}(t)=\theta_{i}(t)+\frac{1}{v(t)} \sum_{j} \sum_{n=t+1}^{\infty} v(n) p_{i j}(t, n) \theta_{j}(n),
$$

where

$$
\theta_{j}(n) \triangleq a_{j}^{\text {Pre }}(n)+\sum_{k} v_{n} p_{j k}(n, n+1) a_{j k}^{\text {Post }}(n)
$$

Now use Chapman-Kolmogorov equation to go from t to n via $t+1$, that is $p_{i j}(t, n)=$ $\sum_{k} p_{i k}(t, t+1) p_{k j}(t+1, n)$. Then,

$$
V_{i}^{+}(t)=\theta_{i}(t)+\frac{1}{v(t)} \sum_{j} \sum_{n=t+1}^{\infty} v(n) \sum_{k} p_{i k}(t, t+1) p_{k j}(t+1, n) \theta_{j}(n)
$$

Take the sum over k as far out as you can and everything that depends upon k :

$$
V_{i}^{+}(t)=\theta_{i}(t)+\sum_{k} p_{i k}(t, t+1) \frac{1}{v(t)} \underbrace{\sum_{j} \sum_{n=t+1}^{\infty} v(n) p_{k j}(t+1, n) \theta_{j}(n)}_{=v(t+1) v_{k}^{+}(t+1)}
$$

UiO: Department of Mathematics

University of Oslo
Thus,

$$
v_{i}^{+}(t)=\theta_{i}(t)+\sum_{k} p_{i k}(t, t+1) \underbrace{\frac{v(t+1)}{v(t)}}_{=v_{t}} v_{k}^{+}(t+1),
$$

where v_{t} is the one-step discount factor and

$$
\theta_{j}(t) \triangleq a_{j}^{\text {Pre }}(t)+\sum_{k} v_{t} p_{j k}(t, t+1) a_{j k}^{\text {Post }}(t) .
$$

UiO: Department of Mathematics
 University of Oslo

Thus,

$$
v_{i}^{+}(t)=\theta_{i}(t)+\sum_{k} p_{i k}(t, t+1) \underbrace{\frac{v(t+1)}{v(t)}}_{=v_{t}} V_{k}^{+}(t+1),
$$

where v_{t} is the one-step discount factor and

$$
\theta_{j}(t) \triangleq a_{j}^{\text {Pre }}(t)+\sum_{k} v_{t} p_{j k}(t, t+1) a_{j k}^{\text {Post }}(t) .
$$

Putting things together and taking common factor we obtain the recursion formula for every $t \in \mathbb{N}$:

$$
V_{i}^{+}(t)=a_{i}^{\text {Pre }}(t)+\sum_{k} v_{t} p_{i k}(t, t+1)\left(a_{i k}^{\text {Post }}(t)+V_{k}^{+}(t+1)\right)
$$

UiO: Department of Mathematics

University of Oslo

Examples

UiO : Department of Mathematics

University of Oslo

Premiums (only)

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

UiO : Department of Mathematics
 University of Oslo

Premiums (only)

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\text {Post }}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}^{\text {Post }}$ are 0 . Premiums of -1 are allocated in the function $a_{*}^{\text {Pre }}=-1$ The equation reduces to:

UiO : Department of Mathematics
 University of Oslo

Premiums (only)

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\text {Post }}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}^{\text {Post }}$ are 0 . Premiums of -1 are allocated in the function $a_{*}^{\text {Pre }}=-1$ The equation reduces to:

$$
V_{*}^{+}(t)=a_{*}^{\mathrm{Pre}}(t)+v_{t} p_{* *}(t, t+1) V_{*}^{+}(t+1), \quad t \in\left\{0,1,2, \ldots, T_{0}-1\right\}
$$

UiO: Department of Mathematics
 University of Oslo

Premiums (only)

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}^{\text {Post }}$ are 0 . Premiums of -1 are allocated in the function $a_{*}^{\text {Pre }}=-1$ The equation reduces to:

$$
V_{*}^{+}(t)=a_{*}^{\mathrm{Pre}}(t)+v_{t} p_{* *}(t, t+1) V_{*}^{+}(t+1), \quad t \in\left\{0,1,2, \ldots, T_{0}-1\right\}
$$

Moreover, the final condition is given as $V_{*}^{+}\left(T_{0}\right)=0$ where $T_{0}-1$ is the last time the premium is paid in.

UiO : Department of Mathematics
 University of Oslo

Premiums (only)

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}^{\text {Post }}$ are 0 . Premiums of -1 are allocated in the function $a_{*}^{\text {Pre }}=-1$ The equation reduces to:

$$
V_{*}^{+}(t)=a_{*}^{\mathrm{Pre}}(t)+v_{t} p_{* *}(t, t+1) V_{*}^{+}(t+1), \quad t \in\left\{0,1,2, \ldots, T_{0}-1\right\}
$$

Moreover, the final condition is given as $V_{*}^{+}\left(T_{0}\right)=0$ where $T_{0}-1$ is the last time the premium is paid in.
Procedure:
1 From $t=T_{0}$ you have $V_{*}^{+}\left(T_{0}\right)=0$.
2 Then go one step back to $t=T_{0}-1$, to compute $V_{*}^{+}\left(T_{0}-1\right)$ recursively:

$$
V_{*}^{+}\left(T_{0}-1\right)=\underbrace{a_{*}^{\mathrm{Pre}}\left(T_{0}-1\right)}_{-1}+V_{T_{0}-1} p_{* *}\left(T_{0}-1, T_{0}\right) V_{*}^{+}\left(T_{0}\right) .
$$

3 Now you have $V_{*}^{+}\left(T_{0}-1\right)$ you can go on to computing $V_{*}^{+}\left(T_{0}-2\right)$ and so on down to $V_{*}^{+}(0)$.

UiO : Department of Mathematics

University of Oslo

Pure endowment

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

UiO : Department of Mathematics

University of Oslo

Pure endowment

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}^{\text {Post }}$ are 0 . The equation reduces to:

UiO: Department of Mathematics

University of Oslo

Pure endowment

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}^{\text {post }}$ are 0 . The equation reduces to:

$$
V_{*}^{+}(t)=v_{t} p_{* *}(t, t+1) V_{*}^{+}(t+1)
$$

UiO : Department of Mathematics
 University of Oslo

Pure endowment

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}^{\text {Post }}$ are 0 . The equation reduces to:

$$
V_{*}^{+}(t)=v_{t} p_{* *}(t, t+1) V_{*}^{+}(t+1)
$$

Moreover, the final condition is given as $V_{*}^{+}(T)=E$ where E is the survival benefit to be paid out at time T in case of survival.

UiO: Department of Mathematics
 University of Oslo

Pure endowment

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\text {Post }}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover all $a_{i j}^{\text {Post }}$ are 0 . The equation reduces to:

$$
V_{*}^{+}(t)=v_{t} p_{* *}(t, t+1) V_{*}^{+}(t+1)
$$

Moreover, the final condition is given as $V_{*}^{+}(T)=E$ where E is the survival benefit to be paid out at time T in case of survival.
Procedure:
1 From $t=T$ you have $V_{*}^{+}(T)=E$.
2 Then go one step back to $t=T-1$, to compute $V_{*}^{+}(T-1)$ you apply the recursion:

$$
V_{*}^{+}(T-1)=V_{T-1} p_{* *}(T-1, T) V_{*}^{+}(T)
$$

3 Now you have $V_{*}^{+}(T-1)$ you can go on to computing $V_{*}^{+}(T-2)$ and so on down to $V_{*}^{+}(0)$.

UiO: Department of Mathematics

University of Oslo

Term insurance

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

UiO : Department of Mathematics
 University of Oslo

Term insurance

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\text {Post }}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover $a_{i}^{\text {Pre }}$ is 0 and $a_{* \uparrow}^{\text {Post }}=B$. The equation reduces to:

UiO: Department of Mathematics
 University of Oslo

Term insurance

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover $a_{i}^{\text {Pre }}$ is 0 and $a_{* \uparrow}^{\text {Post }}=B$. The equation reduces to:

$$
V_{*}^{+}(t)=v_{t} p_{* *}(t, t+1) V_{*}^{+}(t+1)+v_{t} p_{* \dagger}(t, t+1) B
$$

UiO : Department of Mathematics
 University of Oslo

Term insurance

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover $a_{i}^{\text {Pre }}$ is 0 and $a_{* \dagger}^{\text {Post }}=B$. The equation reduces to:

$$
V_{*}^{+}(t)=v_{t} p_{* *}(t, t+1) V_{*}^{+}(t+1)+v_{t} p_{* \dagger}(t, t+1) B
$$

Moreover, the final condition is given as $V_{*}^{+}(T)=0$.

UiO : Department of Mathematics
 University of Oslo

Term insurance

Thiele:

$$
V_{i}^{+}(t)=a_{i}^{\mathrm{Pre}}(t)+\sum_{j} v_{t} p_{i j}(t, t+1)\left(a_{i j}^{\mathrm{Post}}(t)+V_{j}^{+}(t+1)\right)
$$

Only two states: $\mathcal{S}=\{*, \dagger\}$ and $V_{\dagger}^{+} \equiv 0$, hence we only have one function $V_{*}^{+}(t)$. Moreover $a_{i}^{\text {Pre }}$ is 0 and $a_{* \dagger}^{\text {Post }}=B$. The equation reduces to:

$$
V_{*}^{+}(t)=v_{t} p_{* *}(t, t+1) V_{*}^{+}(t+1)+v_{t} p_{* \dagger}(t, t+1) B
$$

Moreover, the final condition is given as $V_{*}^{+}(T)=0$. Procedure:

1 From $t=T$ you have $V_{*}^{+}(T)=0$.
2 Then go one step back to $t=T-1$, to compute $V_{*}^{+}(T-1)$ you apply the recursion:

$$
\begin{aligned}
V_{*}^{+}(T-1) & =v_{T-1} p_{* *}(T-1, T) \underbrace{V_{*}^{+}(T)}_{=0}+v_{T-1} p_{* \dagger}(T-1, T) B \\
& =v_{T-1} p_{* \dagger}(T-1, T) B .
\end{aligned}
$$

3 Now you have $V_{*}^{+}(T-1)$ you can go on to computing $V_{*}^{+}(T-2)$ and so on down to $V_{*}^{+}(0)$.

UiO : Department of Mathematics
 University of Oslo

Exercise:

Write down Thiele's difference equation for the endowment (pure + term) insurance, pension and disability insurance.

UiO 8 Department of Mathematics University of Oslo

David R. Banos

Life Insurance and Finance

Lecture 9: Thiele's difference equation

