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Permitted aids: Approved calculator

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

This exam consists of four problems. The first one is of theoretical
nature, while the three remaining problems are more applied. Make
sure to be precise and rigorous when stating mathematical results and
formulae. Please, write clearly, orderly and avoid scribbling.

Grading: The total score is 10 points. The grading scale is F [0,4), E
[4,5), D [5, 6), C [6, 7), B [7, 8.5), A [8.5,10].

Problem 1 Theory (2 points)

Answer the following theoretical questions in the time setting you prefer:
discrete or continuous.

(a) (0.5p) Define the concepts of present value, retrospective value and
prospective value of a cash flow and explain what they mean.

Solution: We choose to display a solution in continuous time.
Discrete time is fairly similar by, somehow, «exchanging integrals
by sums».

We recall that a cash flow is a stochastic process C with a.s. càdlàg
and bounded variation sample paths. Given a cash flow C, the
present, retrospective and prospective values (at any time t) of the
cash flow C are defined by

V(t, C) =
1

v(t)

∫
[0,∞)

v(s)dC(s),

V−(t, C) =
1

v(t)

∫
[0,t]

v(s)dC(s),

V+(t, C) =
1

v(t)

∫
(t,∞)

v(s)dC(s),

(Continued on page 2.)
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where v(t) is a discount factor (today’s value of one monetary unit to
be exercised at time t) and the integrals are understood in the sense
of Riemann-Stieltjes.

The cash flow C represents the balance of money fluctuations, hence
dC(s) is an instantaneous change of cash. The quantity v(s)dC(s) is
then today’s value of such change of cash. Summing up, we obtain
today’s worthiness of the entire cash flow C, i.e.∫

[0,∞)
v(s)dC(s)

is today’s value of the entire cash flow. By multiplying by 1
v(t) we

simply translate its value to an arbitrary future time t.

The quantities V−(t, C) and V+(t, C) have similar interpretation.
The quantity V−(t, C) is then the t-value of the cash flow, but only
tanking into account what has happened before t, i.e. [0, t] and
V+(t, C) is the t-value of the cash flow, but only tanking into account
what will happen from t, i.e. (t, ∞). Thus, V(t, C) = V−(t, C) +
V+(t, C).

Points: It does not need to be so detailed. Definition of cash
flow is not needed either. Give 0.25 for present, retrospective and
prospective and 0.25 for a meaningful interpretation. Subtract 0.1
for minor mistakes and 0.2 for major mistakes.

(b) (0.5p) Define the concept of policy functions and policy cash flow
and give an interpretation. Note: remember to define and explain all
the elements and notations you use.

Solution:

Policy functions ai(t) model accumulated payments for sojourns in
state i and aij(t) are punctual payments triggered by transitions from
state i to state j.

Let Z be the (continuous time) Markov process with state space Z
modelling the states of the insured. Define IZ

i (t) = I{Z(t)=i} and
NZ

ij (t) = #{s ∈ [0, t] : Z(s−) = i, Z(s) = j} where # denotes the
counting measure. Then the policy cash flow determined by the
policy functions has dynamics given by

dC(s) = ∑
i∈Z

IZ
i (s)dai(s) + ∑

i,j∈Z
j ̸=i

aij(s)dNZ
ij (s).

The instantaneous change in cash dC(s) is due to an instantaneous
change in cash dai(s) as long as the insured is in state i, that is why
we multiply by IZ

i (s), and due to payments aij for transitions from
i to j. Here, dNZ

ij (s) is either 0 or 1 according to whether there is a
transition from i to j or not. Then we sum over all possible states.

(Continued on page 3.)
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Points: Give 0.3 for the formulas and 0.2 for the interpretation (0.1
for interpretation of policy functions and 0.1 for policy cash flow).
Subtract 0.1 for minor mistakes and 0.2 for major mistakes.

(c) (1p) Explain the concept of actuarial reserve in mathematical terms.

Solution:

An actuarial reserve in colloquial terms is how much money the
insurer needs to put aside to meet its contractual obligations. This
is a very general definition. In mathematical terms we have the
loss distribution, which is the distribution of possible payments
the insured may trigger by contract. For instance, at time t, the
remaining payments are given by V+(t, C) where C is the policy cash
flow. Since C is stochastic so is V+(t, C). The quantity V+

i (t, C) =
E[V+(t, C)|Z(t) = i] known as the expected prospective value is a
theoretical possibility, although it is a bad one, since observations
may differ a lot from the expected values of the distribution. A
standard choice according to Solvency II regulation is to reserve the
99.5%-quantile of the loss distribution, i.e. the capital u such that

P[V+(t, C) > u] = 0.005 .

The capital u is known as actuarial reserve.

Points: Give 0.5 for the expected prospective value and 0.5 for the
quantile. Give special consideration to those who mention that
expected values are bad solvency capitals. Subtract 0.1 for minor
mistakes and 0.2 for major mistakes.

Problem 2 Permanent disability (2 points)

Consider the permanent disability model with states {∗, ⋄, †} and
(constant) transition rates µ∗⋄, µ∗†, µ⋄† (µ⋄∗ = 0). Constant transition rates
are not realistic but allow for explicit computations. Hint: You may need
that the solution of the differential equation x′(t) = a(t)x(t) + b(t), x(s) =
x0, s ≥ t ≥ 0 is given by x(t) = e−

∫ s
t a(u)du

(
x0 −

∫ s
t b(u)e

∫ s
u a(v)dvdu

)
.

(a) Find explicit expressions for the transition probabilities p∗∗(t, s),
p⋄⋄(t, s) and p∗⋄(t, s), t < s.

Solution: The probabilities p∗∗ and p⋄⋄ are fairly easy to compute if
one knows the result from the lecture that says that

pii(t, s) = e−∑j ̸=i
∫ s

t µij(u)du,

whenever you cannot return to i if you depart, which is exactly the
case in the permanent disability model (if you leave ∗ or ⋄ then you
cannot return).

(Continued on page 4.)
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Hence,

p∗∗(t, s) = e−(µ∗⋄+µ∗†)(s−t), p⋄⋄(t, s) = e−µ⋄†(s−t), t < s.

Recall Kolmogorov’s backward equation:

d
dt

pij(t, s) = ∑
k∈Z

µik(t)pkj(t, s), pij(s, s) = 1{i=j},

where µii = −µi.

In our case i = ∗ and j = ⋄ then

d
dt

p∗⋄(t, s) = −µ∗∗(t)p∗⋄(t, s)− µ∗⋄(t)p⋄⋄(t, s).

We have that µ∗∗ = − (µ∗⋄ + µ∗†) hence

d
dt

p∗⋄(t, s) = (µ∗⋄ + µ∗†)p∗⋄(t, s)− µ∗⋄p⋄⋄(t, s).

Applying the hint with x(t) = p∗⋄(t, s), a(t) = µ∗⋄ + µ∗†, b(t) =
−µ∗⋄p⋄⋄(t, s) and x0 = 0 we have

p∗⋄(t, s) = µ∗⋄e−(µ∗⋄+µ∗†)(s−t)
∫ s

t
p⋄⋄(u, s)︸ ︷︷ ︸
=e−µ⋄†(s−u)

e(µ∗⋄+µ∗†)(s−u)du.

Merging the exponentials in the integral and integrating we obtain

p∗⋄(t, s) =
µ∗⋄

µ∗⋄ + µ∗† − µ⋄†

[
e−µ⋄†(s−t) − e−(µ∗⋄+µ∗†)(s−t)

]
.

Points: Give 0.25 for writing down any of Kolmogorov’s equation.
Give 0.5 for writing down Kolmogorov equation for the specific case.
Give 0.75 if there is an integral expression of the solution and give 1
if it is solved explicitly. Subtract 0.2 for minor mistakes and 0.5 for
major mistakes.

(b) Consider an insurance policy with (constant) technical interest rate
r = 3%, maturity time T = 10 and age of the insured z = 50 years.
Assume µ∗† = µ⋄† = 0.003 and µ∗⋄ = 0.01. Compute the single
premium of a disability policy paying a yearly disability pension of
D = 200 000 Norwegian kroner.

Solution:

Alternative I (using (a)): The only policy function for this insurance
is given by

a⋄(t) =

{
Dt, t ∈ [0, T],
DT, t ∈ [T, ∞)

.

(Continued on page 5.)
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This function is continuous and a.e. differentiable with a′⋄(t) = D
on (0, T). The expected prospective value, given that the insured is
active at time t, is

V+
∗ (t) = D

1
v(t)

∫ T

t
v(s)p∗⋄(z + t, z + s)ds, t ∈ [0, T],

where v(t) = e−rt denotes the discount factor.

Using (a) and integrating we obtain

V+
∗ (t) =

µ∗⋄
µ∗⋄ + µ∗† − µ⋄†

D

[
1

r + µ⋄†

(
1 − e−(r+µ⋄†)(T−t)

)
− 1

r + µ∗⋄ + µ∗†

(
1 − e−(r+µ∗⋄+µ∗†)(T−t)

) ]
.

Since ∆a⋄(0) = 0 and µ∗⋄
µ∗⋄+µ∗†−µ⋄†

= 1 the single premium at the
beginning of the contract is

π0 =∆a∗(0) + V+
∗ (0)

= D
[

1
r + µ⋄†

(
1 − e−(r+µ⋄†)T

)
− 1

r + µ∗⋄ + µ∗†

(
1 − e−(r+µ∗⋄+µ∗†)T

)]
= 200 000

[ 1
0.03 + 0.003

(
1 − e−(0.03+0.003)·10

)
− 1

0.03 + 0.01 + 0.003

(
1 − e−(0.03+0.01+0.003)·10

) ]
≈ 77 953.43 .

Alternative II (without (a)): If the candidate could not solve
Kolmogorov equation, there is an "independent" way to solve the
problem: Thiele’s equation.

We omit the symbol + in the expected prospective values V+
i to ease

notation. For the three-state model we have that Thiele’s equation is
given by

V′
∗(t) = rV∗(t)− ∑

j ̸=∗
µ∗j

(
Vj(t)− V∗(t)),

V′
⋄(t) = rV⋄(t)− a⋄(t)− ∑

j ̸=⋄
µ⋄j

(
Vj(t)− V⋄(t)),

with V∗(T−) = V⋄(T−) = 0.

Simplifying we arrive to

V′
∗(t) = (r + µ∗⋄ + µ∗†)V∗(t)− µ∗⋄V⋄(t),

V′
⋄(t) = (r + µ⋄†)V⋄(t)− D,

(Continued on page 6.)
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with V∗(T−) = V⋄(T−) = 0.

Now, to find V+
⋄ we use the hint with a(t) = r + µ⋄† and b(t) = −D.

Thus, we obtain

V+
⋄ (t) = D

1
r + µ⋄†

(
1 − e−(r+µ⋄†)(T−t)

)
.

Finally, to find V+
∗ we use the hint with a(t) = r + µ∗⋄ + µ∗† and

b(t) = −µ∗⋄V⋄(t). Hence,

V+
∗ (t) = e−(r+µ∗⋄+µ∗†)(T−t)µ∗⋄

∫ T

t
V+
⋄ (u)e(r+µ∗⋄+µ∗†)(T−u)du.

Since we are interested in the single premium we just need the value
at t = 0, thus

π0 = ∆a∗(0)+V+
∗ (0) = e−(r+µ∗⋄+µ∗†)Tµ∗⋄

∫ T

0
V+
⋄ (u)e(r+µ∗⋄+µ∗†)(T−u)du.

The final expression we obtain by integrating is

V+
∗ (t) =

µ∗⋄D
r + µ⋄†

[
1

r + µ∗⋄ + µ∗†

(
1 − e(r+µ∗⋄+µ∗†)(T−t)

)
− 1

µ∗⋄ + µ∗† + µ⋄†

(
e−(r+µ∗⋄+µ∗†)(T−t) − e−(r+µ⋄†)(T−t)

)
.

Evaluating at t = 0 and inserting the values yields obviously the
same result as in alternative I.

Points: Any method counts equally. Alt I: give 0.5 if there is a final
expression that is not computed. Alt II: give 0.5 if Thiele is stated and
0.75 if it is solved but the candidate does not arrive at the numerical
solution. Subtract 0.2 for minor mistakes and 0.5 for major mistakes.

Problem 3 Solvency capital requirement (4 points)

Consider a life insurance, in continuous time, that pays benefit B in case
of death before expiration of the contract or a benefit E in case of survival
at expiration time. As usual, denote by Z the continuous time Markov
process with state space Z = {∗, †} modelling the states of the insured.
Denote by τ the death time of the insured. Mortality is a deterministic
time-dependent function µ(t) such that limt→∞

∫ t
0 µ(u)du = ∞.

The specifications of the policy are: Expiration date T years from now,
insured is z years old at inception, technical discount factor v(t) stands for
today’s value of one monetary unit to be paid out at time t ≥ 0.

(Continued on page 7.)
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(a) Show that the conditional density function of τ|τ > t is given by

fτ|τ>t(s|t) = µ(z + s)e−
∫ s

t µ(z+u)du, s ≥ t.

and that of τ|τ ≤ t is given by

fτ|τ≤t(s|t) =
µ(z + s)e−

∫ s
0 µ(z+u)du

1 − e−
∫ t

0 µ(z+u)du
, 0 ≤ s ≤ t.

Solution:

As always, Z is the continuous time Markov process modelling the
states Z of the insured. Here, Z = {∗, †}. Since τ has no atoms,
the event {τ > t} is equivalent to {Z(t) = ∗}. The variable τ is the
«age» of the contract, so at time τ the insured is z + τ years old. We
thus have,

P[τ > s|τ > t] = p∗∗(z + t, z + s) = e−
∫ s

t µ(z+u)du, s > t.

The distribution function of τ|τ > t is

Fτ|τ>t(s|t) = 1 − e−
∫ s

t µ(z+u)du

and the density function is obtained by differentiating, that is

fτ|τ>t(s|t) = µ(z + s)e−
∫ s

t µ(z+u)du, s ∈ [t, ∞).

Now for s > t we have P[τ ≤ s|τ ≤ t] = 1 and for s ∈ [0, t] we have,

Fτ|τ≤t(s|t) = P[τ ≤ s|τ ≤ t] =
P[τ ≤ s]
P[τ ≤ t]

.

Differentiating and using the previous information we have

fτ|τ≤t(s|t) =
µ(z + s)e−

∫ s
0 µ(z+u)du

1 − e−
∫ t

0 µ(z+u)du
, s ∈ [0, t].

Points: Give 0.5 for each. Give 0.2 for arguing the connection
between death time and survival probability. Subtract 0.2 for minor
mistakes and 0.5 for major mistakes.

(b) Let C denote the policy cash flow. Prove that for every t ∈ [0, T], the
retrospective value V−(t, C) and the prospective value V+(t, C) of
this policy are given by

V−(t, C) = EI{T}(t)I(T,∞)(τ) + B
v(τ)
v(t)

I[0,t](τ),

V+(t, C) = E
v(T)
v(t)

I(T,∞)(τ)I[0,T)(t) + B
v(τ)
v(t)

I(t,T](τ).

(Continued on page 8.)
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Solution:

The policy cash flow is given by

dC(s) = IZ
∗ (s)da∗(s) + a∗†(s)dNz

∗†(s),

where the policy functions are given by

a∗(s) =

{
E, s ≥ T,
0, s ∈ [0, T],

, a∗†(s) =

{
B, t ∈ [0, T],
0, otherwise.

.

The function a∗ is a.e. constant with jump ∆a∗(T) = E. The random
variables IZ

∗ (s) and NZ
∗†(s) can be expressed as IZ

∗ (s) = I[0,τ)(s) and
NZ
∗†(s) = I[τ,∞)(s).

The retrospective value is the Riemann-Stieltjes integral given by

V−(t, C) =
1

v(t)
E
∫
[0,t]

v(s)dC(s)

= E
1

v(t)

∫
[0,∞)

v(s)I[0,t](s)I[0,τ)(s)dI[T,∞)(s)

+
1

v(t)

∫
[0,∞)

v(s)BI[0,T](s)I[0,t](s)dI[τ,∞)(s).

The jump of the second integral occurs at time τ. Therefore,

V−(t, C) = E
v(T)
v(t)

I[0,t](T)I[0,τ)(T) + B
v(τ)
v(t)

I[0,T](τ)I[0,t](τ).

Now, since t ∈ [0, T] then I[0,t](T) = 1 if, and only if t = T among

t ∈ [0, T] and in such case E v(T)
v(t) = E. Moreover [0, t] ⊆ [0, T] for

t ∈ [0, T] we have

V−(t, C) = EI{T}(t)I[T,∞)(τ) + B
v(τ)
v(t)

I[0,t](τ).

For the prospective value we do the same calculations but with
integrand I(t,∞)(s) instead.

V+(t, C) =
1

v(t)
E
∫
[0,t]

v(s)dC(s)

= E
1

v(t)

∫
[0,∞)

v(s)I(t,∞)(s)I[0,τ)(s)dI[T,∞)(s)

+
1

v(t)

∫
[0,∞)

v(s)BI[0,T](s)I(t,∞)(s)dI[τ,∞)(s)

= E
v(T)
v(t)

I(t,∞)(T)I[0,τ)(T) + B
v(τ)
v(t)

I[0,T](τ)I(t,∞)(τ)

(Continued on page 9.)
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and the result follows by simplification of indicators.

The retrospective value tells us the (stochastic) t-value of the passed
cash, depending on whether death has happened before of after t
and so on. Similarly, the prospective value tells us the (stochastic) t-
value of the future possible payments depending on the future states.

Points: Give 0.5 for each one. Give 0.2 if the candidate writes down
both theoretical definitions of values. Give 0.5 if the candidate writes
down the policy functions, cash flow and definitions of values. Give
0.2 for an interpretation. Subtract 0.2 for minor mistakes and 0.5 for
major mistakes.

Assume, in the rest of the exercise, that mortality is a constant
µ > 0. This is not a realistic assumption but it allows for explicit
computations. Moreover, let r be a constant technical interest rate,
hence from now on v(t) = e−rt.

(c) Show that the expected retrospective values of this insurance are
given by

V−
∗ (t, C) = EI{T}(t), t ∈ [0, T],

and

V−
† (t, C) = ert Bµ

r + µ

1 − e−(r+µ)t

1 − e−µt , t ∈ [0, T].

and give an interpretation of these quantities.

Solution: For the state i = ∗ we have that the event {Z(t) = ∗} is
equivalent to {τ > t} an hence the second term of V−(t, C) drops
out. Thus, we simply use the distribution of τ|τ > t to compute the
conditional expectation.

V−
∗ (t, V) = E[V−(t, C)|Z(t) = ∗]

= EI{T}(t)E[I(T,∞)(τ)|Z(t) = ∗]I{T}(t)

= EI{T}(t)P[τ > T|τ > t]

= EI{T}(t)e
−
∫ T

t µ(z+u)du

= EI{T}(t).

The above value is the t-value of what we should expect to have paid
out to the insured at time t if the insured is alive at time t. But in such
case, there will not be any death benefit and the survival benefit will
only be paid at time t = T, hence V−

∗ (t, C) = 0 for all t ∈ [0, T).
Finally and obviously V−

∗ (T, C) = E.

Further, for i = † we have {Z(t) = †} is equivalent to {τ ≤ t} and
thus the first term in V−(t, C) drops since survival benefit will not be
paid. Then,

V−
† (t, C) = BE

[
v(τ)
v(t)

I[0,t](τ)
∣∣∣τ ≤ t

]
.

(Continued on page 10.)
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We need to use the conditional distribution of τ|τ ≤ t from (a) to
compute the expectation. That is,

V−
† (t, C) =

B
v(t)

∫ t

0
v(s) fτ|τ≤t(s|t)ds =

B
v(t)

∫ t

0
v(s)

µe−µs

1 − e−µt ds,

and the result follows by computing the (almost immediate) integral.

Points: Give 0.5 for each and 0.2 for only an interpretation. Give 0.3
for each if there is a written expression that is not solved completely.
Subtract 0.2 for minor and 0.5 for serious mistakes.

(d) The solvency capital requirement at the beginning of the contract is
defined as the value uα for which

P[V+(0, C) > uα] = α,

for a suitably small α, usually α = 0.005.

Find a formula for the solvency capital requirement uα that the
insurer needs to keep aside to stay solvent in terms of all the
parameters. You can assume that Ee−rT < Be−rT < uα < B if you
want, since a different assumption is not so meaningful in real life.

Solution:

Recall from (b) that

V+(0, C) = Ev(T)I(T,∞)(τ) + Bv(τ)I(0,T](τ).

We will use the law of total probability, i.e. P[A|B] = P[A|B]P[B] +
P[A|Bc]P[Bc] for any events A, B such that P[B] ̸= 0.

Thus,

P[V+(0, C) > u] =P[V+(0, C) > u|τ > T]P[τ > T]

+ P[V+(0, C) > u|τ ≤ T]P[τ ≤ T].

Hence, if τ > T then

V+(0, C) = Ev(T) on {τ > T},

and if τ ≤ T then

V+(0, C) = Bv(τ) on {τ ≤ T}.

Therefore,

P[V+(0, C) > u] =P[Ev(T) > u|τ > T]P[τ > T]
+ P[Bv(τ) > u|τ ≤ T]P[τ ≤ T]

= I{Ev(T)>u}P[τ > T]

+ P

[
τ < −1

r
log

u
B

∣∣∣τ ≤ T
]

P[τ ≤ T]

(Continued on page 11.)



Exam in STK4500/9500, 10th June 2024 Page 11

Now, Ev(T) < u so the first probability is zero. We also have that
0 < −1

r log u
B < T. Indeed, the latter is true if, and only if

0 > log
u
B
> −rT.

Taking exponentials
1 >

u
B
> e−rT,

if, and only if
Be−rT < u < B

which is assumed. Hence,

P

[
τ < −1

r
log

u
B

∣∣∣τ ≤ T
]
= Fτ|τ≤T

(
−1

r
log

u
B

∣∣∣T) =
P
[
τ ≤ −1

r log u
B

]
P[τ ≤ T]

.

Altogether,

P[V+(0, C) > u] =1 − e
1
r log u

B ·µ = 1 −
(u

B

)µ/r
.

Hence, we need to choose uα such that

uα ≥ (1 − α)r/µB.

We see that if we choose u ≥ B (the highest benefit that at worst case
is paid out right after inception, then we are indeed solvent with
probability one.

Points: Give 0.2 for using law of total probability and 0.5 for
identifying V+(0, C) on each event. Subtract 0.2 for minor and 0.5
for serious mistakes.

Problem 4 Guaranteed inheritance (2 points)

A person wishes to invest C0 monetary units into a mutual fund managed
by an insurance company. The investment portfolio consists of a risk-free
asset whose value at time t is given by B(t) (a savings account) and a risky
fund whose value at time t is given by S(t). The company will allocate, at
each time s, the proportion δ(s) ∈ [0, 1] into the savings account and the
rest into the mutual fund. The contract goes on forever and in case of the
customer’s demise, the company will automatically pay out the value of
the portfolio at the death time to the family.

Let v(t) denote the discount factor corresponding to the savings
account with (constant) short rate r, i.e. you can assume that B(t) = 1

v(t) .

(Continued on page 12.)
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Moreover, let p(z + t, z + s) and µ(z + s) denote, respectively, the survival
probability and mortality of the customer of age z at inception.

Finally, assume that the fund S is modelled under the Black-Scholes
model with constant rate r (same as v(t)) and constant volatility σ.

(a) Compute the expected prospective value of this insurance.

What is the single premium of this policy? Could you elaborate?

Solution:

The investment plan is to allocate δ(s) into B and the rest in to S out
of the C0 monetary units. The value of the investment will be paid
out if a transition from ∗ to † occurs. Thus, the policy function of this
unit-linked insurance is given by

h∗†(s, S(s)) = C0δ(s)B(s) +
C0

S(0)
(1 − δ(s))S(s), s ≥ 0.

The expected prospective value of this insurance is given by

V+
∗ (t, S(t)) =

1
v(t)

∫ ∞

t
v(s)p(z+ t, z+ s)µ(z+ s)EQ[h∗†(s, S(s))|Ft]ds,

where Q is an equivalent martingale measure. Because of the latter
fact, we have that v(t)S(t) is a Q-martingale. Therefore,

v(s)EQ[h∗†(s, S(s))|Ft] = v(s)C0δ(s)B(s) +
C0

S(0)
(1 − δ(s))EQ[v(s)S(s)|Ft]

= C0δ(s) +
C0

S(0)
(1 − δ(s))v(t)S(t).

Altogether, we have

V+
∗ (t, S(t)) =

∫ ∞

t

(
C0

v(t)
δ(s) +

C0

S(0)
(1 − δ(s))S(t)p(z + t, z + s)µ(z + s)ds,

Noting that 1
v(t) = B(t) and collecting terms that multiply δ(s) we

get

V+
∗ (t, S(t)) =C0

(
B(t)− S(t)

S(0)

) ∫ ∞

t
δ(s)p(z + t, z + s)µ(z + s)ds

+
C0

S(0)
S(t)

∫ ∞

t
µ(z + s)p(z + t, z + t)ds.

Finally, since∫ ∞

t
µ(z + s)p(z + t, z + s)ds = −p(z + t, z + s)

∣∣∣s=∞

s=t
= 1,

(Continued on page 13.)
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we have

V+
∗ (t, S(t)) =C0

(
B(t)− S(t)

S(0)

) ∫ ∞

t
δ(s)p(z + t, z + s)µ(z + s)ds

+
C0

S(0)
S(t).

The initial premium is found by inserting t = 0 and thus,

π0 = V+
∗ (0, S(0)) = C0.

This is obvious since this is the initial capital replicating the final
investment. Since the benefit the policy has no expiration date
and there is no guarantee, the insured simply collects the value of
the portfolio at time of death, bearing thus all risk. The insurance
company here is bearing no risk, just managing the portfolio. In real
life, the insured would need to pay a fee for management costs.

Points: Give 0.5 if the candidate writes down the general formula.
Give 0.2 if he candidate identifies the need to price under Q. Give
0.2 for the explanation. Subtract 0.2 for minor and 0.5 for serious
mistakes.

(b) Assume now, in addition, that the company offers the insured a
guaranteed amount of G monetary units, meaning that, no matter
what, the family will receive the guaranteed amount G as inheritance
if the investments did not turn out to be at least as good as G.
Compute the single premium again (you can leave it in terms of
known formulas) and elaborate on the difference from item (a). Hint:
manipulate the benefit in order to turn it into a call option with
varying strike price plus some remaining.

Solution:

The death benefit changes from

h∗†(s, S(s)) = C0δ(s)B(s) +
C0

S(0)
(1 − δ(s))S(s), s ≥ 0,

to

h∗†(s, S(s)) = max
{

C0δ(s)B(s) +
C0

S(0)
(1 − δ(s))S(s), G

}
, s ≥ 0.

It is a general fact that max{A, G} = (A − G)+ + G. Hence,

h∗†(s, S(s)) =
(

C0δ(s)B(s) +
C0

S(0)
(1 − δ(s))S(s)− G

)
+

+ G.

Then,

h∗†(s, S(s)) =
C0

S(0)
(1 − δ(s)) (S(s)− K(s))+ + G.

(Continued on page 14.)
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K(s) ≜
G − C0δ(s)B(s)

C0
S(0)(1 − δ(s))

,

provided C0
S(0)(1 − δ(s)) > 0. If not, the benefit is deterministic and

we do not need to do all this reasoning.

We denote by BS(t, s, S(t), K(s)) the Black-Scholes price of a call
option at time t with maturity s and strike price K(s). That is

v(s)
v(t)

EQ

[
(S(s)− K(s))+

∣∣∣Ft

]
= BS(t, s, S(t), K(s)).

Then, the price for this polity at time t is

V+
∗ (t, S(t)) =

∫ ∞

t

v(s)
v(t)

EQ [h∗†(s, S(s))|Ft]p(t, s)µ(s)ds

=
∫ ∞

t

C0

S(0)
(1 − δ(s))

(
BS(t, s, S(t), K(s)) +

v(s)
v(t)

G
)

p(t, s)µ(s)ds

The single premium is

π0 = V+
∗ (0, S(0)) =

∫ ∞

0

C0

S(0)
(1 − δ(s)) (BS(0, s, S(0), K(s)) + v(s)G) p(0, s)µ(s)ds

which is different from C0. Here, the insurer is bearing some risk,
namely the risk of having to pay a guarantee that is above the market
price of the investment.

Points: Give 0.5 if the candidate writes down the general formula.
Give 0.2 if he candidate identifies the need to price under Q and the
relation to the Black-Scholes formula. Give 0.2 for the interpretation.
Subtract 0.2 for minor and 0.5 for serious mistakes.

GOOD LUCK!

(Continued on page 15.)


