

UiO : Department of Mathematics University of Oslo

Mathematical Finance

STK4500 Life insurance and finance

David R. Banos

UiO : Department of Mathematics
University of Oslo

1 Preliminaries

2 Market model

3 Trading strategies and value of the portfolio

4 Discounting

5 Fundamental theorems of asset pricing

6 Deriving a PDE for the hedging portfolio

UiO : Department of Mathematics

University of Oslo

Preliminaries

```
UiO : Department of Mathematics University of Oslo
```

In the previous chapter we studied how to construct processes of the form "integral of a process w.r.t. another process". That is

$$
\int_{0}^{t} Y_{s} d X_{s}
$$

where X is a semimartingale. Semimartingales are a (rather big) class of processes that serve as "good integrators" in stochastic analysis.
Recall: a semimartingale is a process X that can be split into

$$
X_{t}=X_{0}+A_{t}+M_{t}
$$

where A is a càdlàg adapted process of bounded variation and M is a local-martingale.

```
UiO: Department of Mathematics
    University of Oslo
```

In the previous chapter we studied how to construct processes of the form "integral of a process w.r.t. another process". That is

$$
\int_{0}^{t} Y_{s} d X_{s}
$$

where X is a semimartingale. Semimartingales are a (rather big) class of processes that serve as "good integrators" in stochastic analysis.
Recall: a semimartingale is a process X that can be split into

$$
X_{t}=X_{0}+A_{t}+M_{t}
$$

where A is a càdlàg adapted process of bounded variation and M is a local-martingale.
We will focus on the case where $X=B$ being B a Brownian motion (which is in fact a martingale).

Brownian motion

Definition (Brownian motion)

Let $B=\left\{B_{t}, t \geq 0\right\}$ be a stochastic process and \mathcal{F} its natural filtration. Then B is a Brownian motion if it satisfies the following assumptions
$1 B_{0}=0, \mathbb{P}$-a.s.
$2 B$ has independent increments, that is given $0 \leq t_{0} \leq \cdots \leq t_{n}, n \geq 1, B_{t_{i}}-B_{t_{i-1}}$ is independent of $\mathcal{F}_{t_{i-1}}$.
$3 B$ has stationary increments, that is $B_{t_{i}}-B_{t_{i-1}}$ has the same distribution as $B_{t_{i}-t_{i-1}}$ and they are normally distributed with mean zero and variance $t_{i}-t_{i-1}$.

As a consequence of Kolmogorov's continuity criterion one has that the sample paths $t \mapsto B_{t}$ are \mathbb{P}-a.s. continuous.

```
UiO: Department of Mathematics
    University of Oslo
```

The following important result characterizes Brownian motion.

Theorem (Lévy's characterization theorem)

Let $B=\left\{B_{t}, t \in[0, T]\right\}$ be a stochastic process on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{F} its natural filtration. Then the following are equivalent:
$1 B$ is a Brownian motion.
$2 B$ is an $(\mathcal{F}, \mathbb{P})$-martingale with $B_{0}=0 \mathbb{P}$-a.s. and quadratic variation $[B, B]_{t}=t, \mathbb{P}-$ a.s.

```
UiO: Department of Mathematics
    University of Oslo
```

The following important result characterizes Brownian motion.

Theorem (Lévy's characterization theorem)

Let $B=\left\{B_{t}, t \in[0, T]\right\}$ be a stochastic process on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{F} its natural filtration. Then the following are equivalent:
$1 B$ is a Brownian motion.
$2 B$ is an $(\mathcal{F}, \mathbb{P})$-martingale with $B_{0}=0 \mathbb{P}$-a.s. and quadratic variation $[B, B]_{t}=t, \mathbb{P}$-a.s.

In other words... Brownian motion is the only martingale (starting at 0) with quadratic variation t.

```
UiO: Department of Mathematics
    University of Oslo
```


Theorem (Itô's formula w.r.t. Brownian motion)

$$
\begin{aligned}
& \text { Let } f \in C^{1,2}([0, T] \times \mathbb{R}) \text { and } B \text { a Brownian motion. Then } \\
& \qquad \begin{aligned}
f\left(t, B_{t}\right)=f\left(0, B_{0}\right) & +\int_{0}^{t}\left(\frac{\partial}{\partial s} f\left(s, B_{s}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} f\left(s, B_{s}\right)\right) d s \\
& +\int_{0}^{t} \frac{\partial}{\partial x} f\left(s, B_{s}\right) d B_{s} .
\end{aligned}
\end{aligned}
$$

Proof.

This is a consequence the general Itô formula from the previous chapter by taking $X=B$ and using that $\Delta B_{t}=0$ and $[B, B]_{t}=t$.

UiO : Department of Mathematics University of Oslo

We now know how to construct integrals with ds (Lebesgue) and with $d B_{s}$ (Itô). So, given two adapted processes u and v such that $\int_{0}^{t} \mathbb{E}\left[\left|u_{s}\right|\right] d s<\infty$ and $\int_{0}^{t} \mathbb{E}\left[\left|v_{s}\right|^{2}\right] d s<\infty$ we can look at processes of the form

$$
X_{t}=X_{0}+\int_{0}^{t} u_{s} d s+\int_{0}^{t} v_{s} d B_{s}
$$

Such processes are known as Itô processes and they are obviously semimartingales.

UiO : Department of Mathematics
 University of Oslo

We now know how to construct integrals with ds (Lebesgue) and with $d B_{s}$ (Itô). So, given two adapted processes u and v such that $\int_{0}^{t} \mathbb{E}\left[\left|u_{s}\right|\right] d s<\infty$ and $\int_{0}^{t} \mathbb{E}\left[\left|v_{s}\right|^{2}\right] d s<\infty$ we can look at processes of the form

$$
X_{t}=X_{0}+\int_{0}^{t} u_{s} d s+\int_{0}^{t} v_{s} d B_{s}
$$

Such processes are known as Itô processes and they are obviously semimartingales.
If we choose u and v as two deterministic functions on $b, \sigma:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ and define $u_{s}=b\left(s, X_{s}\right)$ and $v_{s}=\sigma\left(s, X_{s}\right)$ then we are looking at processes like

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s} \tag{1}
\end{equation*}
$$

UiO : Department of Mathematics
 University of Oslo

The process

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s} \tag{2}
\end{equation*}
$$

written in differential form would be:

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}, \quad t \in[0, T]
$$

The above mathematical expression is known as a stochastic differential equation. It describes the dynamics of X (in differential form) and it has no other meaning than (2)

```
UiO: Department of Mathematics
    University of Oslo
```

The process

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s} \tag{2}
\end{equation*}
$$

written in differential form would be:

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}, \quad t \in[0, T]
$$

The above mathematical expression is known as a stochastic differential equation. It describes the dynamics of X (in differential form) and it has no other meaning than (2)
The part with $d t$ is known as the drift part (trend) and the part with $d B_{t}$ is known as the diffusion part (volatility).

UiO : Department of Mathematics
 University of Oslo

Example (Brownian motion with drift)

If $b(t, x)=\mu$ and $\sigma(t, x)=\sigma>0$ then $X_{t}=X_{0}+\mu t+\sigma B_{t}, \quad t \in[0, T]$. This is one of the simplest models for modelling market movements. It is not very suitable since X can be negative. We have $\mathbb{E}\left[X_{t}\right]=$ $\mu t, \operatorname{Var}\left[X_{t}\right]=\sigma^{2} t$.

Brownian motion with drift

UiO : Department of Mathematics
 University of Oslo

Example (Geometric Brownian motion)

If $b(t, x)=\mu x$ and $\sigma(t, x)=\sigma x, \sigma>0$, then

$$
\begin{equation*}
d X_{t}=\mu X_{t} d t+\sigma X_{t} d B_{t}, \quad t \in[0, T] \tag{3}
\end{equation*}
$$

To solve the above SDE we start by "guessing" that the solution is of the form

$$
X_{t}=X_{0} \exp \left(\int_{0}^{t} \alpha(s) d s+\int_{0}^{t} \beta(s) d B_{s}\right), \quad t \in[0, T]
$$

where α and β are adapted processes such that the integrals are welldefined.

```
UiO: Department of Mathematics
University of Oslo
```


Example (Geometric Brownian motion)

Let $Y_{t} \triangleq \int_{0}^{t} \alpha(s) d s+\int_{0}^{t} \beta(s) d B_{s}$ then

$$
X_{t}=X_{0} e^{Y_{t}}
$$

Applying Itô's formula for semimartingales (in this case Y) we have

$$
\begin{aligned}
d X_{t} & =X_{t} d Y_{t}+\frac{1}{2} X_{t} d[Y, Y]_{t} \\
& =X_{t}\left(\alpha(t) d t+\beta(t) d B_{t}+\frac{1}{2} \beta^{2}(t) d t\right) \\
& =X_{t}\left(\alpha(t)+\frac{1}{2} \beta^{2}(t)\right) d t+X_{t} \beta(t) d B_{t}
\end{aligned}
$$

Example (Geometric Brownian motion)

Comparing with (3) we have

$$
\beta(t)=\sigma, \quad \alpha(t)+\frac{1}{2} \beta^{2}(t)=\mu
$$

which gives $\alpha(t)=\mu-\frac{1}{2} \sigma^{2}$. Hence, the solution to (3) is given by

$$
X_{t}=X_{0} \exp \left(\left(\mu-\frac{1}{2}\right) t+\sigma B_{t}\right), \quad t \in[0, T]
$$

The above process has been extensively used and, used as market price process, gives rise to the Black-Scholes formula when pricing European options. As you can see, X_{t} is log-normally distributed with

$$
\mathbb{E}\left[X_{t}\right]=X_{0} e^{\mu t}, \quad \operatorname{Var}\left[X_{t}\right]=X_{0}^{2}\left(e^{\sigma^{2} t}-1\right) e^{2 \mu t}
$$

UiO : Department of Mathematics

University of Oslo

Figure: A sample path of a Geometric Brownian motion with $X_{0}=1$, $\mu=0.03, \sigma=0.001$.

```
UiO : Department of Mathematics
University of Oslo
```


Example (Ornstein-Uhlenbeck process)

If $b(t, x)=a(b-x)$ and $\sigma(t, x)=\sigma>0$ then

$$
\begin{equation*}
d X_{t}=a\left(b-X_{t}\right) d t+\sigma d B_{t}, \quad t \in[0, T] \tag{4}
\end{equation*}
$$

As before, we try to guess how the solution may look like. Apply Itô's formula to $Y_{t}=e^{a t} X_{t}$, by the product rule we have

$$
\begin{aligned}
d Y_{t} & =d\left[e^{a t} X_{t}\right]=d\left[e^{a t}\right] X_{t}+e^{a t} d X_{t} \\
& =a e^{a t} X_{t}+e^{a t}\left[a\left(b-X_{t}\right) d t+\sigma d B_{t}\right] \\
& =e^{a t}\left[\left(a X_{t}+a b-a X_{t}\right) d t+\sigma d B_{t}\right] \\
& =e^{a t} a b d t+e^{a t} \sigma d B_{t}
\end{aligned}
$$

```
UiO: Department of Mathematics
    University of Oslo
```


Example (Ornstein-Uhlenbeck process)

Hence, integrating both sides

$$
e^{a t} X_{t}-X_{0}=a b \int_{0}^{t} e^{a s} d s+\sigma \int_{0}^{t} e^{a s} d B_{s}
$$

The finite variation part can be computes explicitly, then it follows that

$$
X_{t}=X_{0} e^{-a t}+b\left(1-e^{-a t}\right)+\sigma \int_{0}^{t} e^{-a(t-s)} d B_{s}, \quad t \text { in }[0, T]
$$

It is readily seen that the above process is normally distributed with

$$
\mathbb{E}\left[X_{t}\right]=X_{0} e^{-a t}+b\left(1-e^{-a t}\right), \quad \operatorname{Var}\left[X_{t}\right]=\frac{\sigma^{2}}{2 a}\left(1-e^{-2 a t}\right)
$$

```
UiO: Department of Mathematics
    University of Oslo
```


Example (Ornstein-Uhlenbeck process)

The above process, when used for interest rate modelling, is known under the name Vasicek.

Figure: A sample path of an Ornstein-Uhlenbeck process with $X_{0}=0.03$, $a=0.1, b=0.04, \sigma=0.001$.

UiO : Department of Mathematics

University of Oslo

Market model

In this section we assume that we have a rather simple market consisting of a risky stock or fund whose price at time t is given by S_{t}, and a riskless fixed-income asset, e.g. a back account given by B. The dynamics of B are

$$
\begin{equation*}
\frac{d B_{t}}{B_{t}}=r_{t} d t, \quad B_{0}=1, \quad t \in[0, T] \tag{5}
\end{equation*}
$$

where r is a deterministic interest rate curve, and S has (semimartingale) dynamics described by

$$
\begin{equation*}
\frac{d S_{t}}{S_{t}}=\mu\left(t, S_{t}\right) d t+\sigma\left(t, S_{t}\right) d W_{t}, \quad S_{0}>0, \quad t \in[0, T] \tag{6}
\end{equation*}
$$

where μ and σ are suitable deterministic functions in such a way that the above SDE is well-posed and a solution exists.

UiO : Department of Mathematics University of Oslo

The process B is related to v from previous sections and it serves as discount factor. Actually, it is easy to see that

$$
B_{t}=\exp \left(\int_{0}^{t} r_{s} d s\right)=\frac{1}{v(t)}, \quad t \in[0, T]
$$

Trading strategies and value of the portfolio

```
UiO : Department of Mathematics
University of Oslo
```

Let $\eta^{i}=\left\{\eta_{t}^{i}, t \in[0, T]\right\}, i=0,1$ be two stochastic processes in $\left(\Omega, \mathcal{F}_{T}, \mathbb{P}\right)$ and denote $\eta=\left(\eta^{0}, \eta^{1}\right)$. Here, η_{t}^{0} denotes the units invested in money by time t and η_{t}^{1} the units invested in the stock S by time t.

Definition (Trading strategy)

The couple η is said to be a trading strategy if it is \mathcal{F}-adapted and

$$
\begin{aligned}
& \mathbb{E}\left[\int_{0}^{T}\left|\eta_{t}^{0} r_{t} B_{t}\right| d t\right]<\infty \\
& \mathbb{E}\left[\int_{0}^{T}\left|\eta_{t}^{1} \mu\left(t, S_{t}\right) S_{t}\right| d t\right]<\infty \\
& \mathbb{E}\left[\int_{0}^{T}\left|\eta_{t}^{1} \sigma\left(t, S_{t}\right) S_{t}\right|^{2} d t\right]<\infty
\end{aligned}
$$

```
UiO: Department of Mathematics
    University of Oslo
```

Following a strategy η will result in some wealth described by the value or wealth process.

Definition (Value of the portfolio)

The value of a portfolio with strategy η is given by

$$
V_{t}^{\eta}=\eta_{t}^{0} B_{t}+\eta_{t}^{1} S_{t}, \quad t \in[0, T] .
$$

```
UiO: Department of Mathematics
    University of Oslo
```

Following a strategy η will result in some wealth described by the value or wealth process.

Definition (Value of the portfolio)

The value of a portfolio with strategy η is given by

$$
V_{t}^{\eta}=\eta_{t}^{0} B_{t}+\eta_{t}^{1} S_{t}, \quad t \in[0, T]
$$

Definition (Self-financing strategy)

We say that η is a self-financing strategy if

$$
\begin{equation*}
d V_{t}^{\eta}=\eta_{t}^{0} d B_{t}+\eta_{t}^{1} d S_{t}, \quad t \in[0, T] \tag{7}
\end{equation*}
$$

meaning that changes in the value of V are caused by gains from the trade, that is changes in the values of the assets.

UiO : Department of Mathematics University of Oslo

At this point, having a model for B and S, we can easily express the (semimartingale) dynamics of V using (6) and (5). Indeed, V satisfies the following SDE

$$
d V_{t}^{\eta}=\left(\eta_{t}^{0} r_{t} B_{t}+\eta_{t}^{1} \mu\left(t, S_{t}\right) S_{t}\right) d t+\eta_{t}^{1} \sigma\left(t, S_{t}\right) S_{t} d W_{t}
$$

UiO : Department of Mathematics
 University of Oslo

At this point, having a model for B and S, we can easily express the (semimartingale) dynamics of V using (6) and (5). Indeed, V satisfies the following SDE

$$
d V_{t}^{\eta}=\left(\eta_{t}^{0} r_{t} B_{t}+\eta_{t}^{1} \mu\left(t, S_{t}\right) S_{t}\right) d t+\eta_{t}^{1} \sigma\left(t, S_{t}\right) S_{t} d W_{t}
$$

Example

$$
\begin{gathered}
\frac{d S_{t}}{S_{t}}=\mu d t+\sigma d W_{t}, B_{t}=e^{r t}, \eta_{t}^{0}=0 \text { and } \eta_{t}^{1}=1 . \text { Then } \\
V_{t}^{\eta}=V_{0}^{\eta}+\int_{0}^{t} \eta_{s}^{1} d S_{s}=S_{t} .
\end{gathered}
$$

Or if $\eta_{t}^{0}=-0.5$ and $\eta_{t}^{1}=2$ then $V_{t}^{\eta}=V_{0}^{\eta}-0.5 B_{t}+2 S_{t}$.

UiO : Department of Mathematics
 University of Oslo

Example

Take $r=0.03, \mu=0.05, \sigma=0.1, S_{0}=100 €, V_{0}^{\eta}=50 €, \eta_{t}^{0}=0$ and $\eta_{t}^{1}=\mathbb{I}\left\{S_{t}<50\right\}$.

Figure: A market outcome with the corresponding value of the portfolio.

UiO : Department of Mathematics
University of Oslo

Example

$S_{0}=40$ and $\eta_{t}^{1}=\mathbb{I}\left\{50<S_{t}<70\right\}$. We buy above 50 and sell at 70.

Figure: A market outcome with the corresponding value of the portfolio.

UiO : Department of Mathematics

University of Oslo

Discounting

UiO : Department of Mathematics
 University of Oslo

Discounting

is the relative value of an asset compared to another. Since $B_{t}=e^{r t}$ is a risk-less asset, it makes sense to discount w.r.t. it. Since B is \mathbb{P}-a.s. strictly positive we can define the discounted price process as

$$
\widetilde{S}_{t}=\frac{S_{t}}{B_{t}}, \quad t \in[0, T]
$$

Obviously $\widetilde{B}_{t}=1$. Finally, the discounted value of the portfolio associated to a strategy η is given by

$$
\widetilde{V}_{t}^{\eta}=\frac{V_{t}^{\eta}}{B_{t}}, \quad t \in[0, T]
$$

Fundamental theorems of asset pricing

```
UiO : Department of Mathematics
University of Oslo
```


Definition (Arbitrage opportunity)

An arbitrage opportunity is a self-financing strategy η with

$$
V_{0}^{\eta}=0, \quad V_{T}^{\eta} \geq 0, \quad \mathbb{P}\left[V_{T}^{\eta}>0\right]>0 .
$$

Definition (Arbitrage opportunity)

An arbitrage opportunity is a self-financing strategy η with

$$
V_{0}^{\eta}=0, \quad V_{T}^{\eta} \geq 0, \quad \mathbb{P}\left[V_{T}^{\eta}>0\right]>0 .
$$

Remark

The above notion of arbitrage is rather narrow. There is a broader notion known with the name no free lunch with vanishing risk (NFLVR), the mathematical formulation of which is rather technical. In easier terms, a free lunch with vanishing risk is when a sequence of self-financing portfolios which converge to an arbitrage strategy and allows the approximation of a self-financing portfolio (the free lunch and with no risk). NFLVR is the no-arbitrage argument against that possibility.

```
UiO: Department of Mathematics
    University of Oslo
```

Absence of arbitrage (in the broader sense of NFLVR) can be rephrased in purely mathematical terms. The corresponding theorem interconnects the absence of arbitrage with the concept of martingale.

Theorem (First Fundamental Theorem of Asset Pricing)

The following statements are equivalent:
(i) There are no arbitrage opportunities.
(ii) There exists an equivalent martingale measure (EMM), i.e. some probability measure $\mathbb{Q} \sim \mathbb{P}$ such that the discounted price process S is a $(\mathbb{Q}, \mathcal{F})$-martingale.

```
UiO: Department of Mathematics
    University of Oslo
```

Absence of arbitrage (in the broader sense of NFLVR) can be rephrased in purely mathematical terms. The corresponding theorem interconnects the absence of arbitrage with the concept of martingale.

Theorem (First Fundamental Theorem of Asset Pricing)

The following statements are equivalent:
(i) There are no arbitrage opportunities.
(ii) There exists an equivalent martingale measure (EMM), i.e. some probability measure $\mathbb{Q} \sim \mathbb{P}$ such that the discounted price process S is a $(\mathbb{Q}, \mathcal{F})$-martingale.

We will price claims using the above fundamental theorem. For that we will need to find such EMM \mathbb{Q} and therefore the following important result.

```
UiO: Department of Mathematics
    University of Oslo
```


Theorem (Cameron-Martin-Girsanov theorem)

Let $W=\left\{W_{t}, t \in[0, T]\right\}$ be a Wiener process on $\left(\Omega, \mathcal{F}_{T}, \mathbb{P}\right)$. Let $X=\left\{X_{t}, t \in[0, T]\right\}$ be an \mathcal{F}-adapted process with $X_{0}=0$.
Define the Doléans-Dade exponential $\mathcal{E}(X)$ of X with respect to W,

$$
\mathcal{E}(X)_{t}=\exp \left(X_{t}-\frac{1}{2}[X]_{t}\right), \quad t \in[0, T]
$$

where $[X]$ is the quadratic variation of X. If $\mathcal{E}(X)$ is a strictly positive martingale, a probability measure \mathbb{Q} can be defined on $\left(\Omega, \mathcal{F}_{T}\right)$ given by the Radon-Nikodym derivative

$$
\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathcal{F}_{t}}=\mathcal{E}(X)_{t}, \quad t \in[0, T] .
$$

```
UiO: Department of Mathematics
    University of Oslo
```


Theorem (Cameron-Martin-Girsanov theorem)

Then for each $t \in[0, T]$ the measure \mathbb{Q} restricted to \mathcal{F}_{t} is equivalent to the measure \mathbb{P} restricted to \mathcal{F}_{t}. Furthermore, if Y is a $(\mathbb{P}, \mathcal{F})$-local martingale, then the process

$$
\widetilde{Y}_{t} \triangleq Y_{t}-[Y, X]_{t}, \quad t \in[0, T]
$$

is a $(\mathbb{Q}, \mathcal{F})$-local martingale.

Remark

Girsanov's theorem is important in the general theory of stochastic processes since it enables the key result that if \mathbb{Q} is an absolutely continuous measure with respect to \mathbb{P} then every \mathbb{P}-semimartingale is a \mathbb{Q}-semimartingale.

UiO : Department of Mathematics
 University of Oslo

Corollary

If X in the previous theorem is given by $X_{t}=\int_{0}^{t} u_{s} d W_{s}, t \in[0, T]$, then $[X, W]_{t}=\int_{0}^{t} u_{s} d s, t \in[0, T]$, and we have that

$$
\mathcal{E}(X)_{t}=\exp \left(\int_{0}^{t} u_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} u_{s}^{2} d s\right), \quad t \in[0, T]
$$

and

$$
\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathcal{F}_{t}}=\mathcal{E}(X)_{t}, \quad t \in[0, T] .
$$

Furthermore, if W is a $(\mathbb{P}, \mathcal{F})$-Brownian motion, then the process

$$
\widetilde{W}_{t} \triangleq W_{t}-[X, W]_{t}=W_{t}-\int_{0}^{t} u_{s} d s, \quad t \in[0, T]
$$

is a $(\mathbb{Q}, \mathcal{F})$-Brownian motion.

```
UiO: Department of Mathematics
    University of Oslo
```


Proof.

We have $\widetilde{W}_{0}=W_{0}=0$. By Girsanov theorem it is a $(\mathbb{Q}, \mathcal{F})$-local martingale and its quadratic variation is

$$
[\widetilde{W}, \widetilde{W}]_{t}=[W, W]_{t}=t
$$

Then it follows by Lévy's characterization of Brownian motion that this is a \mathbb{Q}-Brownian motion.

```
UiO: Department of Mathematics
    University of Oslo
```

We are now in a position to price financial options using the (first) fundamental theorem of asset pricing.

```
UiO: Department of Mathematics
    University of Oslo
```

We are now in a position to price financial options using the (first) fundamental theorem of asset pricing. Assume that we have a market with B and S and that no arbitrage is allowed.

```
UiO: Department of Mathematics
    University of Oslo
```

We are now in a position to price financial options using the (first) fundamental theorem of asset pricing. Assume that we have a market with B and S and that no arbitrage is allowed. Consider an option which pays the amount H at time T, where H is an \mathcal{F}_{T}-measurable random variable such that $\mathbb{E}\left[H^{2}\right]<\infty$.

```
UiO: Department of Mathematics
    University of Oslo
```

We are now in a position to price financial options using the (first) fundamental theorem of asset pricing. Assume that we have a market with B and S and that no arbitrage is allowed. Consider an option which pays the amount H at time T, where H is an \mathcal{F}_{T}-measurable random variable such that $\mathbb{E}\left[H^{2}\right]<\infty$. Then since there is no arbitrage, by the fundamental theorem of asset pricing, there exists (at least) an EMM \mathbb{Q} such that the discounted prices, i.e. \widetilde{S} is a $(\mathbb{Q}, \mathcal{F})$-martingale. This means

$$
\widetilde{S}_{t}=\mathbb{E}_{\mathbb{Q}}\left[\widetilde{S}_{T} \mid \mathcal{F}_{t}\right]
$$

UiO : Department of Mathematics University of Oslo

We will see that for the class of trading strategies η, the discounted value of a portfolio, i.e. \widehat{V}^{η}, is also a \mathbb{Q}-martingale, i.e.

$$
\widetilde{V}_{t}^{\eta}=\mathbb{E}_{\mathbb{Q}}\left[\widetilde{V}_{T}^{\eta} \mid \mathcal{F}_{t}\right]
$$

UiO : Department of Mathematics University of Oslo

We will see that for the class of trading strategies η, the discounted value of a portfolio, i.e. \widehat{V}^{η}, is also a \mathbb{Q}-martingale, i.e.

$$
\widetilde{V}_{t}^{\eta}=\mathbb{E}_{\mathbb{Q}}\left[\widetilde{V}_{T}^{\eta} \mid \mathcal{F}_{t}\right]
$$

But now if we choose a trading strategy η (if it exists) such that $\widetilde{V}_{T}^{\eta}=\widetilde{H}=\frac{H}{B_{T}}$. Then we have

$$
\widetilde{V}_{t}^{\eta}=\mathbb{E}_{\mathbb{Q}}\left[\widetilde{H} \mid \mathcal{F}_{t}\right],
$$

and in particular

$$
\widetilde{V}_{0}^{\eta}=\mathbb{E}_{\mathbb{Q}}[\tilde{H}]
$$

```
UiO : Department of Mathematics University of Oslo
```

We will see that for the class of trading strategies η, the discounted value of a portfolio, i.e. \widetilde{V}^{η}, is also a \mathbb{Q}-martingale, i.e.

$$
\widetilde{V}_{t}^{\eta}=\mathbb{E}_{\mathbb{Q}}\left[\widetilde{V}_{T}^{\eta} \mid \mathcal{F}_{t}\right]
$$

But now if we choose a trading strategy η (if it exists) such that $\widetilde{V}_{T}^{\eta}=\widetilde{H}=\frac{H}{B_{T}}$. Then we have

$$
\widetilde{V}_{t}^{\eta}=\mathbb{E}_{\mathbb{Q}}\left[\widetilde{H} \mid \mathcal{F}_{t}\right]
$$

and in particular

$$
\widetilde{V}_{0}^{\eta}=\mathbb{E}_{\mathbb{Q}}[\widetilde{H}]
$$

We say that a claim H is attainable if there exists a trading strategy η such that

$$
V_{T}^{\eta}=H, \quad \mathbb{P}-\text { a.s. }
$$

where H is an \mathcal{F}_{T}-measurable random variable with $\mathbb{E}\left[H^{2}\right]<\infty$. In such case we say that η is a replicating strategy or perfect hedge for H.

```
UiO: Department of Mathematics
University of Oslo
```


Definition (Completeness)

We say that the market is complete if all contingent claims in the sense explained above are attainable.

```
UiO: Department of Mathematics
    University of Oslo
```


Definition (Completeness)

We say that the market is complete if all contingent claims in the sense explained above are attainable.

While the absence (or presence) of arbitrage is connected to the existence of an EMM (first fundamental theorem), it turns out that completeness is related to the uniqueness of such EMM. This is called the second fundamental theorem of asset pricing.

```
UiO: Department of Mathematics
    University of Oslo
```


Definition (Completeness)

We say that the market is complete if all contingent claims in the sense explained above are attainable.

While the absence (or presence) of arbitrage is connected to the existence of an EMM (first fundamental theorem), it turns out that completeness is related to the uniqueness of such EMM. This is called the second fundamental theorem of asset pricing.

Theorem (Second Fundamental Theorem of Asset Pricing)

An arbitrage-free market is complete if, and only if there exists a unique EMM.

```
UiO: Department of Mathematics
    University of Oslo
```

Usually, in a more informal setting, completeness is related to the number of risky assets you consider in the market (or noises driving the assets) and the number of the assets that you can actually trade. The market we are considering has only one risky asset S and it can be traded, hence this market is complete.

```
UiO: Department of Mathematics
    University of Oslo
```

Usually, in a more informal setting, completeness is related to the number of risky assets you consider in the market (or noises driving the assets) and the number of the assets that you can actually trade. The market we are considering has only one risky asset S and it can be traded, hence this market is complete.

Let us then try to find such EMM \mathbb{Q} ! (also called risk-neutral measure). To this end, we will derive the dynamics of the discounted price process S and value of the portfolio V^{η}.

```
UiO : Department of Mathematics University of Oslo
```

For computational simplicity, we will consider investment fractions rather than units η. Recall that η^{0} was the number of units invested in B and η^{1} in S. Instead, we now consider the proportions invested in B, denoted by π^{0} and the proportion invested in S, denoted by π^{1}. They are defined as

$$
\pi_{t}^{0} \triangleq \frac{\eta_{t}^{0} B_{t}}{V_{t}^{\eta}}, \quad \pi_{t}^{1} \triangleq \frac{\eta_{t}^{1} S_{t}}{V_{t}^{\eta}}, \quad t \in[0, T]
$$

and obviously

$$
\pi_{t}^{0}+\pi_{t}^{1}=1, \quad \mathbb{P}-\text { a.s. }
$$

```
UiO : Department of Mathematics University of Oslo
```

For computational simplicity, we will consider investment fractions rather than units η. Recall that η^{0} was the number of units invested in B and η^{1} in S. Instead, we now consider the proportions invested in B, denoted by π^{0} and the proportion invested in S, denoted by π^{1}. They are defined as

$$
\pi_{t}^{0} \triangleq \frac{\eta_{t}^{0} B_{t}}{V_{t}^{\eta}}, \quad \pi_{t}^{1} \triangleq \frac{\eta_{t}^{1} S_{t}}{V_{t}^{\eta}}, \quad t \in[0, T]
$$

and obviously

$$
\pi_{t}^{0}+\pi_{t}^{1}=1, \quad \mathbb{P}-\text { a.s. }
$$

Because of the above fact, we then just consider π_{t}^{1} and forget about π_{t}^{0} which can be recovered as $\pi_{t}^{0}=1-\pi_{t}^{1}$.

```
UiO : Department of Mathematics
University of Oslo
```


Theorem (Discounted dynamics)

The discounted dynamics of S and V^{η} for a self-financing trading strategy η are given by

$$
\begin{aligned}
d \widetilde{S}_{t} & =\widetilde{S}_{t} \sigma\left(t, S_{t}\right)\left[\theta_{t} d t+d W_{t}\right] \\
d \widetilde{V}_{t}^{\eta} & =\widetilde{V}_{t}^{\eta} \sigma\left(t, S_{t}\right) \pi_{t}^{1}\left[\theta_{t} d t+d W_{t}\right]
\end{aligned}
$$

where

$$
\theta_{t} \triangleq \frac{\mu\left(t, S_{t}\right)-r_{t}}{\sigma\left(t, S_{t}\right)}
$$

is called the market price of risk process.

Proof.

Proof on the blackboard.

UiO : Department of Mathematics University of Oslo

The above theorem suggests that \widetilde{S} and \widetilde{V}^{η} are local martingales under a measure \mathbb{Q} under which $\widetilde{W}_{t} \triangleq \int_{0}^{t} \theta_{s} d s+W_{t}$ is a $(\mathbb{Q}, \mathcal{F})$-Brownian motion. Choosing $u_{t}=-\theta_{t}$ in Girsanov's theorem we have

$$
\mathcal{E}(X)_{t}=\exp \left(-\int_{0}^{t} \theta_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} \theta_{s}^{2} d s\right), \quad t \in[0, T]
$$

and \mathbb{Q} is then defined as

$$
\begin{equation*}
\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathcal{F}_{t}}=\mathcal{E}(X)_{t}, \quad t \in[0, T] . \tag{8}
\end{equation*}
$$

```
UiO: Department of Mathematics
    University of Oslo
```


Remark (Change of measure requires martingality of $\left.\left\{\mathcal{E}(X)_{t}\right\}_{t \in[0, T]}\right)$

In order to be able to apply Girsanov's theorem and obtain a true probability measure in (8), we need that $\left\{\mathcal{E}(X)_{t}\right\}_{t \in[0, T}$ is a martingale. To check for this is usually very difficult, if not impossible. There are plenty of criteria and conditions for u so that $\mathcal{E}\left(\int_{0} u_{s} d W_{s}\right)$ is a martingale. The easiest sufficient condition for u is the so-called Novikov's condition:

$$
\mathbb{E}\left[e^{\frac{1}{2} \int_{0}^{T}\left|u_{s}\right|^{2} d s}\right]<\infty \quad \text { (Novikov condition). }
$$

```
UiO: Department of Mathematics
    University of Oslo
```


Remark (Change of measure requires martingality of $\left.\left\{\mathcal{E}(X)_{t}\right\}_{t \in[0, T]}\right)$

In order to be able to apply Girsanov's theorem and obtain a true probability measure in (8), we need that $\left\{\mathcal{E}(X)_{t}\right\}_{t \in[0, T}$ is a martingale. To check for this is usually very difficult, if not impossible. There are plenty of criteria and conditions for u so that $\mathcal{E}\left(\int_{0} u_{s} d W_{s}\right)$ is a martingale. The easiest sufficient condition for u is the so-called Novikov's condition:

$$
\mathbb{E}\left[e^{\frac{1}{2} \int_{0}^{T}\left|u_{s}\right|^{2} d s}\right]<\infty \quad \text { (Novikov condition). }
$$

Nevertheless, this condition is far from being necessary and it is rather strong. We will this assume that our process θ is such that $\left\{\mathcal{E}(X)_{t}\right\}_{t \in[0, T}$ from (8) is a martingale.

UiO : Department of Mathematics
 University of Oslo

Then it follows that

$$
\widetilde{W}_{t}=W_{t}+\int_{0}^{t} \theta_{s} d s, \quad t \in[0, T]
$$

is a $(\mathbb{Q}, \mathcal{F})$-Brownian motion.
Then the \mathbb{Q}-dynamics of \widetilde{S} and \widetilde{V}^{η} are

$$
\begin{aligned}
d \widetilde{S}_{t} & =\widetilde{S}_{t} \sigma\left(t, S_{t}\right) d \widetilde{W}_{t} \\
d \widetilde{V}_{t}^{\eta} & =\widetilde{V}_{t}^{\eta} \sigma\left(t, S_{t}\right) \pi_{t}^{1} d \widetilde{W}_{t}
\end{aligned}
$$

We see that they are \mathbb{Q}-local martingales since they are the stochastic integral with respect to the martingale \widetilde{W}. They are \mathbb{Q}-martingales if
$\mathbb{E}_{\mathbb{Q}}\left[\int_{0}^{T}\left|\widetilde{S}_{t} \sigma\left(t, S_{t}\right)\right|^{2} d t\right]<\infty, \quad \mathbb{E}_{\mathbb{Q}}\left[\int_{0}^{T}\left|\widetilde{V}_{t}^{\eta} \sigma\left(t, S_{t}\right) \pi_{t}^{1}\right|^{2} d t\right]=\mathbb{E}_{\mathbb{Q}}\left[\int_{0}^{T} \mid \widetilde{S}_{t} \sigma\left(t, S_{t}\right)\right.$

UiO : Department of Mathematics
 University of Oslo

Then it follows that

$$
\widetilde{W}_{t}=W_{t}+\int_{0}^{t} \theta_{s} d s, \quad t \in[0, T]
$$

is a $(\mathbb{Q}, \mathcal{F})$-Brownian motion.

UiO : Department of Mathematics
 University of Oslo

Then the \mathbb{Q}-dynamics of \widetilde{S} and \widetilde{V}^{η} are

$$
\begin{aligned}
d \widetilde{S}_{t} & =\widetilde{S}_{t} \sigma\left(t, S_{t}\right) d \widetilde{W}_{t} \\
d \widetilde{V}_{t}^{\eta} & =\widetilde{V}_{t}^{\eta} \sigma\left(t, S_{t}\right) \pi_{t}^{1} d \widetilde{W}_{t}
\end{aligned}
$$

We see that they are \mathbb{Q}-local martingales since they are the stochastic integral with respect to the martingale \widetilde{W}. They are \mathbb{Q}-martingales if

$$
\begin{aligned}
& \mathbb{E}_{\mathbb{Q}}\left[\int_{0}^{T}\left|\widetilde{S}_{t} \sigma\left(t, S_{t}\right)\right|^{2} d t\right]<\infty, \\
& \mathbb{E}_{\mathbb{Q}}\left[\int_{0}^{T}\left|\widetilde{V}_{t}^{\eta} \sigma\left(t, S_{t}\right) \pi_{t}^{1}\right|^{2} d t\right]=\mathbb{E}_{\mathbb{Q}}\left[\int_{0}^{T}\left|\widetilde{S}_{t} \sigma\left(t, S_{t}\right) \eta_{t}^{1}\right|^{2} d t\right]<\infty .
\end{aligned}
$$

```
UiO : Department of Mathematics University of Oslo
```

Hence, \mathbb{Q} defined as in (8) is an equivalent martingale measure under which \widetilde{S} is a martingale. Moreover, for a self-financing trading strategy $\eta, \widetilde{V}^{\eta}$ is also a \mathbb{Q}-martingale and hence,

$$
\widetilde{V}_{t}^{\eta}=\mathbb{E}_{\mathbb{Q}}\left[\widetilde{V}_{T}^{\eta} \mid \mathcal{F}_{t}\right], \quad t \in[0, T]
$$

If H is a contingent claim and η a self-financing replicating portfolio for H then

$$
\begin{equation*}
\widetilde{V}_{t}^{\eta}=\mathbb{E}_{\mathbb{Q}}\left[\widetilde{H} \mid \mathcal{F}_{t}\right], \quad t \in[0, T] \tag{9}
\end{equation*}
$$

In particular, the initial arbitrage-free price of H is given by

$$
\widetilde{V}_{0}^{\eta}=\mathbb{E}_{\mathbb{Q}}[\widetilde{H}] .
$$

```
UiO: Department of Mathematics
    University of Oslo
```


Exercise (Black-Scholes formula of call option)

Assume the following market dynamics

$$
d B_{t}=r B_{t} d t, \quad B_{0}=1, \quad t \in[0, T],
$$

and

$$
\frac{d S_{t}}{S_{t}}=\mu d t+\sigma d W_{t}, \quad S_{0}>0, \quad t \in[0, T]
$$

Consider the option that pays $H=\left(S_{T}-K\right)_{+}$where $(x)_{+}=$ $\max \{x, 0\}$. Find the measure \mathbb{Q} under which \widetilde{S} is a martingale and the price of H at time t.

Deriving a PDE for the hedging portfolio

UiO : Department of Mathematics University of Oslo

We restrict ourselves to European options, i.e. $H\left(S_{T}\right)$ for a function $H: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mathbb{E}\left[H\left(S_{T}\right)^{2}\right]<\infty$. Let us recover relation (9),

$$
\widetilde{V}_{t}^{\eta}=\mathbb{E}_{\mathbb{Q}}\left[\widetilde{H} \mid \mathcal{F}_{t}\right], \quad t \in[0, T] .
$$

The process $\widetilde{V}_{t}^{\eta}, t \in[0, T]$ is by definition a \mathbb{Q}-martingale. In terms of V_{t}^{η} and $H\left(S_{T}\right)$ we have

$$
\begin{equation*}
\frac{V_{t}^{\eta}}{B_{t}}=\mathbb{E}_{\mathbb{Q}}\left[\left.\frac{H\left(S_{T}\right)}{B_{T}} \right\rvert\, \mathcal{F}_{t}\right], \quad t \in[0, T] . \tag{10}
\end{equation*}
$$

UiO : Department of Mathematics University of Oslo

We restrict ourselves to European options, i.e. $H\left(S_{T}\right)$ for a function $H: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mathbb{E}\left[H\left(S_{T}\right)^{2}\right]<\infty$. Let us recover relation (9),

$$
\widetilde{V}_{t}^{\eta}=\mathbb{E}_{\mathbb{Q}}\left[\widetilde{H} \mid \mathcal{F}_{t}\right], \quad t \in[0, T] .
$$

The process $\widetilde{V}_{t}^{\eta}, t \in[0, T]$ is by definition a \mathbb{Q}-martingale. In terms of V_{t}^{η} and $H\left(S_{T}\right)$ we have

$$
\begin{equation*}
\frac{V_{t}^{\eta}}{B_{t}}=\mathbb{E}_{\mathbb{Q}}\left[\left.\frac{H\left(S_{T}\right)}{B_{T}} \right\rvert\, \mathcal{F}_{t}\right], \quad t \in[0, T] . \tag{10}
\end{equation*}
$$

Using that S is a Markov process we have,

$$
V_{t}^{\eta}=B_{t} \mathbb{E}_{\mathbb{Q}}\left[\left.\frac{H\left(S_{T}\right)}{B_{T}} \right\rvert\, \mathcal{F}_{t}\right]=B_{t} \mathbb{E}_{\mathbb{Q}}\left[\left.\frac{H\left(S_{T}\right)}{B_{T}} \right\rvert\, \sigma\left(S_{t}\right)\right]
$$

and by definition of conditional expectation we have that

$$
V_{t}^{\eta}=B_{t} F\left(t, S_{t}\right)
$$

for some measurable function F. So V is itself a function of t and S_{t}.

UiO : Department of Mathematics
 University of Oslo

From now on, let us denote it by $V\left(t, S_{t}\right)$. So far,

$$
\begin{equation*}
V\left(t, S_{t}\right)=B_{t} F\left(t, S_{t}\right) \tag{11}
\end{equation*}
$$

Applying Itô's formula to F we have

$$
\begin{align*}
d F\left(t, S_{t}\right)= & {\left[\partial_{t} F\left(t, S_{t}\right)+S_{t} \mu\left(t, S_{t}\right) \partial_{x} F\left(t, S_{t}\right)+\frac{1}{2} S_{t}^{2} \sigma\left(t, S_{t}\right)^{2} \partial_{x}^{2} F\left(t, S_{t}\right)\right] d t } \\
& +S_{t} \sigma\left(t, S_{t}\right) \partial_{x} F\left(t, S_{t}\right) d W_{t} \tag{12}
\end{align*}
$$

UiO : Department of Mathematics University of Oslo

From now on, let us denote it by $V\left(t, S_{t}\right)$. So far,

$$
\begin{equation*}
V\left(t, S_{t}\right)=B_{t} F\left(t, S_{t}\right) \tag{11}
\end{equation*}
$$

Applying Itô's formula to F we have

$$
\begin{align*}
d F\left(t, S_{t}\right)= & {\left[\partial_{t} F\left(t, S_{t}\right)+S_{t} \mu\left(t, S_{t}\right) \partial_{x} F\left(t, S_{t}\right)+\frac{1}{2} S_{t}^{2} \sigma\left(t, S_{t}\right)^{2} \partial_{x}^{2} F\left(t, S_{t}\right)\right] d t } \\
& +S_{t} \sigma\left(t, S_{t}\right) \partial_{x} F\left(t, S_{t}\right) d W_{t} \tag{12}
\end{align*}
$$

We can recast equation (12) under \mathbb{Q} by using $d W_{t}=d \widetilde{W}_{t}-\theta_{t} d t$. Hence,

$$
\begin{aligned}
d F\left(t, S_{t}\right)= & {\left[\partial_{t} F\left(t, S_{t}\right)+S_{t} \mu\left(t, S_{t}\right) \partial_{x} F\left(t, S_{t}\right)+\frac{1}{2} S_{t}^{2} \sigma\left(t, S_{t}\right)^{2} \partial_{x}^{2} F\left(t, S_{t}\right)\right.} \\
& \left.-S_{t} \sigma\left(t, S_{t}\right) \theta_{t} \partial_{x} F\left(t, S_{t}\right)\right] d t+S_{t} \sigma\left(t, S_{t}\right) \partial_{x} F\left(t, S_{t}\right) d \widetilde{W}_{t}
\end{aligned}
$$

UiO : Department of Mathematics
 University of Oslo

But observe that $\sigma\left(t, S_{t}\right) \theta_{t}=\mu\left(t, S_{t}\right)-r_{t}$. Hence,

$$
\begin{aligned}
d F\left(t, S_{t}\right)= & {\left[\partial_{t} F\left(t, S_{t}\right)+S_{t} r_{t} \partial_{x} F\left(t, S_{t}\right)+\frac{1}{2} S_{t}^{2} \sigma\left(t, S_{t}\right)^{2} \partial_{x}^{2} F\left(t, S_{t}\right)\right] d t } \\
& +S_{t} \sigma\left(t, S_{t}\right) \partial_{x} F\left(t, S_{t}\right) d \widetilde{W}_{t}
\end{aligned}
$$

UiO : Department of Mathematics University of Oslo

But observe that $\sigma\left(t, S_{t}\right) \theta_{t}=\mu\left(t, S_{t}\right)-r_{t}$. Hence,

$$
\begin{align*}
d F\left(t, S_{t}\right)= & {\left[\partial_{t} F\left(t, S_{t}\right)+S_{t} r_{t} \partial_{x} F\left(t, S_{t}\right)+\frac{1}{2} S_{t}^{2} \sigma\left(t, S_{t}\right)^{2} \partial_{x}^{2} F\left(t, S_{t}\right)\right] d t } \\
& +S_{t} \sigma\left(t, S_{t}\right) \partial_{x} F\left(t, S_{t}\right) d \widetilde{W}_{t} \tag{13}
\end{align*}
$$

We know that F is a \mathbb{Q}-martingale, so the drift term above must be 0 . That is

$$
\begin{equation*}
\partial_{t} F\left(t, S_{t}\right)+S_{t} r_{t} \partial_{x} F\left(t, S_{t}\right)+\frac{1}{2} S_{t}^{2} \sigma\left(t, S_{t}\right)^{2} \partial_{x}^{2} F\left(t, S_{t}\right)=0 \tag{14}
\end{equation*}
$$

UiO : Department of Mathematics
 University of Oslo

We want to derive a PDE for the price $(t, x) \mapsto V(t, x)$.

UiO : Department of Mathematics
 University of Oslo

We want to derive a PDE for the price $(t, x) \mapsto V(t, x)$. We know that $V(t, x)=B_{t} F(t, x)$.

UiO : Department of Mathematics University of Oslo

We want to derive a PDE for the price $(t, x) \mapsto V(t, x)$. We know that $V(t, x)=B_{t} F(t, x)$. This implies that $\partial_{t} V(t, x)=r_{t} B_{t} F(t, x)+B_{t} \partial_{t} F(t, x)=r_{t} V(t, x)+B_{t} \partial_{t} F(t, x)$.

UiO : Department of Mathematics University of Oslo

We want to derive a PDE for the price $(t, x) \mapsto V(t, x)$. We know that $V(t, x)=B_{t} F(t, x)$. This implies that $\partial_{t} V(t, x)=r_{t} B_{t} F(t, x)+B_{t} \partial_{t} F(t, x)=r_{t} V(t, x)+B_{t} \partial_{t} F(t, x)$. Also, observe that $B_{t} \partial_{x} F(t, x)=\partial_{x} V(t, x)$ and $B_{t} \partial_{x}^{2} F(t, x)=\partial_{x}^{2} V(t, x)$ since B_{t} does not depend on x.

UiO : Department of Mathematics University of Oslo

We want to derive a PDE for the price $(t, x) \mapsto V(t, x)$. We know that $V(t, x)=B_{t} F(t, x)$. This implies that $\partial_{t} V(t, x)=r_{t} B_{t} F(t, x)+B_{t} \partial_{t} F(t, x)=r_{t} V(t, x)+B_{t} \partial_{t} F(t, x)$. Also, observe that $B_{t} \partial_{x} F(t, x)=\partial_{x} V(t, x)$ and $B_{t} \partial_{x}^{2} F(t, x)=\partial_{x}^{2} V(t, x)$ since B_{t} does not depend on x. Hence, multiplying (14) by B_{t} and using that $B_{t} \partial_{t} F(t, x)=\partial_{t} V(t, x)-r_{t} V(t, x)$ we have

$$
\begin{equation*}
\partial_{t} V(t, x)+r_{t} x \partial_{x} V(t, x)+\frac{1}{2} x^{2} \sigma(t, x)^{2} \partial_{x}^{2} V(t, x)=r_{t} V(t, x) \tag{15}
\end{equation*}
$$

with boundary condition $V(T, x)=H(x)$.

We want to derive a PDE for the price $(t, x) \mapsto V(t, x)$. We know that $V(t, x)=B_{t} F(t, x)$. This implies that $\partial_{t} V(t, x)=r_{t} B_{t} F(t, x)+B_{t} \partial_{t} F(t, x)=r_{t} V(t, x)+B_{t} \partial_{t} F(t, x)$. Also, observe that $B_{t} \partial_{x} F(t, x)=\partial_{x} V(t, x)$ and $B_{t} \partial_{x}^{2} F(t, x)=\partial_{x}^{2} V(t, x)$ since B_{t} does not depend on x. Hence, multiplying (14) by B_{t} and using that $B_{t} \partial_{t} F(t, x)=\partial_{t} V(t, x)-r_{t} V(t, x)$ we have

$$
\begin{equation*}
\partial_{t} V(t, x)+r_{t} x \partial_{x} V(t, x)+\frac{1}{2} x^{2} \sigma(t, x)^{2} \partial_{x}^{2} V(t, x)=r_{t} V(t, x) \tag{15}
\end{equation*}
$$

with boundary condition $V(T, x)=H(x)$.
This PDE is known as Black-Scholes PDE for pricing the European option $H\left(S_{T}\right)$. The formula that relates conditional expectations of functionals of Markov processes with solutions of second order PDE's is known as the Feynman-Kac formula.

```
UiO: Department of Mathematics
    University of Oslo
```


Exercise (Pricing Asian options)

Derive the corresponding PDE for the price of an Asian option. Hint: An Asian option is an option with payoff being a function of $\frac{1}{T} \int_{0}^{T} S_{u} d u$, i.e. $H=H\left(\frac{1}{T} \int_{0}^{T} S_{u} d u\right)$. Then use that $\int_{0}^{T} S_{u} d u=$ $\int_{0}^{t} S_{u} d u+\int_{t}^{T} S_{u} d u$, the fact that the first term is \mathcal{F}_{t}-measurable, the Markov property of S and the bivariate Itô's formula.

```
UiO: Department of Mathematics
    University of Oslo
```


Exercise (Real world pricing)

In the theory we have used, we construct a measure \mathbb{Q} (risk-neutral measure or EMM) under which discounted prices are a \mathbb{Q}-martingale. This allows to find a "martingale" formula which provides the fair price. In this exercise, instead of finding \mathbb{Q} such that $\frac{S_{t}}{B_{t}}, t \in[0, T]$ is a \mathbb{Q} martingale, find a reference numéraire (which is not B anymore) $V \eta^{*}$ for a right trading strategy η^{*} such that $\frac{S}{V \eta^{*}}, t \in[0, T]$ is a \mathbb{P}-martingale and provide a real world pricing formula, that is a pricing formula under \mathbb{P} and not under \mathbb{Q}.

UiO 8 Department of Mathematics University of Oslo

David R. Banos

Mathematical Finance
STK4500 Life insurance and finance

