

UiO • Department of Mathematics
University of Oslo

STK4500: Life insurance and finance

Riemann-Stieltjes integration (quick guide)

David R. Banos

Spring 2024

Table of contents

- 1 Riemann integral
- 2 Functions of bounded variation
- 3 Riemann-Stieltjes integral
- 4 Rules of calculus for the Riemann-Stieltjes integral
- 5 Example

Recall:

$$\int_{a}^{b} f(s) ds$$

defined by

$$\lim_{n\to\infty}\sum_{t_i\in\pi_n}f(t_i)(t_i-t_{i-1}),$$

where $\{\pi_n\}_{n=1}^{\infty}$ is a sequence of partitions with $a = t_0 < \cdots < t_n = b$ whose mesh $\max_{i=1,\dots,n} |t_i - t_{i-1}| \to 0$.

Recall:

$$\int_{a}^{b} f(s) ds$$

defined by

$$\lim_{n\to\infty}\sum_{t_i\in\pi_n}\frac{f(t_i)}{(t_i-t_{i-1})},$$

where $\{\pi_n\}_{n=1}^{\infty}$ is a sequence of partitions with $a=t_0<\cdots< t_n=b$ whose mesh $\max_{i=1,\dots,n}|t_i-t_{i-1}|\to 0$. We can actually write $f(t_{i-1})$ (left), $f(t_i)$ (right) or any $f(\xi)$, $\xi\in [t_{i-1},t_i]$.

Recall:

$$\int_a^b f(s)ds$$

defined by

$$\lim_{n\to\infty}\sum_{t_i\in\pi_n}f(t_i)(t_i-t_{i-1}),$$

where $\{\pi_n\}_{n=1}^{\infty}$ is a sequence of partitions with $a = t_0 < \cdots < t_n = b$ whose mesh $\max_{i=1,\dots,n} |t_i - t_{i-1}| \to 0$.

Example: if π_n are given by $t_i = \frac{b-a}{n}i$, $i = 0, \dots, n$ then

$$\int_{a}^{b} f(s)ds = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{b-a}{n}i\right)$$

Recall:

$$\int_{a}^{b} f(s) ds$$

defined by

$$\lim_{n\to\infty}\sum_{t_i\in\pi_n}f(t_i)(t_i-t_{i-1}),$$

where $\{\pi_n\}_{n=1}^{\infty}$ is a sequence of partitions with $a = t_0 < \cdots < t_n = b$ whose mesh $\max_{i=1,\dots,n} |t_i - t_{i-1}| \to 0$.

Newton-Leibniz theorem:

$$\int_a^b f(s)ds = F(b) - F(a),$$

where F is a primitive of f, i.e. F' = f.

Table of contents

- 1 Riemann integral
- 2 Functions of bounded variation
- 3 Riemann-Stieltjes integral
- 4 Rules of calculus for the Riemann-Stieltjes integral
- 5 Example

A function f is said to be of bounded variation on an interval [a, b] if, and only if

$$V_{[a,b]}(f) \triangleq \sup_{\pi \in \mathcal{P}} \sum_{t_i \in \pi} |f(t_i) - f(t_{i-1})| < \infty,$$

where P is the set of all partitions of [a, b] with vanishing mesh.

A function f is said to be of bounded variation on an interval [a, b] if, and only if

$$V_{[a,b]}(f) \triangleq \sup_{\pi \in \mathcal{P}} \sum_{t_i \in \pi} |f(t_i) - f(t_{i-1})| < \infty,$$

where P is the set of all partitions of [a, b] with vanishing mesh.

Idea: The quantity $V_{[a,b]}(f)$ measures the "oscillations" of the function f on [a,b].

A function f is said to be of bounded variation on an interval [a, b] if, and only if

$$V_{[a,b]}(f) \triangleq \sup_{\pi \in \mathcal{P}} \sum_{t_i \in \pi} |f(t_i) - f(t_{i-1})| < \infty,$$

where P is the set of all partitions of [a, b] with vanishing mesh.

Idea: The quantity $V_{[a,b]}(f)$ measures the "oscillations" of the function f on [a,b]. If f oscillates "too much" then $V_{[a,b]}(f)=\infty$.

A function f is said to be of bounded variation on an interval [a, b] if, and only if

$$V_{[a,b]}(f) \triangleq \sup_{\pi \in \mathcal{P}} \sum_{t_i \in \pi} |f(t_i) - f(t_{i-1})| < \infty,$$

where P is the set of all partitions of [a, b] with vanishing mesh.

Idea: The quantity $V_{[a,b]}(f)$ measures the "oscillations" of the function f on [a,b]. If f oscillates "too much" then $V_{[a,b]}(f)=\infty$.

Figure: Example of BV and not BV. Left: $g(x) = x^2 \sin(\frac{1}{x})$, $x \neq 0$ and g(0) = 0. Right: $g(x) = x \sin(\frac{1}{x})$, $x \neq 0$ and g(0) = 0

Table of contents

- 1 Riemann integral
- 2 Functions of bounded variation
- Riemann-Stieltjes integral
- 4 Rules of calculus for the Riemann-Stieltjes integral
- 5 Example

Riemann-Stieltjes integral

Extension of Riemann integral:

$$\int_a^b f(s)dg(s)$$

defined by

$$\lim_{n\to\infty}\sum_{t_i\in\pi_n}f(t_i)(g(t_i)-g(t_{i-1})),$$

where $\{\pi_n\}_{n=1}^{\infty}$ is a sequence of partitions with $a = t_0 < \cdots < t_n = b$ whose mesh $\max_{i=1,\dots,n} |t_i - t_{i-1}| \to 0$.

Riemann-Stieltjes integral

Extension of Riemann integral:

$$\int_a^b f(s) dg(s)$$

defined by

$$\lim_{n\to\infty}\sum_{t_i\in\pi_n}\frac{f(t_i)}{g(t_i)}(g(t_i)-g(t_{i-1})),$$

where $\{\pi_n\}_{n=1}^{\infty}$ is a sequence of partitions with $a=t_0 < \cdots < t_n=b$ whose mesh $\max_{i=1,\dots,n}|t_i-t_{i-1}|\to 0$. Again, we can write $f(t_{i-1})$ (left), $f(t_i)$ (right) or any $f(\xi)$, $\xi\in [t_{i-1},t_i]$.

Riemann-Stieltjes integral

Extension of Riemann integral:

$$\int_{[a,b]} f(s) dg(s)$$

defined by

$$\lim_{n\to\infty}\sum_{t_i\in\pi_n}f(t_i)(g(t_i)-g(t_{i-1})),$$

where $\{\pi_n\}_{n=1}^{\infty}$ is a sequence of partitions with $a = t_0 < \cdots < t_n = b$ whose mesh $\max_{i=1,\dots,n} |t_i - t_{i-1}| \to 0$.

Sufficient condition for existence: f continuous and g of bounded variation.

$$\left|\int_{[a,b]} f(s) dg(s)\right| \leq \lim_{n \to \infty} \sum_{t_i \in \pi_n} |f(t_i)(g(t_i) - g(t_{i-1}))| \leq C V_{[a,b]}(g) < \infty,$$

where $C = \max_{s \in [a,b]} |f(s)|$.

Table of contents

- 1 Riemann integral
- 2 Functions of bounded variation
- 3 Riemann-Stieltjes integral
- 4 Rules of calculus for the Riemann-Stieltjes integral
- 5 Example

We will usually assume that g is a.e. differentiable with a finite number of jumps (discontinuities).

$$\int_{[a,b]} f(s) dg(s) = \int_a^b f(s) g'(s) ds + \sum_{a \leq s \leq b} f(s) \Delta g(s),$$

where $\Delta g(s) = g(s) - g(s-)$ denotes the jumps of g at any time s.

We will usually assume that g is a.e. differentiable with a finite number of jumps (discontinuities).

$$\int_{[a,b]} f(s)dg(s) = \int_a^b f(s)g'(s)ds + \sum_{a \leq s \leq b} f(s)\Delta g(s),$$

where $\Delta g(s) = g(s) - g(s-)$ denotes the jumps of g at any time s.

Figure: Example of an a.e. differentiable function with jumps.

Table of contents

- 1 Riemann integral
- 2 Functions of bounded variation
- 3 Riemann-Stieltjes integral
- 4 Rules of calculus for the Riemann-Stieltjes integral
- 5 Example

$$g(s) = egin{cases} s^2, & s \in [0,5) \ 30 - s^2, & s \in [5,7) \ 10, & s \in [7,\infty). \end{cases}$$

Figure: Graph of the function g.

$$g'(s) = egin{cases} 2s, & s \in [0,5) \ -2s, & s \in (5,7) \ 0, & s \in (7,\infty). \end{cases}$$

Figure: Function g in red and its derivative g' in green wherever it is differentiable. Jump sizes are: $\Delta g(5) = -20$ and $\Delta g(7) = 29$.

$$g'(s) = egin{cases} 2s, & s \in [0,5) \ -2s, & s \in (5,7) \ 0, & s \in (7,\infty). \end{cases}, \quad \Delta g(5) = -20, \quad \Delta g(7) = 29.$$

Hence,

$$\int_{[0,10]} f(s)dg(s) = \int_0^{10} f(s)g'(s)ds + f(5)\Delta g(5) + f(7)\Delta g(7).$$

$$g'(s) = egin{cases} 2s, & s \in [0,5) \ -2s, & s \in (5,7) \ 0, & s \in (7,\infty). \end{cases}, \quad \Delta g(5) = -20, \quad \Delta g(7) = 29.$$

Hence,

$$\int_{[0,10]} f(s)dg(s) = \int_0^{10} f(s)g'(s)ds + f(5)\Delta g(5) + f(7)\Delta g(7).$$

For example, if f(s) = s,

$$\int_{[0,10]} f(s) dg(s) = \int_0^5 s \cdot 2s ds + \int_5^7 s \cdot (-2s) ds + 5 \cdot (-20) + 7 \cdot 29 = 41.$$

Summary:

$$\int_{[a,b]} f(s)dg(s) = \int_a^b f(s)g'(s)ds + \sum_{a \leq s \leq b} f(s)\Delta g(s),$$

where $\Delta g(s) = g(s) - g(s-)$ denotes the jumps of g at any time s.

Summary:

$$\int_{[a,b]} f(s)dg(s) = \int_a^b f(s)g'(s)ds + \sum_{a \leq s \leq b} f(s)\Delta g(s),$$

where $\Delta g(s) = g(s) - g(s-)$ denotes the jumps of g at any time s.

Consequence: An immediate example is

$$\int_{[0,\infty)} f(s)dg(s) = f(t)\Delta g(t),$$

if g is constant everywhere except for a jump of size $\Delta g(t)$ at time $t \geq 0$.

Summary:

$$\int_{[a,b]} f(s)dg(s) = \int_a^b f(s)g'(s)ds + \sum_{a \leq s \leq b} f(s)\Delta g(s),$$

where $\Delta g(s) = g(s) - g(s-)$ denotes the jumps of g at any time s.

Consequence: An immediate example is

$$\int_{[0,\infty)} f(s)dg(s) = f(t)\Delta g(t),$$

if g is constant everywhere except for a jump of size $\Delta g(t)$ at time $t \geq 0$. **Example:** if $g(s) = \mathbb{I}_{[a,\infty)}(s)$, $a \geq 0$, then

$$\int_{[0,\infty)} f(s)dg(s) = f(a).$$

UiO • Department of Mathematics University of Oslo

STK4500: Life insurance and finance

Riemann-Stieltjes integration (quick guide)

