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Cash flow

Figure: Example of a cash flow with deposits and withdrawals of lump sums.

C(t) cash balance at time t . Cn cash balance at time n.

∆C(t) = C(t)− C(t−) or ∆Cn = Cn − Cn−1.

Figure shows typical in and outflow of lump sum deposits.

There is no compounding of interest, yet.

We will deal with continuous and discrete time models/formulae.
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Cash flow

Figure: Example of cash flow compounded with interest continuously, without
and with deposits/withdrawals.

Initial capital C(0). The rest is a revaluation of the wealth.

No jumps in the first figure: ∆C(t) = C(t)− C(t−) = 0 for all t . Two
jumps in the second: ∆C(t1) > 0, ∆C(t2) < 0.

Inflation ↔ increase. Deflation ↔ decrease.
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Cash flow
Here is an example of a more irregular cash flow.

Figure: Example of an irregular cash flow. An example could be the evolution
of cash deposited into a risky fund or stock.

Such cash flow could be e.g. the value of a risky asset (stock)

One usually uses Brownian motion to model such behaviour.

Problem: Such graph is not differentiable! Not of bounded variation
either.
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Definition
Cash flows are simply functions or sequences (continuous vs. discrete).

Definition (Deterministic cash flow)
A cash flow C is a function of bounded variation in continuous time, or a
sequence of values in discrete time.

Example

Continuous time: C(t) = ert , t ≥ 0 (continuous compounding).

Discrete time Cn = (1 + r)n, n = 0,1, . . . (discrete compounding).

Or any other function/sequence you may think of.
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Definition stochastic cash flow
A stochastic cash flow is a cash flow whose outcome is uncertain/random.

Definition (Stochastic cash flow)
A stochastic cash flow is a stochastic process whose sample paths are
cash flows. That is C(t ,ω), t ≥ 0, is a continuous time cash flow or Cn(ω),
n ≥ 0, is a discrete time cash flow.

Example

Continuous time: C(t) = ert+Z , t ≥ 0 where Z is normally
distributed with mean 0 and variance σ2.

Discrete time: Cn = (1 + rZ )n, n = 0,1, . . . where Z is a random
variable.

Or any other stochastic process you may think of.

David R. Banos STK4500: Life insurance and finance Spring 2024 6 / 47



Definition stochastic cash flow
A stochastic cash flow is a cash flow whose outcome is uncertain/random.

Definition (Stochastic cash flow)
A stochastic cash flow is a stochastic process whose sample paths are
cash flows. That is C(t ,ω), t ≥ 0, is a continuous time cash flow or Cn(ω),
n ≥ 0, is a discrete time cash flow.

Example

Continuous time: C(t) = ert+Z , t ≥ 0 where Z is normally
distributed with mean 0 and variance σ2.

Discrete time: Cn = (1 + rZ )n, n = 0,1, . . . where Z is a random
variable.

Or any other stochastic process you may think of.

David R. Banos STK4500: Life insurance and finance Spring 2024 6 / 47



Table of contents
1 Cash flows

Deterministic cash flows
Stochastic cash flows

2 Present values
3 Present values of cash flows: retrospective and pro-

spective values
Retrospective and prospective values
Example

4 Policy cash flows
Refreshing Markov setting
Policy functions
Policy cash flows and present, retrospective and
prospective values

5 Example of policy cash flow
Example 1: Disability pension with death benefit
Example 2: Endowment insurance

David R. Banos STK4500: Life insurance and finance Spring 2024 7 / 47



Discount factors
Important factor:

Continuous time: v(t) = e−
∫ t

0 r(s)ds, t ≥ 0.
Discrete time: v(n), n = 0,1, . . .

We use both notations v(t) and v(n) for continuous and discrete.
If r is constant:

Continuous time: v(t) = e−rt , t ≥ 0.

Discrete time: v(n) = e−rn, n = 0,1, . . .

v(t): today’s value of one unit at (continuous) time t .

v(n): today’s value of one unit at (discrete) time n.

There is always a conversion between

(1 + δ(t))t = e
∫ t

0 r(s)ds

David R. Banos STK4500: Life insurance and finance Spring 2024 8 / 47



Discount factors
Important factor:

Continuous time: v(t) = e−
∫ t

0 r(s)ds, t ≥ 0.
Discrete time: v(n), n = 0,1, . . .

We use both notations v(t) and v(n) for continuous and discrete.

If r is constant:

Continuous time: v(t) = e−rt , t ≥ 0.

Discrete time: v(n) = e−rn, n = 0,1, . . .

v(t): today’s value of one unit at (continuous) time t .

v(n): today’s value of one unit at (discrete) time n.

There is always a conversion between

(1 + δ(t))t = e
∫ t

0 r(s)ds

David R. Banos STK4500: Life insurance and finance Spring 2024 8 / 47



Discount factors
Important factor:

Continuous time: v(t) = e−
∫ t

0 r(s)ds, t ≥ 0.
Discrete time: v(n), n = 0,1, . . .

We use both notations v(t) and v(n) for continuous and discrete.
If r is constant:

Continuous time: v(t) = e−rt , t ≥ 0.

Discrete time: v(n) = e−rn, n = 0,1, . . .

v(t): today’s value of one unit at (continuous) time t .

v(n): today’s value of one unit at (discrete) time n.

There is always a conversion between

(1 + δ(t))t = e
∫ t

0 r(s)ds

David R. Banos STK4500: Life insurance and finance Spring 2024 8 / 47



Discount factors
Important factor:

Continuous time: v(t) = e−
∫ t

0 r(s)ds, t ≥ 0.
Discrete time: v(n), n = 0,1, . . .

We use both notations v(t) and v(n) for continuous and discrete.
If r is constant:

Continuous time: v(t) = e−rt , t ≥ 0.

Discrete time: v(n) = e−rn, n = 0,1, . . .

v(t): today’s value of one unit at (continuous) time t .

v(n): today’s value of one unit at (discrete) time n.

There is always a conversion between

(1 + δ(t))t = e
∫ t

0 r(s)ds

David R. Banos STK4500: Life insurance and finance Spring 2024 8 / 47



Discount factors
Important factor:

Continuous time: v(t) = e−
∫ t

0 r(s)ds, t ≥ 0.
Discrete time: v(n), n = 0,1, . . .

We use both notations v(t) and v(n) for continuous and discrete.
If r is constant:

Continuous time: v(t) = e−rt , t ≥ 0.

Discrete time: v(n) = e−rn, n = 0,1, . . .

v(t): today’s value of one unit at (continuous) time t .

v(n): today’s value of one unit at (discrete) time n.

There is always a conversion between

(1 + δ(t))t = e
∫ t

0 r(s)ds

David R. Banos STK4500: Life insurance and finance Spring 2024 8 / 47



Discount factors
Important factor:

Continuous time: v(t) = e−
∫ t

0 r(s)ds, t ≥ 0.
Discrete time: v(n), n = 0,1, . . .

We use both notations v(t) and v(n) for continuous and discrete.
If r is constant:

Continuous time: v(t) = e−rt , t ≥ 0.

Discrete time: v(n) = e−rn, n = 0,1, . . .

v(t): today’s value of one unit at (continuous) time t .

v(n): today’s value of one unit at (discrete) time n.

There is always a conversion between

(1 + δ(t))t = e
∫ t

0 r(s)ds

David R. Banos STK4500: Life insurance and finance Spring 2024 8 / 47



Discount factors
Let some asset/liability L to be exercised at time t (or n if discrete time). Then

v(t)L, today’s value of L.

Let some asset/liability L today. Then

v(t)−1L, value at time t of L

Multiplying by v(t) or v(n) deflates (discounts).

Dividing by v(t) or v(n) inflates.

Introduce the one-step discounting

vn ≜
v(n + 1)

v(n)
.

Then vn : value at time n of one unit at time n + 1.

Saying "L is an asset/liability" gives little information about its true
value without knowing when in the timeline it is valued.
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Discount factors

Figure: How discount factor v is used to transfer values.

Multiplying by v(s) means translating value from time s to now.

Multiplying by 1
v(t) means translating value from now to t .

Multiplying by v(s)
v(t) means translating value from s to t .
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PV of cash flows
Now C is a cash flow in continuous time. Let us look at 0 ≤ s < ∞ and C(s).

An infinitesimal change of cash flow at s is given by

dC(s)

dC(s) represents an instantaneous variation of money at time s in an
infinitesimal amount of time. You may think of dC(s) ≈ C(s + h)− C(s)
for an extremely small h.

Today’s value of dC(s) is therefore

v(s)dC(s).

If s is running over time, then the total today’s value of the whole cash
flow C (present value) is ∫

[0,∞)

v(s)dC(s).
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PV of cash flows
We can translate the total present value of C to any arbitrary middle time t , i.e.
the value of

∫
[0,∞)

v(s)dC(s) at time t is thus

1
v(t)︸︷︷︸

Inflated to time t

∫
[0,∞)

v(s)dC(s)︸ ︷︷ ︸
Today’s value of C

.
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PV of cash flows
In discrete time:

A one-step change of cash flow at k is given by

∆Ck = Ck − Ck−1

Today’s value of ∆Ck is therefore

v(k)∆Ck .

If k is running over time, then the total today’s value of the whole cash
flow C (present value) is

∞∑
k=0

v(k)∆Ck .

Again, it can be translated to any middle time n:

1
v(n)

∞∑
k=0

v(k)∆Ck .
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PV of cash flows
C a cash flow and t a middle future time between now and eternity.

Today’s value of C: ∫
[0,∞)

v(s)dC(s).

Place yourself at time t , then the value of C at time t is

1
v(t)

∫
[0,∞)

v(s)dC(s).

Now, look back and forward:

1
v(t)

∫
[0,∞)

v(s)dC(s)︸ ︷︷ ︸
Value of C at time t

=
1

v(t)

∫
[0,t]

v(s)dC(s)︸ ︷︷ ︸
Retrospective value

+
1

v(t)

∫
(t,∞)

v(s)dC(s)︸ ︷︷ ︸
Prospective value
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PV of cash flows
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Notations PV, retrospective and prospective value
We introduce the same notations for continuous and discrete time:

Present value of a cash flow C at time t : V (t ,C) or simply V (t).

V (t) =
1

v(t)

∫
[0,∞)

v(s)dC(s), V (n) =
1

v(n)

∞∑
k=0

v(k)∆Ck .

Retrospective value of a cash flow C at time t : V−(t ,C) or simply
V−(t).

V−(t) =
1

v(t)

∫
[0,t]

v(s)dC(s), V−(n) =
1

v(n)

n∑
k=0

v(k)∆Ck .

Prospective value of a cash flow C at time t : V+(t ,C) or simply V+(t).

V+(t) =
1

v(t)

∫
(t,∞)

v(s)dC(s), V+(n) =
1

v(n)

∞∑
k=n+1

v(k)∆Ck .

Obvious relation:

V (t) = V−(t) + V+(t), V (n) = V−(n) + V+(n).
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Example of PV of a cash flow
Let C (continuous time) be given by

C(t) =


kr. 20, t ∈ [0,2),
kr. 30, t ∈ [2,3),
kr. 5, t ∈ [3,7),
kr. 50, t ∈ [7,∞),

Figure: Example of cash flow (it does not need to be piecewise constant)
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Example of PV of a cash flow
Then

∆C(s) =



kr. 20, s = 0,
kr. 10, s = 2,
kr. − 25, s = 3,
kr. 45, s = 7,
kr. 0, otherwise.
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v(s)∆C(s)

= v(0)∆C(0) + v(2)∆C(2) + v(3)∆C(3) + v(7)∆C(7) = 43.05 kr.

If you promise me this cash flow I should give you 43.05 kr so we are even!
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Example of PV of a cash flow
Now look at t = 4.

Idea retrospective: if we stand in t = 4, what is the value of what has
happened so far at time t?

Idea prospective: if we stand in t = 4, what is the value of the
remaining future cash flow that has not taken place yet. In other words,
what should you pay me back to cancel the cash flow?
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Example of PV of a cash flow
Now look at t = 4.

Retrospective:

V−(4) =
1

v(4)

∫
[0,4]

v(s)dC(s)

=
1

v(4)
(v(0)∆C(0) + v(2)∆C(2) + v(3)∆C(3)) = 7.41 kr.
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Example of PV of a cash flow
Now look at t = 4.

Prospective:

V+(4) =
1

v(4)

∫
(4,∞)

v(s)dC(s)

=
1

v(4)
v(7)∆C(7) = 41.13 kr.
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Example of PV of a cash flow
Now look at t = 4.

Observation:

V (4) = 48.53 kr., V−(4) = 7.41 kr., V+(4) = 41.13 kr.

V (4) = V−(4) + V+(4).
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Example of PV of a cash flow
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Example of PV of a cash flow

Idea retrospective: if we stand in t , what is the value of what has
happened so far at time t?

Idea prospective: if we stand in t , what is the value of the remaining
future cash flow that has not taken place yet. In other words, what
should you pay me back to cancel the cash flow?
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Markov setting

Z Markov process with finite state space Z.

Z (t) or Zn: state of the insured at time t ≥ 0 or n = 0,1, . . .

Transition probabilities pij(t , s) ≜ P[Z (s) = j |Z (t) = i], s > t , i , j ∈ Z.

If continuous time: transition rates:

μij(t) = lim
h↘0

pij(t , t + h)
h

, j ̸= i ,

and μi(t) = −μii(t).

Kolmogorov equations: d
ds P(t , s) = P(t , s)Λ(s) (fwd.) or

d
dt P(t , s) = −Λ(t)P(t , s) (bwd.) where P is the transition probability
matrix and Λ the transition rate matrix.
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Markov setting
Introduce the following stochastic processes:

In continuous time (t ≥ 0)

IZ
i (t) = I{Z (t)=i}, NZ

ij (t) = #{s ∈ [0, t ] : Z (s−) = i ,Z (s) = j}.

In discrete time (n = 0,1, . . . )

IZ
i (n) = I{Zn=i}, NZ

ij (n) = #{k ∈ {1,2, . . . ,n} : Zk−1 = i ,Zk = j}.

The process IZ
i (t) tells us whether the insured is in state i or not, at

time t .

The process NZ
ij (t) counts the exact number of transitions from i to j

from start to time t .

We may write Ii and Nij and drop Z when clear.
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Policy functions

Definition (Policy functions (discrete time))
Let ai ,aij : N → R, i , j ∈ Z, be two discrete time functions. We call them
policy functions whenever they model the following quantities:

ai(n) = punctual payments made at time n when the insured is in
state i .

aij(n) = payments at time n for a switch from state i at time n − 1 to
state j at time n.

Definition (Policy functions (continuous time))
Let ai ,aij : R → R, i , j ∈ Z, be two functions of bounded variation. We call
them policy functions whenever they model the following quantities:

ai(t) = the accumulated premiums and benefits up to time t while the
insured is in state i .

aij(t) =, j ̸= i , payments at time t for a switch from state i to state j at
time t .
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Policy cash flows

Definition (Policy cash flow in discrete time)
Given policy functions ai , aij , i , j ∈ Z, we define the policy cash flow at any
time k = 0,1, . . . by

∆Ck =
∑
i∈Z

IZ
i (k)ai(k) +

∑
i,j∈Z

∆NZ
ij (k)aij(k).

Definition (Policy cash flow in continuous time)
Given policy functions ai , aij , i , j ∈ Z, we define the policy cash flow at any
time s ≥ 0 by

dC(s) =
∑
i∈Z

IZ
i (s)dai(s) +

∑
i,j∈Z

dNZ
ij (s)aij(s).
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PV, retrospective and prospective values
Now that we have fully described the (policy) cash flows, we need to interest
rate adjust them:
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i (s)dai(s) +
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V (n,C)=
1

v(n)
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k=0

v(k)∆Ck

=
1

v(n)

∑
i∈Z

∞∑
k=0

v(k)IZ
i (k)ai(k) +

1
v(n)

∑
i,j∈Z

n∑
k=0

v(k)aij(k)∆NZ
ij (k)

David R. Banos STK4500: Life insurance and finance Spring 2024 28 / 47



PV, retrospective and prospective values
Recall:

∆Ck =
∑
i∈Z

IZ
i (k)ai(k) +

∑
i,j∈Z

∆NZ
ij (k)aij(k).

dC(s) =
∑
i∈Z

IZ
i (s)dai(s) +

∑
i,j∈Z

dNZ
ij (s)aij(s).

PV discrete time:

V (n,C)=
1

v(n)

∞∑
k=0

v(k)∆Ck

=
1

v(n)

∑
i∈Z

∞∑
k=0

v(k)IZ
i (k)ai(k) +

1
v(n)

∑
i,j∈Z

∞∑
k=0

v(k)aij(k)∆NZ
ij (k)

PV continuous time:

V (t ,C)=
1

v(t)

∫
[0,∞)

v(s)dC(s)

=
1
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i∈Z
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v(s)aij(s)dNZ
ij (s)
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PV, retrospective and prospective value (discrete time)

V (n,C)=
1

v(n)

∑
i∈Z

∞∑
k=0

v(k)IZ
i (k)ai(k) +

1
v(n)

∑
i,j∈Z

∞∑
k=0

v(k)aij(k)∆NZ
ij (k),

V−(n,C)=
1

v(n)

∑
i∈Z

n∑
k=0

v(k)IZ
i (k)ai(k) +

1
v(n)

∑
i,j∈Z

n∑
k=0

v(k)aij(k)∆NZ
ij (k),

V+(n,C)=
1

v(n)

∑
i∈Z

∞∑
k=n+1

v(k)IZ
i (k)ai(k) +

1
v(n)

∑
i,j∈Z

∞∑
k=n+1

v(k)aij(k)∆NZ
ij (k).

Recall that we may simply write V (n) instead of V (n,C), etc.

Intuition: PV’s of sums of payments ai(n) for being in state i at time n
and payments aij(n) for switching from i to j at n.

We can readily see: V (n) = V−(n) + V+(n), n = 0,1, . . .

Obs: This is a stochastic cash flow!
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PV, retrospective and prospective value (continuous time)

V (t ,C)=
1

v(t)

∑
i∈Z

∫
[0,∞)

v(s)IZ
i (s)dai(s) +

1
v(t)

∑
i,j∈Z

∫
[0,∞)

v(s)aij(s)dNZ
ij (s),

V−(t ,C)=
1

v(t)

∑
i∈Z

∫
[0,t]

v(s)IZ
i (s)dai(s) +

1
v(t)

∑
i,j∈Z

∫
[0,t]

v(s)aij(s)dNZ
ij (s),

V+(t ,C)=
1

v(t)

∑
i∈Z

∫
(t,∞)

v(s)IZ
i (s)dai(s) +

1
v(t)

∑
i,j∈Z

∫
(t,∞)

v(s)aij(s)dNZ
ij (s).

Recall that we may simply write V (t) instead of V (t ,C), etc.

NB: ai(t) in continuous time is accumulated payments while in i , this
means that dai(t) is instantaneous payment for being in i at time t .

Intuition: PV’s of sums of (instantaneous) payments dai(t) while being
in i at time n and (punctual) payments aij(t) for switching from i to j at t .

We can readily see: V (t) = V−(t) + V+(t), t ≥ 0.

Obs: This is a stochastic cash flow!
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Example: disability pension with death benefit

Figure: Markov model of disability pension.

States Z = {0,1,2} where 0 active, 1 disabled and 2 deceased.

Transition rates (simplistic): μ01 = 0.5, μ10 = 0.5, μ02 = 0.05,
μ12 = 0.05.

Contract duration: T = 10 years. Age of insured: z0 = 50 years in
2024.

Policy: Yearly disability pensions of P = 100 000 are paid to the
insured while in 1. A final death benefit B = 1 000 000 is paid to the
insured when a transition to 2. Everything stops after T .
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Example: disability pension with death benefit
Policy functions:

For sojourns:

a1(t) =

{
Pt , t ∈ [0,T )

PT , t ∈ [T ,∞)
.

For transitions:

a02(t) =

{
B, t ∈ [0,T ]

0, t /∈ [0,T ]
, a12(t) =

{
B, t ∈ [0,T ]

0, t /∈ [0,T ]
.
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Example: disability pension with death benefit
Recall:

dC(s) =
∑
i∈Z

IZ
i (s)dai(s) +

∑
i,j∈Z

dNZ
ij (s)aij(s).

The cash flow of this policy is given by

dC(s)= IZ
1 (s)da1(s) + dNZ

02(s)a02(s) + dNZ
12(s)a12(s).

The function a1 is a.e. differentiable with a′
1(t) = P on (0,T ) with no jumps,

hence da1(s) = Pds on (0,T ). Thus, for s ∈ [0,T ],

dC(s)= PIZ
1 (s)ds + BdNZ

02(s) + BdNZ
12(s).

Hence, the prospective value is

V+(t) =
P

v(t)

∫
(t,T )

v(s)IZ
1 (s)ds+

B
v(t)

∫
(t,T )

v(s)dNZ
02(s) +

B
v(t)

∫
(t,T )

v(s)dNZ
12(s).
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Example: disability pension with death benefit (continuous)
Prospective value:

V+(t) =
P

v(t)

∫
(t,T )

v(s)IZ
1 (s)ds+

B
v(t)

∫
(t,T )

v(s)dNZ
02(s) +

B
v(t)

∫
(t,T )

v(s)dNZ
12(s).

To simulate deterministic cash flows V+(t ,ω) for a specific outcome ω we
need to simulate paths of Z (t ,ω) (states of insured) for a specific outcome ω.

We chop [0,T ] into ti = ih, i = 0, . . . , n, where h = T
n .

Start Z (0) = 0 = j0. Pick j1 from Z = {0, 1, 2} randomly according to the
vector {p00(0, h), p01(0, h), p02(0, h)}. Set Z (h) = j1.

Pick j2 from Z = {0, 1, 2} randomly according to the vector
{pj10(h, 2h), pj11(h, 2h), pj12(h, 2h)}. Set Z (2h) = j2.

. . .

Pick jn from Z = {0, 1, 2} randomly according to the vector{
pjn−10((n − 1)h,T ), pjn−11((n − 1)h,T ), pjn−12((n − 1)h,T )

}
. Set Z (T ) = jn.
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Example: disability pension with death benefit
We simulated 4 policy holders:

Figure: 4 random outcomes.

We see that most likely, the green outcome has the highest value: some
disability pensions twice and a death benefit of 1MNOK around policy year 7.
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Example: disability pension with death benefit
Here we plot the function t 7→ V+(t ,ωi), i = 1,2,3,4.

Figure: 4 random prospective values.

We confirm that the cash flow of the «green» policyholder has highest value
and that a payment of 1MNOK is made around year 7.
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Example: disability pension with death benefit
We see that the green policyholder was the most expensive among these four.
If we look at their outcome we see:

Figure: One of the four outcomes (number 3) who passed away around age 57
and one month.

Actually, policyholder nr. 3 870 was the most expensive (113 months disability
and one death benefit), while nr. 276 was the cheapest (always stayed in state
0). We used seed 1.
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Example: disability pension with death benefit
Now we look at the mean of all prospective values of 100 random outcomes:

Figure: Mean prospective values of 10 000 generated random insurance cash
flows (simulation time: 2.06361 mins). Initial value: 640 940.1 .

The initial point is what this insurance will cost the insurer in average.

We see that as time goes by, the value decreases since we are
approaching the end of the contract.
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Example: disability pension with death benefit
Out of curiosity: we plot the same mean prospective values based on 10 000
simulations with and without death benefit.

Figure: Mean prospective values of 10 000 generated random insurance cash
flows for a policy with disability pension with (in red) and without (in blue) death
benefit. Initial value without death benefit: 303 406.4 .
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Example: Endowment (discrete)

Figure: Survival Markov model.

States Z = {0,1} where 0 alive and 2 deceased.

Transition rates: Finanstilsynet, μ(x , t), x age and t calendar year and
p∗∗ is evaluated at discrete times, i.e. p∗∗(z +n, z +n+1), n = 0, 1, . . .

Contract duration: N = 10 years. Age of insured: z = 60 years in
2024.

Policy: If the insured survives to age z + N = 60 + 10 = 70, a survival
benefit E = 100 000 is paid. If the insured dies during the ages before
70, a death benefit B = 250 000 is paid. Everything stops after N = 10
years.
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Example: Endowment (discrete)
Policy functions:

For sojourns:

a0(n) =

{
E , n = N,

0, otherwise
,

For transitions:

a01(n) =

{
B, n = 1, . . . ,N
0, otherwise

.

Comment: n = 0 in a01 does not make sense, since we assume Z (0) = 0
(insured enters contract alive). The earliest a death benefit is assumed to be
paid out is thus n = 1.
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Example: disability pension with death benefit
Recall:

∆Ck =
∑
i∈Z

IZ
i (k)ai(k) +

∑
i,j∈Z

∆NZ
ij (k)aij(k).

The cash flow of this policy is given by

∆Ck= IZ
0 (k)a0(k) + ∆NZ

01(k)a01(k).

Now, it remains to adjust the values by discounting (multiply by v(k), take sum
and divide by v(n)).
Hence, the prospective value at any time n = 0,1, . . . ,N is

V+(n) =
E

v(n)
v(N)IZ

0 (N)+
B

v(n)

N∑
k=n+1

v(k)dNZ
01(k).
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Example: disability pension with death benefit (continuous)
Prospective value:

V+(n) =
E

v(n)
v(N)IZ

0 (N)+
B

v(n)

N∑
k=n+1

v(k)∆NZ
01(k).

To simulate deterministic cash flows V+(n,ω) for a specific outcome ω and
times n = 0, . . . ,N we need to simulate paths of Z (n,ω) (states of insured) for
a specific outcome ω.

We look at n = 0, 1, . . . etc.

Simulate random lives from the function lifeK2013.R using the function
life.K13(age,num) where age here is z = 60 and num is the number of random
lives, say 100 or even 10 000!

For each path ω, you will have determined completely IZ
0 (N)(ω) and

∆NZ
01(k)(ω) then compute V+(n,ω) for each ω among the 100 or even

10 000!
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Example: disability pension with death benefit (continuous)
Prospective value:

V+(n) =
E

v(n)
v(N)IZ

0 (N)+
B

v(n)

N∑
k=n+1

v(k)∆NZ
01(k).

Observe that we can express V+(n) much faster by using the death time τz(ω) of each
individual ω:

V+(n) =
v(N)

v(n)
EI{τ≥N}I{n≤N−1} +

v(τ+ 1)
v(n)

BI{n≤τ≤N−1}, n = 0, . . . ,N − 1.

To find a detailed explanation on the derivation of this expression see Example 4.9 in
the lecture notes.
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Example: disability pension with death benefit (continuous)
Info: mortality: Finanstilsynet (G = 0, R = 0). Age z = 60. Term of N = 10
years. Annual rate r = 3%. Survival benefit E = 100 000 kr. Death benefit
B = 250 000 kr.
We generated 1 000 lives with seed 1 and selected four of them, number: 1,2,7
and 18.

Figure: Four selected prospective values of cash flows from 1 000 randomly generated
life paths. Seed: 1. The paths correspond to 1 (in red), 2 (in blue), 7 (in green) and 18
(in orange). We see that 7 and 18 died before N triggering a death benefit.
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Example: disability pension with death benefit (continuous)
Remember that we have generated 1 000 paths like those in the previous
figure. We may ask, what is the distribution of V (0)?

Figure: Histogram of V (0) for 1 000 randomly generated lives.

This random variable will mostly consist of payments of survival benefits of
100 000 in 10 years (hence the lower value 74 081.82) and some payments of
250 000 for those who did not make it to N, discounted according to the time to
death.
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Example: disability pension with death benefit (continuous)
Remember that we have generated 1 000 paths like those in the previous
figure. We may ask, what is the distribution of V (0)?

Figure: Histogram of V (0) for 1 000 randomly generated lives.

If we were to charge a premium to all of these individuals it would make sense
to charge the expected value of this distribution, i.e. E[V (0)]. In this example,
we obtained E[V (0)] = 84 233.05 kr.
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