

UiO : Department of Mathematics University of Oslo

STK4500: Life insurance and finance

Cash flows and present values

Table of contents

1 Cash flows

■ Deterministic cash flows
■ Stochastic cash flows
2 Present values
3 Present values of cash flows: retrospective and prospective values
Retrospective and prospective values

- Example

4 Policy cash flows
■ Refreshing Markov setting

- Policy functions
- Policy cash flows and present, retrospective and prospective values
5 Example of policy cash flow
■ Example 1: Disability pension with death benefit
- Example 2: Endowment insurance

Cash flow

Figure: Example of a cash flow with deposits and withdrawals of lump sums.

Cash flow

Figure: Example of a cash flow with deposits and withdrawals of lump sums.

■ $C(t)$ cash balance at time $t . C_{n}$ cash balance at time n.

Cash flow

Figure: Example of a cash flow with deposits and withdrawals of lump sums.

■ $C(t)$ cash balance at time $t . C_{n}$ cash balance at time n.
■ $\Delta C(t)=C(t)-C(t-)$ or $\Delta C_{n}=C_{n}-C_{n-1}$.

Cash flow

Figure: Example of a cash flow with deposits and withdrawals of lump sums.

- $C(t)$ cash balance at time $t . C_{n}$ cash balance at time n.

■ $\Delta C(t)=C(t)-C(t-)$ or $\Delta C_{n}=C_{n}-C_{n-1}$.
■ Figure shows typical in and outflow of lump sum deposits.

Cash flow

Figure: Example of a cash flow with deposits and withdrawals of lump sums.

- $C(t)$ cash balance at time $t . C_{n}$ cash balance at time n.

■ $\Delta C(t)=C(t)-C(t-)$ or $\Delta C_{n}=C_{n}-C_{n-1}$.

- Figure shows typical in and outflow of lump sum deposits.
- There is no compounding of interest, yet.

Cash flow

Figure: Example of a cash flow with deposits and withdrawals of lump sums.

- $C(t)$ cash balance at time $t . C_{n}$ cash balance at time n.

■ $\Delta C(t)=C(t)-C(t-)$ or $\Delta C_{n}=C_{n}-C_{n-1}$.

- Figure shows typical in and outflow of lump sum deposits.
- There is no compounding of interest, yet.

■ We will deal with continuous and discrete time models/formulae.

Cash flow

Figure: Example of cash flow compounded with interest continuously, without and with deposits/withdrawals.

Cash flow

Figure: Example of cash flow compounded with interest continuously, without and with deposits/withdrawals.

■ Initial capital $C(0)$. The rest is a revaluation of the wealth.

Cash flow

Figure: Example of cash flow compounded with interest continuously, without and with deposits/withdrawals.

- Initial capital $C(0)$. The rest is a revaluation of the wealth.

■ No jumps in the first figure: $\Delta C(t)=C(t)-C(t-)=0$ for all t. Two jumps in the second: $\Delta C\left(t_{1}\right)>0, \Delta C\left(t_{2}\right)<0$.

Cash flow

Figure: Example of cash flow compounded with interest continuously, without and with deposits/withdrawals.

■ Initial capital $C(0)$. The rest is a revaluation of the wealth.

- No jumps in the first figure: $\Delta C(t)=C(t)-C(t-)=0$ for all t. Two jumps in the second: $\Delta C\left(t_{1}\right)>0, \Delta C\left(t_{2}\right)<0$.
■ Inflation \leftrightarrow increase. Deflation \leftrightarrow decrease.

Cash flow

Here is an example of a more irregular cash flow.

Figure: Example of an irregular cash flow. An example could be the evolution of cash deposited into a risky fund or stock.

■ Such cash flow could be e.g. the value of a risky asset (stock)

Cash flow

Here is an example of a more irregular cash flow.

Figure: Example of an irregular cash flow. An example could be the evolution of cash deposited into a risky fund or stock.

■ Such cash flow could be e.g. the value of a risky asset (stock)
■ One usually uses Brownian motion to model such behaviour.

Cash flow

Here is an example of a more irregular cash flow.

Figure: Example of an irregular cash flow. An example could be the evolution of cash deposited into a risky fund or stock.

■ Such cash flow could be e.g. the value of a risky asset (stock)
■ One usually uses Brownian motion to model such behaviour.
■ Problem: Such graph is not differentiable! Not of bounded variation either.

Definition

Cash flows are simply functions or sequences (continuous vs. discrete).

Definition (Deterministic cash flow)

A cash flow C is a function of bounded variation in continuous time, or a sequence of values in discrete time.

Definition

Cash flows are simply functions or sequences (continuous vs. discrete).

Definition (Deterministic cash flow)

A cash flow C is a function of bounded variation in continuous time, or a sequence of values in discrete time.

Example

■ Continuous time: $C(t)=e^{r t}, t \geq 0$ (continuous compounding).

- Discrete time $C_{n}=(1+r)^{n}, n=0,1, \ldots$ (discrete compounding).
- Or any other function/sequence you may think of.

Definition stochastic cash flow

A stochastic cash flow is a cash flow whose outcome is uncertain/random.

Definition (Stochastic cash flow)

A stochastic cash flow is a stochastic process whose sample paths are cash flows. That is $C(t, \omega), t \geq 0$, is a continuous time cash flow or $C_{n}(\omega)$, $n \geq 0$, is a discrete time cash flow.

Definition stochastic cash flow

A stochastic cash flow is a cash flow whose outcome is uncertain/random.

Definition (Stochastic cash flow)

A stochastic cash flow is a stochastic process whose sample paths are cash flows. That is $C(t, \omega), t \geq 0$, is a continuous time cash flow or $C_{n}(\omega)$, $n \geq 0$, is a discrete time cash flow.

Example

- Continuous time: $C(t)=e^{r t+Z}, t \geq 0$ where Z is normally distributed with mean 0 and variance σ^{2}.
- Discrete time: $C_{n}=(1+r Z)^{n}, n=0,1, \ldots$ where Z is a random variable.
- Or any other stochastic process you may think of.

Table of contents

1 Cash flows

- Deterministic cash flows
- Stochastic cash flows

2 Present values

3 Present values of cash flows: retrospective and prospective values

- Retrospective and prospective values
- Example

4 Policy cash flows
■ Refreshing Markov setting

- Policy functions
- Policy cash flows and present, retrospective and prospective values
5 Example of policy cash flow
■ Example 1: Disability pension with death benefit
- Example 2: Endowment insurance

Discount factors

Important factor:

Continuous time: $v(t)=e^{-\int_{0}^{t} r(s) d s}, \quad t \geq 0$.
Discrete time: $v(n), \quad n=0,1, \ldots$

Discount factors

Important factor:

Continuous time: $v(t)=e^{-\int_{0}^{t} r(s) d s}, \quad t \geq 0$.
Discrete time: $v(n), \quad n=0,1, \ldots$

We use both notations $v(t)$ and $v(n)$ for continuous and discrete.

Discount factors

Important factor:

Continuous time: $v(t)=e^{-\int_{0}^{t} r(s) d s}, \quad t \geq 0$.
Discrete time: $v(n), \quad n=0,1, \ldots$

We use both notations $v(t)$ and $v(n)$ for continuous and discrete. If r is constant:

Continuous time: $v(t)=e^{-r t}, \quad t \geq 0$.
Discrete time: $v(n)=e^{-r n}, \quad n=0,1, \ldots$

Discount factors

Important factor:

Continuous time: $v(t)=e^{-\int_{0}^{t} r(s) d s}, \quad t \geq 0$.
Discrete time: $v(n), \quad n=0,1, \ldots$

We use both notations $v(t)$ and $v(n)$ for continuous and discrete. If r is constant:

Continuous time: $v(t)=e^{-r t}, \quad t \geq 0$.
Discrete time: $v(n)=e^{-r n}, \quad n=0,1, \ldots$

■ $v(t)$: today's value of one unit at (continuous) time t.

Discount factors

Important factor:

Continuous time: $v(t)=e^{-\int_{0}^{t} r(s) d s}, \quad t \geq 0$.
Discrete time: $v(n), \quad n=0,1, \ldots$

We use both notations $v(t)$ and $v(n)$ for continuous and discrete. If r is constant:

Continuous time: $v(t)=e^{-r t}, \quad t \geq 0$.
Discrete time: $v(n)=e^{-r n}, \quad n=0,1, \ldots$

■ $v(t)$: today's value of one unit at (continuous) time t.
■ $v(n)$: today's value of one unit at (discrete) time n.

Discount factors

Important factor:

Continuous time: $v(t)=e^{-\int_{0}^{t} r(s) d s}, \quad t \geq 0$.
Discrete time: $v(n), \quad n=0,1, \ldots$

We use both notations $v(t)$ and $v(n)$ for continuous and discrete. If r is constant:

Continuous time: $v(t)=e^{-r t}, \quad t \geq 0$.
Discrete time: $v(n)=e^{-r n}, \quad n=0,1, \ldots$

■ $v(t)$: today's value of one unit at (continuous) time t.
■ $v(n)$: today's value of one unit at (discrete) time n.

- There is always a conversion between

$$
(1+\delta(t))^{t}=e^{\int_{0}^{t} r(s) d s}
$$

Discount factors

Let some asset/liability L to be exercised at time t (or n if discrete time). Then

$$
v(t) L \text {, today's value of } L \text {. }
$$

Discount factors

Let some asset/liability L to be exercised at time t (or n if discrete time). Then

$$
v(t) L \text {, today's value of } L \text {. }
$$

Let some asset/liability L today. Then

$$
v(t)^{-1} L, \text { value at time } t \text { of } L
$$

Discount factors

Let some asset/liability L to be exercised at time t (or n if discrete time). Then

$$
v(t) L \text {, today's value of } L \text {. }
$$

Let some asset/liability L today. Then

$$
v(t)^{-1} L, \text { value at time } t \text { of } L
$$

■ Multiplying by $v(t)$ or $v(n)$ deflates (discounts).

Discount factors

Let some asset/liability L to be exercised at time t (or n if discrete time). Then

$$
v(t) L \text {, today's value of } L \text {. }
$$

Let some asset/liability L today. Then

$$
v(t)^{-1} L, \text { value at time } t \text { of } L
$$

■ Multiplying by $v(t)$ or $v(n)$ deflates (discounts).
■ Dividing by $v(t)$ or $v(n)$ inflates.

Discount factors

Let some asset/liability L to be exercised at time t (or n if discrete time). Then

$$
v(t) L \text {, today's value of } L \text {. }
$$

Let some asset/liability L today. Then

$$
v(t)^{-1} L, \text { value at time } t \text { of } L
$$

■ Multiplying by $v(t)$ or $v(n)$ deflates (discounts).
■ Dividing by $v(t)$ or $v(n)$ inflates.
■ Introduce the one-step discounting

$$
v_{n} \triangleq \frac{v(n+1)}{v(n)} .
$$

Then v_{n} : value at time n of one unit at time $n+1$.

Discount factors

Let some asset/liability L to be exercised at time t (or n if discrete time). Then

$$
v(t) L \text {, today's value of } L \text {. }
$$

Let some asset/liability L today. Then

$$
v(t)^{-1} L, \text { value at time } t \text { of } L
$$

■ Multiplying by $v(t)$ or $v(n)$ deflates (discounts).

- Dividing by $v(t)$ or $v(n)$ inflates.
- Introduce the one-step discounting

$$
v_{n} \triangleq \frac{v(n+1)}{v(n)} .
$$

Then v_{n} : value at time n of one unit at time $n+1$.
■ Saying " L is an asset/liability" gives little information about its true value without knowing when in the timeline it is valued.

Discount factors

Figure: How discount factor v is used to transfer values.

Discount factors

Figure: How discount factor v is used to transfer values.

■ Multiplying by $v(s)$ means translating value from time s to now.

Discount factors

Figure: How discount factor v is used to transfer values.

■ Multiplying by $v(s)$ means translating value from time s to now.

- Multiplying by $\frac{1}{v(t)}$ means translating value from now to t.

Discount factors

Figure: How discount factor v is used to transfer values.

■ Multiplying by $v(s)$ means translating value from time s to now.

- Multiplying by $\frac{1}{v(t)}$ means translating value from now to t.
- Multiplying by $\frac{v(s)}{v(t)}$ means translating value from s to t.

Table of contents

2 Present values

3 Present values of cash flows: retrospective and prospective values

- Retrospective and prospective values
- Example

4 Policy cash flows
■ Refreshing Markov setting

- Policy functions
- Policy cash flows and present, retrospective and prospective values
5 Example of policy cash flow
- Example 1: Disability pension with death benefit
- Example 2: Endowment insurance

PV of cash flows

Now C is a cash flow in continuous time. Let us look at $0 \leq s<\infty$ and $C(s)$.

PV of cash flows

Now C is a cash flow in continuous time. Let us look at $0 \leq s<\infty$ and $C(s)$.

- An infinitesimal change of cash flow at s is given by $d C(s)$

PV of cash flows

Now C is a cash flow in continuous time. Let us look at $0 \leq s<\infty$ and $C(s)$.

- An infinitesimal change of cash flow at s is given by

$$
d C(s)
$$

- $d C(s)$ represents an instantaneous variation of money at time s in an infinitesimal amount of time. You may think of $d C(s) \approx C(s+h)-C(s)$ for an extremely small h.

PV of cash flows

Now C is a cash flow in continuous time. Let us look at $0 \leq s<\infty$ and $C(s)$.

- An infinitesimal change of cash flow at s is given by

$$
d C(s)
$$

- $d C(s)$ represents an instantaneous variation of money at time s in an infinitesimal amount of time. You may think of $d C(s) \approx C(s+h)-C(s)$ for an extremely small h.
■ Today's value of $d C(s)$ is therefore

$$
v(s) d C(s)
$$

PV of cash flows

Now C is a cash flow in continuous time. Let us look at $0 \leq s<\infty$ and $C(s)$.
■ An infinitesimal change of cash flow at s is given by

$$
d C(s)
$$

- $d C(s)$ represents an instantaneous variation of money at time s in an infinitesimal amount of time. You may think of $d C(s) \approx C(s+h)-C(s)$ for an extremely small h.
- Today's value of $d C(s)$ is therefore

$$
v(s) d C(s)
$$

■ If s is running over time, then the total today's value of the whole cash flow C (present value) is

$$
\int_{[0, \infty)} v(s) d C(s)
$$

PV of cash flows

We can translate the total present value of C to any arbitrary middle time t, i.e. the value of $\int_{[0, \infty)} v(s) d C(s)$ at time t is thus

$$
\underbrace{\frac{1}{v(t)}}_{\text {ted to time }} \underbrace{\int_{[0, \infty)} v(s) d C(s)}_{t \text { Today's value of } c}
$$

PV of cash flows

In discrete time:
■ A one-step change of cash flow at k is given by

$$
\Delta C_{k}=C_{k}-C_{k-1}
$$

PV of cash flows

In discrete time:
■ A one-step change of cash flow at k is given by

$$
\Delta C_{k}=C_{k}-C_{k-1}
$$

■ Today's value of ΔC_{k} is therefore

$$
v(k) \Delta C_{k} .
$$

PV of cash flows

In discrete time:
■ A one-step change of cash flow at k is given by

$$
\Delta C_{k}=C_{k}-C_{k-1}
$$

■ Today's value of ΔC_{k} is therefore

$$
v(k) \Delta C_{k} .
$$

■ If k is running over time, then the total today's value of the whole cash flow C (present value) is

$$
\sum_{k=0}^{\infty} v(k) \Delta C_{k} .
$$

PV of cash flows

In discrete time:
■ A one-step change of cash flow at k is given by

$$
\Delta C_{k}=C_{k}-C_{k-1}
$$

■ Today's value of ΔC_{k} is therefore

$$
v(k) \Delta C_{k} .
$$

\square If k is running over time, then the total today's value of the whole cash flow C (present value) is

$$
\sum_{k=0}^{\infty} v(k) \Delta C_{k} .
$$

■ Again, it can be translated to any middle time n :

$$
\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k} .
$$

PV of cash flows

C a cash flow and t a middle future time between now and eternity.

PV of cash flows

C a cash flow and t a middle future time between now and eternity. Today's value of C :

$$
\int_{[0, \infty)} v(s) d C(s)
$$

PV of cash flows

C a cash flow and t a middle future time between now and eternity. Today's value of C :

$$
\int_{[0, \infty)} v(s) d C(s)
$$

Place yourself at time t, then the value of C at time t is

$$
\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s)
$$

PV of cash flows

C a cash flow and t a middle future time between now and eternity. Today's value of C :

$$
\int_{[0, \infty)} v(s) d C(s)
$$

Place yourself at time t, then the value of C at time t is

$$
\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s)
$$

Now, look back and forward:

$$
\underbrace{\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s)}_{\text {Value of } C \text { at time t }}=\underbrace{\frac{1}{v(t)} \int_{[0, t]} v(s) d C(s)}_{\text {Retrospective value }}+\underbrace{\frac{1}{v(t)} \int_{(t, \infty)} v(s) d C(s)}_{\text {Prospective value }}
$$

PV of cash flows

In discrete time:

PV of cash flows

In discrete time: Today's value of C :

$$
\sum_{k=0}^{\infty} v(k) \Delta C_{k}
$$

PV of cash flows

In discrete time:
Today's value of C :

$$
\sum_{k=0}^{\infty} v(k) \Delta C_{k}
$$

Place yourself at time n, then the value of C at time n is

$$
\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k} .
$$

PV of cash flows

In discrete time:
Today's value of C :

$$
\sum_{k=0}^{\infty} v(k) \Delta C_{k}
$$

Place yourself at time n, then the value of C at time n is

$$
\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k} .
$$

Now, look back and forward:

$$
\underbrace{\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k}}_{\text {Value of } C \text { at time } \mathrm{n}}=\underbrace{\frac{1}{v(n)} \sum_{k=0}^{n} v(k) \Delta C_{k}}_{\text {Retrospective value }}+\underbrace{\frac{1}{v(n)} \sum_{k=n+1}^{\infty} v(k) \Delta C_{k}}_{\text {Prospective value }}
$$

Notations PV, retrospective and prospective value

We introduce the same notations for continuous and discrete time:
■ Present value of a cash flow C at time $t: V(t, C)$ or simply $V(t)$.

$$
V(t)=\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s), \quad V(n)=\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k} .
$$

Notations PV, retrospective and prospective value

We introduce the same notations for continuous and discrete time:

- Present value of a cash flow C at time $t: V(t, C)$ or simply $V(t)$.

$$
V(t)=\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s), \quad V(n)=\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k} .
$$

■ Retrospective value of a cash flow C at time t : $V^{-}(t, C)$ or simply $V^{-}(t)$.

$$
V^{-}(t)=\frac{1}{v(t)} \int_{[0, t]} v(s) d C(s), \quad V^{-}(n)=\frac{1}{v(n)} \sum_{k=0}^{n} v(k) \Delta C_{k} .
$$

Notations PV, retrospective and prospective value

We introduce the same notations for continuous and discrete time:

- Present value of a cash flow C at time $t: V(t, C)$ or simply $V(t)$.

$$
V(t)=\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s), \quad V(n)=\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k} .
$$

■ Retrospective value of a cash flow C at time $t: V^{-}(t, C)$ or simply $V^{-}(t)$.

$$
V^{-}(t)=\frac{1}{v(t)} \int_{[0, t]} v(s) d C(s), \quad V^{-}(n)=\frac{1}{v(n)} \sum_{k=0}^{n} v(k) \Delta C_{k} .
$$

■ Prospective value of a cash flow C at time $t: V^{+}(t, C)$ or simply $V^{+}(t)$.

$$
V^{+}(t)=\frac{1}{v(t)} \int_{(t, \infty)} v(s) d C(s), \quad V^{+}(n)=\frac{1}{v(n)} \sum_{k=n+1}^{\infty} v(k) \Delta C_{k} .
$$

Notations PV, retrospective and prospective value

We introduce the same notations for continuous and discrete time:

- Present value of a cash flow C at time $t: V(t, C)$ or simply $V(t)$.

$$
V(t)=\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s), \quad V(n)=\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k} .
$$

■ Retrospective value of a cash flow C at time $t: V^{-}(t, C)$ or simply $V^{-}(t)$.

$$
V^{-}(t)=\frac{1}{v(t)} \int_{[0, t]} v(s) d C(s), \quad V^{-}(n)=\frac{1}{v(n)} \sum_{k=0}^{n} v(k) \Delta C_{k} .
$$

■ Prospective value of a cash flow C at time $t: V^{+}(t, C)$ or simply $V^{+}(t)$.

$$
V^{+}(t)=\frac{1}{v(t)} \int_{(t, \infty)} v(s) d C(s), \quad V^{+}(n)=\frac{1}{v(n)} \sum_{k=n+1}^{\infty} v(k) \Delta C_{k} .
$$

- Obvious relation:

$$
V(t)=V^{-}(t)+V^{+}(t), \quad V(n)=V^{-}(n)+V^{+}(n)
$$

Example of PV of a cash flow

Let C (continuous time) be given by

$$
C(t)= \begin{cases}\text { kr. } 20, & t \in[0,2), \\ \text { kr. 30, }, & t \in[2,3), \\ \text { kr. } 5, & t \in[3,7), \\ \text { kr. } 50, & t \in[7, \infty),\end{cases}
$$

Figure: Example of cash flow (it does not need to be piecewise constant)

Example of PV of a cash flow

Then

$$
\Delta C(s)=\left\{\begin{array}{l}
\text { kr. } 20, \quad s=0 \\
\text { kr. } 10, \quad s=2 \\
\text { kr. }-25, \quad s=3 \\
\text { kr. } 45, \quad s=7, \\
\text { kr. } 0, \quad \text { otherwise. }
\end{array}\right.
$$

Example of PV of a cash flow

Then

$$
\Delta C(s)=\left\{\begin{array}{l}
\text { kr. } 20, \quad s=0 \\
\text { kr. } 10, \quad s=2 \\
\text { kr. }-25, \quad s=3 \\
\text { kr. } 45, \quad s=7 \\
\text { kr. 0, otherwise. }
\end{array}\right.
$$

Take $r=3 \%$, then $v(s)=e^{-r s}$.

Example of PV of a cash flow

Then

$$
\Delta C(s)=\left\{\begin{array}{l}
\text { kr. } 20, \quad s=0 \\
\text { kr. } 10, \quad s=2 \\
\text { kr. }-25, \quad s=3 \\
\text { kr. } 45, \quad s=7 \\
\text { kr. 0, otherwise. }
\end{array}\right.
$$

Take $r=3 \%$, then $v(s)=e^{-r s}$.

$$
V(0)=\int_{[0, \infty)} v(s) d C(s)=\int_{0}^{\infty} v(s) \underbrace{C^{\prime}(s)}_{=0} d s+\sum_{0 \leq s<\infty} v(s) \Delta C(s)=\sum_{0 \leq s<\infty} v(s) \Delta C(s) .
$$

Example of PV of a cash flow

Then

$$
\Delta C(s)=\left\{\begin{array}{l}
\text { kr. } 20, \quad s=0 \\
\text { kr. } 10, \quad s=2 \\
\text { kr. }-25, \quad s=3 \\
\text { kr. 45, } \quad s=7, \\
\text { kr. 0, otherwise. }
\end{array}\right.
$$

Take $r=3 \%$, then $v(s)=e^{-r s}$.
$\int_{[0, \infty)} v(s) d C(s)=\int_{0}^{\infty} v(s) \underbrace{C^{\prime}(s)}_{=0} d s+\sum_{0 \leq s<\infty} v(s) \Delta C(s)=\sum_{0 \leq s<\infty} v(s) \Delta C(s)$.
Hence,

$$
\begin{aligned}
V(0) & =\int_{[0, \infty)} v(s) d C(s)=\sum_{0 \leq s<\infty} v(s) \Delta C(s) \\
& =v(0) \Delta C(0)+v(2) \Delta C(2)+v(3) \Delta C(3)+v(7) \Delta C(7)=43.05 \mathrm{kr}
\end{aligned}
$$

Example of PV of a cash flow

Then

$$
\Delta C(s)=\left\{\begin{array}{l}
\text { kr. } 20, \quad s=0 \\
\text { kr. } 10, \quad s=2 \\
\text { kr. }-25, \quad s=3 \\
\text { kr. } 45, \quad s=7 \\
\text { kr. } 0, \quad \text { otherwise. }
\end{array}\right.
$$

Take $r=3 \%$, then $v(s)=e^{-r s}$.

$$
\begin{gathered}
V(0)=\int_{[0, \infty)} v(s) d C(s)=\int_{0}^{\infty} v(s) \underbrace{C^{\prime}(s)}_{=0} d s+\sum_{0 \leq s<\infty} v(s) \Delta C(s)=\sum_{0 \leq s<\infty} v(s) \Delta C(s) . \\
V(0)=\int_{[0, \infty)} v(s) d C(s)=\sum_{0 \leq s<\infty} v(s) \Delta C(s) \\
=v(0) \Delta C(0)+v(2) \Delta C(2)+v(3) \Delta C(3)+v(7) \Delta C(7)=43.05 \mathrm{kr} .
\end{gathered}
$$

If you promise me this cash flow I should give you 43.05 kr so we are even!

Example of PV of a cash flow

Now look at $t=4$.

■ Idea retrospective: if we stand in $t=4$, what is the value of what has happened so far at time t ?

Example of PV of a cash flow

Now look at $t=4$.

■ Idea retrospective: if we stand in $t=4$, what is the value of what has happened so far at time t ?

- Idea prospective: if we stand in $t=4$, what is the value of the remaining future cash flow that has not taken place yet. In other words, what should you pay me back to cancel the cash flow?

Example of PV of a cash flow

Now look at $t=4$.

Retrospective:

$$
\begin{aligned}
V^{-}(4) & =\frac{1}{v(4)} \int_{[0,4]} v(s) d C(s) \\
& =\frac{1}{v(4)}(v(0) \Delta C(0)+v(2) \Delta C(2)+v(3) \Delta C(3))=7.41 \mathrm{kr}
\end{aligned}
$$

Example of PV of a cash flow

Now look at $t=4$.

Prospective:

$$
\begin{aligned}
V^{+}(4) & =\frac{1}{v(4)} \int_{(4, \infty)} v(s) d C(s) \\
& =\frac{1}{v(4)} v(7) \Delta C(7)=41.13 \mathrm{kr} .
\end{aligned}
$$

Example of PV of a cash flow

Now look at $t=4$.

Observation:

$$
\begin{gathered}
V(4)=48.53 \mathrm{kr} ., \quad V^{-}(4)=7.41 \mathrm{kr} ., \quad V^{+}(4)=41.13 \mathrm{kr} . \\
V(4)=V^{-}(4)+V^{+}(4)
\end{gathered}
$$

Example of PV of a cash flow

Example of PV of a cash flow

Values of the cash flow

Example of PV of a cash flow

Values of the cash flow

■ Idea retrospective: if we stand in t, what is the value of what has happened so far at time t ?

- Idea prospective: if we stand in t, what is the value of the remaining future cash flow that has not taken place yet. In other words, what should you pay me back to cancel the cash flow?

Table of contents

1 Cash flows

- Deterministic cash flows
- Stochastic cash flows

2 Present values

3 Present values of cash flows: retrospective and prospective values
Retrospective and prospective values

- Example

4 Policy cash flows

■ Refreshing Markov setting

- Policy functions
- Policy cash flows and present, retrospective and prospective values
5 Example of policy cash flow
- Example 1: Disability pension with death benefit
- Example 2: Endowment insurance

Markov setting

- Z Markov process with finite state space \mathcal{Z}.

Markov setting

$\square Z$ Markov process with finite state space \mathcal{Z}.
■ $Z(t)$ or Z_{n} : state of the insured at time $t \geq 0$ or $n=0,1, \ldots$

Markov setting

- Z Markov process with finite state space \mathcal{Z}.

■ $Z(t)$ or Z_{n} : state of the insured at time $t \geq 0$ or $n=0,1, \ldots$
■ Transition probabilities $p_{i j}(t, s) \triangleq \mathbb{P}[Z(s)=j \mid Z(t)=i], s>t, i, j \in \mathcal{Z}$.

Markov setting

■ Z Markov process with finite state space \mathcal{Z}.
■ $Z(t)$ or Z_{n} : state of the insured at time $t \geq 0$ or $n=0,1, \ldots$
■ Transition probabilities $p_{i j}(t, s) \triangleq \mathbb{P}[Z(s)=j \mid Z(t)=i], s>t, i, j \in \mathcal{Z}$.
■ If continuous time: transition rates:

$$
\mu_{i j}(t)=\lim _{h \searrow 0} \frac{p_{i j}(t, t+h)}{h}, \quad j \neq i
$$

$$
\text { and } \mu_{i}(t)=-\mu_{i i}(t)
$$

Markov setting

$\square Z$ Markov process with finite state space \mathcal{Z}.
■ $Z(t)$ or Z_{n} : state of the insured at time $t \geq 0$ or $n=0,1, \ldots$
■ Transition probabilities $p_{i j}(t, s) \triangleq \mathbb{P}[Z(s)=j \mid Z(t)=i], s>t, i, j \in \mathcal{Z}$.
■ If continuous time: transition rates:

$$
\mu_{i j}(t)=\lim _{h \searrow 0} \frac{p_{i j}(t, t+h)}{h}, \quad j \neq i,
$$

and $\mu_{i}(t)=-\mu_{i i}(t)$.
■ Kolmogorov equations: $\frac{d}{d s} P(t, s)=P(t, s) \wedge(s)$ (fwd.) or $\frac{d}{d t} P(t, s)=-\Lambda(t) P(t, s)$ (bwd.) where P is the transition probability matrix and \wedge the transition rate matrix.

Markov setting

Introduce the following stochastic processes:

- In continuous time ($t \geq 0$)

$$
l_{i}^{Z}(t)=\mathbb{I}_{\{Z(t)=i\}}, \quad N_{i j}^{Z}(t)=\#\{s \in[0, t]: Z(s-)=i, Z(s)=j\} .
$$

Markov setting

Introduce the following stochastic processes:

- In continuous time ($t \geq 0$)

$$
l_{i}^{Z}(t)=\mathbb{I}_{\{Z(t)=i\}}, \quad N_{i j}^{Z}(t)=\#\{s \in[0, t]: Z(s-)=i, Z(s)=j\} .
$$

■ In discrete time ($n=0,1, \ldots$)

$$
I_{i}^{Z}(n)=\mathbb{I}_{\left\{Z_{n}=i\right\}}, \quad N_{i j}^{Z}(n)=\#\left\{k \in\{1,2, \ldots, n\}: Z_{k-1}=i, Z_{k}=j\right\} .
$$

Markov setting

Introduce the following stochastic processes:

- In continuous time ($t \geq 0$)

$$
l_{i}^{Z}(t)=\mathbb{I}_{\{Z(t)=i\}}, \quad N_{i j}^{Z}(t)=\#\{s \in[0, t]: Z(s-)=i, Z(s)=j\} .
$$

■ In discrete time $(n=0,1, \ldots)$

$$
I_{i}^{Z}(n)=\mathbb{I}_{\left\{Z_{n}=i\right\}}, \quad N_{i j}^{Z}(n)=\#\left\{k \in\{1,2, \ldots, n\}: Z_{k-1}=i, Z_{k}=j\right\} .
$$

■ The process $I_{i}^{Z}(t)$ tells us whether the insured is in state i or not, at time t.

Markov setting

Introduce the following stochastic processes:

- In continuous time ($t \geq 0$)

$$
l_{i}^{Z}(t)=\mathbb{I}_{\{Z(t)=i\}}, \quad N_{i j}^{Z}(t)=\#\{s \in[0, t]: Z(s-)=i, Z(s)=j\} .
$$

■ In discrete time ($n=0,1, \ldots$)

$$
I_{i}^{Z}(n)=\mathbb{I}_{\left\{Z_{n}=i\right\}}, \quad N_{i j}^{Z}(n)=\#\left\{k \in\{1,2, \ldots, n\}: Z_{k-1}=i, Z_{k}=j\right\} .
$$

■ The process $l_{i}^{Z}(t)$ tells us whether the insured is in state i or not, at time t.

- The process $N_{i j}^{Z}(t)$ counts the exact number of transitions from i to j from start to time t.

Markov setting

Introduce the following stochastic processes:

- In continuous time ($t \geq 0$)

$$
l_{i}^{Z}(t)=\mathbb{I}_{\{Z(t)=i\}}, \quad N_{i j}^{Z}(t)=\#\{s \in[0, t]: Z(s-)=i, Z(s)=j\} .
$$

■ In discrete time ($n=0,1, \ldots$)

$$
I_{i}^{Z}(n)=\mathbb{I}_{\left\{Z_{n}=i\right\}}, \quad N_{i j}^{Z}(n)=\#\left\{k \in\{1,2, \ldots, n\}: Z_{k-1}=i, Z_{k}=j\right\} .
$$

■ The process $I_{i}^{Z}(t)$ tells us whether the insured is in state i or not, at time t.

- The process $N_{i j}^{Z}(t)$ counts the exact number of transitions from i to j from start to time t.
- We may write I_{i} and $N_{i j}$ and drop Z when clear.

Policy functions

Definition (Policy functions (discrete time))

Let $a_{i}, a_{i j}: \mathbb{N} \rightarrow \mathbb{R}, i, j \in \mathcal{Z}$, be two discrete time functions. We call them policy functions whenever they model the following quantities:

- $a_{i}(n)=$ punctual payments made at time n when the insured is in state i.
- $a_{i j}(n)=$ payments at time n for a switch from state i at time $n-1$ to state j at time n.

Policy functions

Definition (Policy functions (discrete time))

Let $a_{i}, a_{i j}: \mathbb{N} \rightarrow \mathbb{R}, i, j \in \mathcal{Z}$, be two discrete time functions. We call them policy functions whenever they model the following quantities:

- $a_{i}(n)=$ punctual payments made at time n when the insured is in state i.
- $a_{i j}(n)=$ payments at time n for a switch from state i at time $n-1$ to state j at time n.

Definition (Policy functions (continuous time))

Let $a_{i}, a_{i j}: \mathbb{R} \rightarrow \mathbb{R}, i, j \in \mathcal{Z}$, be two functions of bounded variation. We call them policy functions whenever they model the following quantities:

- $a_{i}(t)=$ the accumulated premiums and benefits up to time t while the insured is in state i.

■ $a_{i j}(t)=, j \neq i$, payments at time t for a switch from state i to state j at time t.

Policy cash flows

Definition (Policy cash flow in discrete time)

Given policy functions $a_{i}, a_{i j}, i, j \in \mathcal{Z}$, we define the policy cash flow at any time $k=0,1, \ldots$ by

$$
\Delta C_{k}=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(k) a_{i}(k)+\sum_{i, j \in \mathcal{Z}} \Delta N_{i j}^{Z}(k) a_{i j}(k) .
$$

Policy cash flows

Definition (Policy cash flow in discrete time)

Given policy functions $a_{i}, a_{i j}, i, j \in \mathcal{Z}$, we define the policy cash flow at any time $k=0,1, \ldots$ by

$$
\Delta C_{k}=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(k) a_{i}(k)+\sum_{i, j \in \mathcal{Z}} \Delta N_{i j}^{Z}(k) a_{i j}(k) .
$$

Definition (Policy cash flow in continuous time)

Given policy functions $a_{i}, a_{i j}, i, j \in \mathcal{Z}$, we define the policy cash flow at any time $s \geq 0$ by

$$
d C(s)=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j \in \mathcal{Z}} d N_{i j}^{Z}(s) a_{i j}(s) .
$$

PV, retrospective and prospective values

Now that we have fully described the (policy) cash flows, we need to interest rate adjust them:

PV, retrospective and prospective values

Now that we have fully described the (policy) cash flows, we need to interest rate adjust them: Recall:

$$
\begin{aligned}
\Delta C_{k} & =\sum_{i \in \mathcal{Z}} l_{i}^{Z}(k) a_{i}(k)+\sum_{i, j \in \mathcal{Z}} \Delta N_{i j}^{Z}(k) a_{i j}(k) . \\
d C(s) & =\sum_{i \in \mathcal{Z}} l_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j \in \mathcal{Z}} d N_{i j}^{Z}(s) a_{i j}(s) .
\end{aligned}
$$

PV , retrospective and prospective values

Recall:

$$
\begin{aligned}
& \Delta C_{k}=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(k) a_{i}(k)+\sum_{i, j \in \mathcal{Z}} \Delta N_{i j}^{Z}(k) a_{i j}(k) . \\
& d C(s)=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j \in \mathcal{Z}} d N_{i j}^{Z}(s) a_{i j}(s) .
\end{aligned}
$$

PV discrete time:

$$
\begin{aligned}
V(n, C) & =\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k} \\
& =\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) I_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{n} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k)
\end{aligned}
$$

PV, retrospective and prospective values

Recall:

$$
\begin{aligned}
& \Delta C_{k}=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(k) a_{i}(k)+\sum_{i, j \in \mathcal{Z}} \Delta N_{i j}^{Z}(k) a_{i j}(k) . \\
& d C(s)=\sum_{i \in \mathcal{Z}} I_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j \in \mathcal{Z}} d N_{i j}^{Z}(s) a_{i j}(s) .
\end{aligned}
$$

PV discrete time:

$$
\begin{aligned}
V(n, C) & =\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k} \\
& =\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k)
\end{aligned}
$$

PV continuous time:

$$
\begin{aligned}
V(t, C) & =\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s) \\
& =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, \infty)} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s)
\end{aligned}
$$

PV, retrospective and prospective value (discrete time)

$$
\begin{aligned}
& V(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k), \\
& v^{-}(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{n} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{n} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k), \\
& \left.V^{+}(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=n+1}^{\infty} v(k)\right)_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=n+1}^{\infty} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k) .
\end{aligned}
$$

PV, retrospective and prospective value (discrete time)

$$
\begin{aligned}
& V(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k), \\
& v^{-}(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{n} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{n} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k), \\
& V^{+}(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=n+1}^{\infty} v(k) I_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=n+1}^{\infty} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k) .
\end{aligned}
$$

- Recall that we may simply write $V(n)$ instead of $V(n, C)$, etc.

PV, retrospective and prospective value (discrete time)

$$
\begin{aligned}
& V(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k), \\
& v^{-}(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{n} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{n} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k), \\
& v^{+}(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=n+1}^{\infty} v(k) Z_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=n+1}^{\infty} v(k) a_{j j}(k) \Delta N_{i j}^{Z}(k) .
\end{aligned}
$$

■ Recall that we may simply write $V(n)$ instead of $V(n, C)$, etc.
■ Intuition: PV's of sums of payments $a_{i}(n)$ for being in state i at time n and payments $a_{i j}(n)$ for switching from i to j at n.

PV, retrospective and prospective value (discrete time)

$$
\begin{aligned}
& V(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k), \\
& v^{-}(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{n} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{n} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k), \\
& v^{+}(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=n+1}^{\infty} v(k) Z_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=n+1}^{\infty} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k) .
\end{aligned}
$$

■ Recall that we may simply write $V(n)$ instead of $V(n, C)$, etc.
■ Intuition: PV's of sums of payments $a_{i}(n)$ for being in state i at time n and payments $a_{i j}(n)$ for switching from i to j at n.
■ We can readily see: $V(n)=V^{-}(n)+V^{+}(n), n=0,1, \ldots$

PV, retrospective and prospective value (discrete time)

$$
\begin{aligned}
& V(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{\infty} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k), \\
& V^{-}(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=0}^{n} v(k) l_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=0}^{n} v(k) a_{i j}(k) \Delta N_{i j}^{Z}(k), \\
& \left.V^{+}(n, C)=\frac{1}{v(n)} \sum_{i \in \mathcal{Z}} \sum_{k=n+1}^{\infty} v(k)\right)_{i}^{Z}(k) a_{i}(k)+\frac{1}{v(n)} \sum_{i, j \in \mathcal{Z}} \sum_{k=n+1}^{\infty} v(k) a_{j j}(k) \Delta N_{i j}^{Z}(k) .
\end{aligned}
$$

■ Recall that we may simply write $V(n)$ instead of $V(n, C)$, etc.
■ Intuition: PV's of sums of payments $a_{i}(n)$ for being in state i at time n and payments $a_{i j}(n)$ for switching from i to j at n.
$■$ We can readily see: $V(n)=V^{-}(n)+V^{+}(n), n=0,1, \ldots$
■ Obs: This is a stochastic cash flow!

PV, retrospective and prospective value (continuous time)

$$
\begin{aligned}
V(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, \infty)} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
V^{-}(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, t]} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, t]} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
V^{+}(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{(t, \infty)} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{(t, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s) .
\end{aligned}
$$

PV, retrospective and prospective value (continuous time)

$$
\begin{aligned}
& V(t, C)=\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, \infty)} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
& v^{-}(t, C)=\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, t]} v(s) I_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, t]} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
& \left.v^{+}(t, C)=\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{(t, \infty)} v(s)\right)_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{(t, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s) .
\end{aligned}
$$

■ Recall that we may simply write $V(t)$ instead of $V(t, C)$, etc.

PV, retrospective and prospective value (continuous time)

$$
\begin{aligned}
& V(t, C)=\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, \infty)} v(s) I_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
& v^{-}(t, C)=\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, t]} v(s) I_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, t]} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
& \left.v^{+}(t, C)=\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{(t, \infty)} v(s)\right)_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{(t, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s) .
\end{aligned}
$$

■ Recall that we may simply write $V(t)$ instead of $V(t, C)$, etc.
■ NB: $a_{i}(t)$ in continuous time is accumulated payments while in i, this means that $d a_{i}(t)$ is instantaneous payment for being in i at time t.

PV, retrospective and prospective value (continuous time)

$$
\begin{aligned}
V(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, \infty)} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
V^{-}(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, t]} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, t]} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
V^{+}(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{(t, \infty)} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{(t, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s) .
\end{aligned}
$$

- Recall that we may simply write $V(t)$ instead of $V(t, C)$, etc.
\square NB: $a_{i}(t)$ in continuous time is accumulated payments while in i, this means that $d a_{i}(t)$ is instantaneous payment for being in i at time t.
■ Intuition: PV's of sums of (instantaneous) payments $d a_{i}(t)$ while being in i at time n and (punctual) payments $a_{i j}(t)$ for switching from i to j at t.

PV, retrospective and prospective value (continuous time)

$$
\begin{aligned}
V(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, \infty)} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
V^{-}(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, t]} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, t]} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
V^{+}(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{(t, \infty)} v(s) l_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{(t, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s) .
\end{aligned}
$$

■ Recall that we may simply write $V(t)$ instead of $V(t, C)$, etc.
■ NB: $a_{i}(t)$ in continuous time is accumulated payments while in i, this means that $d a_{i}(t)$ is instantaneous payment for being in i at time t.
■ Intuition: PV's of sums of (instantaneous) payments $d a_{i}(t)$ while being in i at time n and (punctual) payments $a_{i j}(t)$ for switching from i to j at t.
■ We can readily see: $V(t)=V^{-}(t)+V^{+}(t), t \geq 0$.

PV, retrospective and prospective value (continuous time)

$$
\begin{aligned}
V(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, \infty)} v(s) I_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
V^{-}(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{[0, t]} v(s) I_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{[0, t]} v(s) a_{i j}(s) d N_{i j}^{Z}(s), \\
V^{+}(t, C) & =\frac{1}{v(t)} \sum_{i \in \mathcal{Z}} \int_{(t, \infty)} v(s) I_{i}^{Z}(s) d a_{i}(s)+\frac{1}{v(t)} \sum_{i, j \in \mathcal{Z}} \int_{(t, \infty)} v(s) a_{i j}(s) d N_{i j}^{Z}(s) .
\end{aligned}
$$

■ Recall that we may simply write $V(t)$ instead of $V(t, C)$, etc.
■ NB: $a_{i}(t)$ in continuous time is accumulated payments while in i, this means that $d a_{i}(t)$ is instantaneous payment for being in i at time t.
■ Intuition: PV's of sums of (instantaneous) payments $d a_{i}(t)$ while being in i at time n and (punctual) payments $a_{i j}(t)$ for switching from i to j at t.
$■$ We can readily see: $V(t)=V^{-}(t)+V^{+}(t), t \geq 0$.
■ Obs: This is a stochastic cash flow!

Table of contents

1 Cash flows

■ Deterministic cash flows

- Stochastic cash flows

2 Present values
3 Present values of cash flows: retrospective and prospective values

- Retrospective and prospective values
- Example

4 Policy cash flows

- Refreshing Markov setting
- Policy functions
- Policy cash flows and present, retrospective and prospective values
5 Example of policy cash flow
■ Example 1: Disability pension with death benefit
- Example 2: Endowment insurance

Example: disability pension with death benefit

Figure: Markov model of disability pension.

■ States $\mathcal{Z}=\{0,1,2\}$ where 0 active, 1 disabled and 2 deceased.

Example: disability pension with death benefit

Figure: Markov model of disability pension.

- States $\mathcal{Z}=\{0,1,2\}$ where 0 active, 1 disabled and 2 deceased.

■ Transition rates (simplistic): $\mu_{01}=0.5, \mu_{10}=0.5, \mu_{02}=0.05$, $\mu_{12}=0.05$.

Example: disability pension with death benefit

Figure: Markov model of disability pension.

- States $\mathcal{Z}=\{0,1,2\}$ where 0 active, 1 disabled and 2 deceased.

■ Transition rates (simplistic): $\mu_{01}=0.5, \mu_{10}=0.5, \mu_{02}=0.05$, $\mu_{12}=0.05$.

- Contract duration: $T=10$ years. Age of insured: $z_{0}=50$ years in 2024.

Example: disability pension with death benefit

Figure: Markov model of disability pension.
\square States $\mathcal{Z}=\{0,1,2\}$ where 0 active, 1 disabled and 2 deceased.
■ Transition rates (simplistic): $\mu_{01}=0.5, \mu_{10}=0.5, \mu_{02}=0.05$, $\mu_{12}=0.05$.

- Contract duration: $T=10$ years. Age of insured: $z_{0}=50$ years in 2024.
- Policy: Yearly disability pensions of $P=100000$ are paid to the insured while in 1. A final death benefit $B=1000000$ is paid to the insured when a transition to 2 . Everything stops after T.

Example: disability pension with death benefit

Policy functions:

For sojourns:

$$
a_{1}(t)=\left\{\begin{array}{ll}
P t, & t \in[0, T) \\
P T, & t \in[T, \infty)
\end{array} .\right.
$$

For transitions:

$$
a_{02}(t)=\left\{\begin{array}{ll}
B, & t \in[0, T] \\
0, & t \notin[0, T]
\end{array} \quad, \quad a_{12}(t)= \begin{cases}B, & t \in[0, T] \\
0, & t \notin[0, T]\end{cases}\right.
$$

Example: disability pension with death benefit

Recall:

$$
d C(s)=\sum_{i \in \mathcal{Z}} I_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j \in \mathcal{Z}} d N_{i j}^{Z}(s) a_{i j}(s)
$$

The cash flow of this policy is given by

$$
d C(s)=I_{1}^{Z}(s) d a_{1}(s)+d N_{02}^{Z}(s) a_{02}(s)+d N_{12}^{Z}(s) a_{12}(s) .
$$

Example: disability pension with death benefit

Recall:

$$
d C(s)=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j \in \mathcal{Z}} d N_{i j}^{Z}(s) a_{i j}(s)
$$

The cash flow of this policy is given by

$$
d C(s)=I_{1}^{Z}(s) d a_{1}(s)+d N_{02}^{Z}(s) a_{02}(s)+d N_{12}^{Z}(s) a_{12}(s) .
$$

The function a_{1} is a.e. differentiable with $a_{1}^{\prime}(t)=P$ on $(0, T)$ with no jumps, hence $d a_{1}(s)=P d s$ on $(0, T)$.

Example: disability pension with death benefit

Recall:

$$
d C(s)=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j \in \mathcal{Z}} d N_{i j}^{Z}(s) a_{i j}(s)
$$

The cash flow of this policy is given by

$$
d C(s)=I_{1}^{Z}(s) d a_{1}(s)+d N_{02}^{Z}(s) a_{02}(s)+d N_{12}^{Z}(s) a_{12}(s) .
$$

The function a_{1} is a.e. differentiable with $a_{1}^{\prime}(t)=P$ on $(0, T)$ with no jumps, hence $d a_{1}(s)=P d s$ on $(0, T)$. Thus, for $s \in[0, T]$,

$$
d C(s)=P l_{1}^{Z}(s) d s+B d N_{02}^{Z}(s)+B d N_{12}^{Z}(s) .
$$

Example: disability pension with death benefit

Recall:

$$
d C(s)=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j \in \mathcal{Z}} d N_{i j}^{Z}(s) a_{i j}(s)
$$

The cash flow of this policy is given by

$$
d C(s)=I_{1}^{Z}(s) d a_{1}(s)+d N_{02}^{Z}(s) a_{02}(s)+d N_{12}^{Z}(s) a_{12}(s)
$$

The function a_{1} is a.e. differentiable with $a_{1}^{\prime}(t)=P$ on $(0, T)$ with no jumps, hence $d a_{1}(s)=P d s$ on $(0, T)$. Thus, for $s \in[0, T]$,

$$
d C(s)=P l_{1}^{Z}(s) d s+B d N_{02}^{Z}(s)+B d N_{12}^{Z}(s) .
$$

Hence, the prospective value is

$$
V^{+}(t)=\frac{P}{v(t)} \int_{(t, T)} v(s) l_{1}^{Z}(s) d s+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{02}^{Z}(s)+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{12}^{Z}(s) .
$$

Example: disability pension with death benefit (continuous)

Prospective value:

$$
V^{+}(t)=\frac{P}{v(t)} \int_{(t, T)} v(s) l_{1}^{Z}(s) d s+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{02}^{Z}(s)+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{12}^{Z}(s) .
$$

- To simulate deterministic cash flows $V^{+}(t, \omega)$ for a specific outcome ω we need to simulate paths of $Z(t, \omega)$ (states of insured) for a specific outcome ω.

Example: disability pension with death benefit (continuous)

Prospective value:

$$
V^{+}(t)=\frac{P}{v(t)} \int_{(t, T)} v(s) I_{1}^{z}(s) d s+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{02}^{Z}(s)+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{12}^{Z}(s) .
$$

- To simulate deterministic cash flows $V^{+}(t, \omega)$ for a specific outcome ω we need to simulate paths of $Z(t, \omega)$ (states of insured) for a specific outcome ω.
- We chop $[0, T]$ into $t_{i}=i h, i=0, \ldots, n$, where $h=\frac{T}{n}$.

Example: disability pension with death benefit (continuous)

Prospective value:

$$
V^{+}(t)=\frac{P}{v(t)} \int_{(t, T)} v(s) I_{1}^{z}(s) d s+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{02}^{Z}(s)+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{12}^{Z}(s) .
$$

- To simulate deterministic cash flows $V^{+}(t, \omega)$ for a specific outcome ω we need to simulate paths of $Z(t, \omega)$ (states of insured) for a specific outcome ω.
- We chop $[0, T]$ into $t_{i}=i h, i=0, \ldots, n$, where $h=\frac{T}{n}$.
- Start $Z(0)=0=j_{0}$. Pick j_{1} from $\mathcal{Z}=\{0,1,2\}$ randomly according to the vector $\left\{p_{00}(0, h), p_{01}(0, h), p_{02}(0, h)\right\}$. Set $Z(h)=j_{1}$.

Example: disability pension with death benefit (continuous)

Prospective value:

$$
V^{+}(t)=\frac{P}{v(t)} \int_{(t, T)} v(s) l_{1}^{Z}(s) d s+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{02}^{Z}(s)+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{12}^{Z}(s) .
$$

- To simulate deterministic cash flows $V^{+}(t, \omega)$ for a specific outcome ω we need to simulate paths of $Z(t, \omega)$ (states of insured) for a specific outcome ω.
- We chop $[0, T]$ into $t_{i}=i h, i=0, \ldots, n$, where $h=\frac{T}{n}$.
- Start $Z(0)=0=j_{0}$. Pick j_{1} from $\mathcal{Z}=\{0,1,2\}$ randomly according to the vector $\left\{p_{00}(0, h), p_{01}(0, h), p_{02}(0, h)\right\}$. Set $Z(h)=j_{1}$.
- Pick j_{2} from $\mathcal{Z}=\{0,1,2\}$ randomly according to the vector $\left\{p_{j_{1} 0}(h, 2 h), p_{j_{1} 1}(h, 2 h), p_{j_{1} 2}(h, 2 h)\right\}$. Set $Z(2 h)=j_{2}$.

Example: disability pension with death benefit (continuous)

Prospective value:

$$
\left.v^{+}(t)=\frac{P}{v(t)} \int_{(t, T)} v(s)\right)_{1}^{Z}(s) d s+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{02}^{Z}(s)+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{12}^{Z}(s) .
$$

- To simulate deterministic cash flows $V^{+}(t, \omega)$ for a specific outcome ω we need to simulate paths of $Z(t, \omega)$ (states of insured) for a specific outcome ω.
- We chop $[0, T]$ into $t_{i}=i h, i=0, \ldots, n$, where $h=\frac{T}{n}$.
- Start $Z(0)=0=j_{0}$. Pick j_{1} from $\mathcal{Z}=\{0,1,2\}$ randomly according to the vector $\left\{p_{00}(0, h), p_{01}(0, h), p_{02}(0, h)\right\}$. Set $Z(h)=j_{1}$.
- Pick j_{2} from $\mathcal{Z}=\{0,1,2\}$ randomly according to the vector $\left\{p_{j_{1} 0}(h, 2 h), p_{j_{1} 1}(h, 2 h), p_{j_{1} 2}(h, 2 h)\right\}$. Set $Z(2 h)=j_{2}$.

Example: disability pension with death benefit (continuous)

Prospective value:

$$
\left.v^{+}(t)=\frac{P}{v(t)} \int_{(t, T)} v(s)\right)_{1}^{Z}(s) d s+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{02}^{Z}(s)+\frac{B}{v(t)} \int_{(t, T)} v(s) d N_{12}^{Z}(s) .
$$

- To simulate deterministic cash flows $V^{+}(t, \omega)$ for a specific outcome ω we need to simulate paths of $Z(t, \omega)$ (states of insured) for a specific outcome ω.
- We chop $[0, T]$ into $t_{i}=i h, i=0, \ldots, n$, where $h=\frac{T}{n}$.
- Start $Z(0)=0=j_{0}$. Pick j_{1} from $\mathcal{Z}=\{0,1,2\}$ randomly according to the vector $\left\{p_{00}(0, h), p_{01}(0, h), p_{02}(0, h)\right\}$. Set $Z(h)=j_{1}$.
■ Pick j_{2} from $\mathcal{Z}=\{0,1,2\}$ randomly according to the vector $\left\{p_{j_{1} 0}(h, 2 h), p_{j_{1} 1}(h, 2 h), p_{j_{1} 2}(h, 2 h)\right\}$. Set $Z(2 h)=j_{2}$.
- Pick j_{n} from $\mathcal{Z}=\{0,1,2\}$ randomly according to the vector $\left\{p_{j_{n-1}}((n-1) h, T), p_{j_{n-1} 1}((n-1) h, T), p_{j_{n-1} 2}((n-1) h, T)\right\}$. Set $Z(T)=j_{n}$.

Example: disability pension with death benefit

We simulated 4 policy holders:

Figure: 4 random outcomes.

Example: disability pension with death benefit

We simulated 4 policy holders:

Figure: 4 random outcomes.

We see that most likely, the green outcome has the highest value: some disability pensions twice and a death benefit of 1 MNOK around policy year 7 .

Example: disability pension with death benefit

Here we plot the function $t \mapsto V^{+}\left(t, \omega_{i}\right), i=1,2,3,4$.

Figure: 4 random prospective values.

Example: disability pension with death benefit

Here we plot the function $t \mapsto V^{+}\left(t, \omega_{i}\right), i=1,2,3,4$.

Figure: 4 random prospective values.

We confirm that the cash flow of the «green» policyholder has highest value and that a payment of 1 MNOK is made around year 7 .

Example: disability pension with death benefit

We see that the green policyholder was the most expensive among these four. If we look at their outcome we see:

Figure: One of the four outcomes (number 3) who passed away around age 57 and one month.

Example: disability pension with death benefit

We see that the green policyholder was the most expensive among these four. If we look at their outcome we see:

Figure: One of the four outcomes (number 3) who passed away around age 57 and one month.

Actually, policyholder nr. 3870 was the most expensive (113 months disability and one death benefit), while nr. 276 was the cheapest (always stayed in state $0)$. We used seed 1.

Example: disability pension with death benefit

Now we look at the mean of all prospective values of 100 random outcomes:

Figure: Mean prospective values of 10000 generated random insurance cash flows (simulation time: 2.06361 mins). Initial value: 640940.1 .

■ The initial point is what this insurance will cost the insurer in average.

Example: disability pension with death benefit

Now we look at the mean of all prospective values of 100 random outcomes:

Figure: Mean prospective values of 10000 generated random insurance cash flows (simulation time: 2.06361 mins). Initial value: 640940.1 .

- The initial point is what this insurance will cost the insurer in average.

■ We see that as time goes by, the value decreases since we are approaching the end of the contract.

Example: disability pension with death benefit

Out of curiosity: we plot the same mean prospective values based on 10000 simulations with and without death benefit.

Figure: Mean prospective values of 10000 generated random insurance cash flows for a policy with disability pension with (in red) and without (in blue) death benefit. Initial value without death benefit: 303406.4 .

Example: Endowment (discrete)

Figure: Survival Markov model.

■ States $\mathcal{Z}=\{0,1\}$ where 0 alive and 2 deceased.

Example: Endowment (discrete)

Figure: Survival Markov model.

- States $\mathcal{Z}=\{0,1\}$ where 0 alive and 2 deceased.

■ Transition rates: Finanstilsynet, $\mu(x, t), x$ age and t calendar year and $p_{* *}$ is evaluated at discrete times, i.e. $p_{* *}(z+n, z+n+1), n=0,1, \ldots$

Example: Endowment (discrete)

Figure: Survival Markov model.

- States $\mathcal{Z}=\{0,1\}$ where 0 alive and 2 deceased.
- Transition rates: Finanstilsynet, $\mu(x, t), x$ age and t calendar year and $p_{* *}$ is evaluated at discrete times, i.e. $p_{* *}(z+n, z+n+1), n=0,1, \ldots$

■ Contract duration: $N=10$ years. Age of insured: $z=60$ years in 2024.

Example: Endowment (discrete)

Figure: Survival Markov model.

■ States $\mathcal{Z}=\{0,1\}$ where 0 alive and 2 deceased.
■ Transition rates: Finanstilsynet, $\mu(x, t), x$ age and t calendar year and $p_{* *}$ is evaluated at discrete times, i.e. $p_{* *}(z+n, z+n+1), n=0,1, \ldots$

■ Contract duration: $N=10$ years. Age of insured: $z=60$ years in 2024.

■ Policy: If the insured survives to age $z+N=60+10=70$, a survival benefit $E=100000$ is paid. If the insured dies during the ages before 70 , a death benefit $B=250000$ is paid. Everything stops after $N=10$ years.

Example: Endowment (discrete)

Policy functions:

For sojourns:

$$
a_{0}(n)=\left\{\begin{array}{ll}
E, & n=N, \\
0, & \text { otherwise }
\end{array},\right.
$$

For transitions:

$$
a_{01}(n)=\left\{\begin{array}{ll}
B, & n=1, \ldots, N \\
0, & \text { otherwise }
\end{array} .\right.
$$

Comment: $n=0$ in a_{01} does not make sense, since we assume $Z(0)=0$ (insured enters contract alive). The earliest a death benefit is assumed to be paid out is thus $n=1$.

Example: disability pension with death benefit

Recall:

$$
\Delta C_{k}=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(k) a_{i}(k)+\sum_{i, j \in \mathcal{Z}} \Delta N_{i j}^{Z}(k) a_{i j}(k) .
$$

The cash flow of this policy is given by

$$
\Delta C_{k}=I_{0}^{Z}(k) a_{0}(k)+\Delta N_{01}^{Z}(k) a_{01}(k) .
$$

Example: disability pension with death benefit

Recall:

$$
\Delta C_{k}=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(k) a_{i}(k)+\sum_{i, j \in \mathcal{Z}} \Delta N_{i j}^{Z}(k) a_{i j}(k) .
$$

The cash flow of this policy is given by

$$
\Delta C_{k}=I_{0}^{Z}(k) a_{0}(k)+\Delta N_{01}^{Z}(k) a_{01}(k) .
$$

Now, it remains to adjust the values by discounting (multiply by $v(k)$, take sum and divide by $v(n)$).

Example: disability pension with death benefit

Recall:

$$
\Delta C_{k}=\sum_{i \in \mathcal{Z}} l_{i}^{Z}(k) a_{i}(k)+\sum_{i, j \in \mathcal{Z}} \Delta N_{i j}^{Z}(k) a_{i j}(k) .
$$

The cash flow of this policy is given by

$$
\Delta C_{k}=I_{0}^{Z}(k) a_{0}(k)+\Delta N_{01}^{Z}(k) a_{01}(k) .
$$

Now, it remains to adjust the values by discounting (multiply by $v(k)$, take sum and divide by $v(n)$).
Hence, the prospective value at any time $n=0,1, \ldots, N$ is

$$
V^{+}(n)=\frac{E}{v(n)} v(N) I_{0}^{Z}(N)+\frac{B}{v(n)} \sum_{k=n+1}^{N} v(k) d N_{01}^{Z}(k) .
$$

Example: disability pension with death benefit (continuous)

Prospective value:

$$
V^{+}(n)=\frac{E}{v(n)} v(N) l_{0}^{Z}(N)+\frac{B}{v(n)} \sum_{k=n+1}^{N} v(k) \Delta N_{01}^{Z}(k)
$$

■ To simulate deterministic cash flows $V^{+}(n, \omega)$ for a specific outcome ω and times $n=0, \ldots, N$ we need to simulate paths of $Z(n, \omega)$ (states of insured) for a specific outcome ω.

Example: disability pension with death benefit (continuous)

Prospective value:

$$
V^{+}(n)=\frac{E}{v(n)} v(N) l_{0}^{Z}(N)+\frac{B}{v(n)} \sum_{k=n+1}^{N} v(k) \Delta N_{01}^{Z}(k)
$$

■ To simulate deterministic cash flows $V^{+}(n, \omega)$ for a specific outcome ω and times $n=0, \ldots, N$ we need to simulate paths of $Z(n, \omega)$ (states of insured) for a specific outcome ω.
$■$ We look at $n=0,1, \ldots$ etc.

Example: disability pension with death benefit (continuous)

Prospective value:

$$
V^{+}(n)=\frac{E}{v(n)} v(N) l_{0}^{Z}(N)+\frac{B}{v(n)} \sum_{k=n+1}^{N} v(k) \Delta N_{01}^{Z}(k) .
$$

- To simulate deterministic cash flows $V^{+}(n, \omega)$ for a specific outcome ω and times $n=0, \ldots, N$ we need to simulate paths of $Z(n, \omega)$ (states of insured) for a specific outcome ω.
■ We look at $n=0,1, \ldots$ etc.
- Simulate random lives from the function lifeK2013.R using the function life.K13(age,num) where age here is $z=60$ and num is the number of random lives, say 100 or even 10000 !

Example: disability pension with death benefit (continuous)

Prospective value:

$$
V^{+}(n)=\frac{E}{v(n)} v(N) l_{0}^{Z}(N)+\frac{B}{v(n)} \sum_{k=n+1}^{N} v(k) \Delta N_{01}^{Z}(k) .
$$

- To simulate deterministic cash flows $V^{+}(n, \omega)$ for a specific outcome ω and times $n=0, \ldots, N$ we need to simulate paths of $Z(n, \omega)$ (states of insured) for a specific outcome ω.
■ We look at $n=0,1, \ldots$ etc.
- Simulate random lives from the function lifeK2013.R using the function life.K13(age,num) where age here is $z=60$ and num is the number of random lives, say 100 or even 10000 !
- For each path ω, you will have determined completely $I_{0}^{Z}(N)(\omega)$ and $\Delta N_{01}^{Z}(k)(\omega)$ then compute $V^{+}(n, \omega)$ for each ω among the 100 or even 10000 !

Example: disability pension with death benefit (continuous)

Prospective value:

$$
V^{+}(n)=\frac{E}{v(n)} v(N) l_{0}^{Z}(N)+\frac{B}{v(n)} \sum_{k=n+1}^{N} v(k) \Delta N_{01}^{Z}(k) .
$$

Observe that we can express $V^{+}(n)$ much faster by using the death time $\tau^{2}(\omega)$ of each individual ω :

$$
V^{+}(n)=\frac{v(N)}{v(n)} E \mathbb{I}_{\{\tau \geq N\}} \mathbb{I}_{\{n \leq N-1\}}+\frac{v(\tau+1)}{v(n)} B \mathbb{I}_{\{n \leq \tau \leq N-1\}}, \quad n=0, \ldots, N-1 .
$$

To find a detailed explanation on the derivation of this expression see Example 4.9 in the lecture notes.

Example: disability pension with death benefit (continuous)

Info: mortality: Finanstilsynet ($G=0, R=0$). Age $z=60$. Term of $N=10$ years. Annual rate $r=3 \%$. Survival benefit $E=100000 \mathrm{kr}$. Death benefit $B=250000 \mathrm{kr}$.
We generated 1000 lives with seed 1 and selected four of them, number: 1,2,7 and 18.

Figure: Four selected prospective values of cash flows from 1000 randomly generated life paths. Seed: 1 . The paths correspond to 1 (in red), 2 (in blue), 7 (in green) and 18 (in orange). We see that 7 and 18 died before N triggering a death benefit.

Example: disability pension with death benefit (continuous)

Remember that we have generated 1000 paths like those in the previous figure. We may ask, what is the distribution of $V(0)$?

Figure: Histogram of $V(0)$ for 1000 randomly generated lives.
This random variable will mostly consist of payments of survival benefits of 100000 in 10 years (hence the lower value 74081.82) and some payments of 250000 for those who did not make it to N, discounted according to the time to death.

Example: disability pension with death benefit (continuous)

Remember that we have generated 1000 paths like those in the previous figure. We may ask, what is the distribution of $V(0)$?

Figure: Histogram of $V(0)$ for 1000 randomly generated lives.

If we were to charge a premium to all of these individuals it would make sense to charge the expected value of this distribution, i.e. $\mathbb{E}[V(0)]$. In this example, we obtained $\mathbb{E}[V(0)]=84233.05 \mathrm{kr}$.

UiO 8 Department of Mathematics University of Oslo

David R. Banos

STK4500: Life insurance and

 financeCash flows and present values

