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Conditional expectation: intuition
Consider (X ,Y ) a random vector (X and Y can be dependent).
Comments:

Q: What is our best guess for X? A: Point estimates, e.g. E[X ] or
median, etc.

Q: Does knowing Y improve our best guess on X? A: if they are
dependent yes!

Q: What would we expect X to be, knowing the outcome of Y? A: the
conditional expectation of X , given Y !

We denote by E[X |Y ] the conditional expectation of X given Y .

The concept of conditional expectation is based on the concept of
conditional probability.

Important: the conditional expectation is a random variable!

Even more: E[X |Y ] is a function of Y , i.e. there exists a function
f : R → R such that

E[X |Y ] = f (Y ).

David R. Banos STK4500: Life insurance and finance Spring 2024 2 / 20



Conditional expectation: intuition
Consider (X ,Y ) a random vector (X and Y can be dependent).
Comments:

Q: What is our best guess for X? A: Point estimates, e.g. E[X ] or
median, etc.

Q: Does knowing Y improve our best guess on X? A: if they are
dependent yes!

Q: What would we expect X to be, knowing the outcome of Y? A: the
conditional expectation of X , given Y !

We denote by E[X |Y ] the conditional expectation of X given Y .

The concept of conditional expectation is based on the concept of
conditional probability.

Important: the conditional expectation is a random variable!

Even more: E[X |Y ] is a function of Y , i.e. there exists a function
f : R → R such that

E[X |Y ] = f (Y ).

David R. Banos STK4500: Life insurance and finance Spring 2024 2 / 20



Conditional expectation: intuition
Consider (X ,Y ) a random vector (X and Y can be dependent).
Comments:

Q: What is our best guess for X? A: Point estimates, e.g. E[X ] or
median, etc.

Q: Does knowing Y improve our best guess on X? A: if they are
dependent yes!

Q: What would we expect X to be, knowing the outcome of Y? A: the
conditional expectation of X , given Y !

We denote by E[X |Y ] the conditional expectation of X given Y .

The concept of conditional expectation is based on the concept of
conditional probability.

Important: the conditional expectation is a random variable!

Even more: E[X |Y ] is a function of Y , i.e. there exists a function
f : R → R such that

E[X |Y ] = f (Y ).

David R. Banos STK4500: Life insurance and finance Spring 2024 2 / 20



Conditional expectation: intuition
Consider (X ,Y ) a random vector (X and Y can be dependent).
Comments:

Q: What is our best guess for X? A: Point estimates, e.g. E[X ] or
median, etc.

Q: Does knowing Y improve our best guess on X? A: if they are
dependent yes!

Q: What would we expect X to be, knowing the outcome of Y? A: the
conditional expectation of X , given Y !

We denote by E[X |Y ] the conditional expectation of X given Y .

The concept of conditional expectation is based on the concept of
conditional probability.

Important: the conditional expectation is a random variable!

Even more: E[X |Y ] is a function of Y , i.e. there exists a function
f : R → R such that

E[X |Y ] = f (Y ).

David R. Banos STK4500: Life insurance and finance Spring 2024 2 / 20



Conditional expectation: intuition
Consider (X ,Y ) a random vector (X and Y can be dependent).
Comments:

Q: What is our best guess for X? A: Point estimates, e.g. E[X ] or
median, etc.

Q: Does knowing Y improve our best guess on X? A: if they are
dependent yes!

Q: What would we expect X to be, knowing the outcome of Y? A: the
conditional expectation of X , given Y !

We denote by E[X |Y ] the conditional expectation of X given Y .

The concept of conditional expectation is based on the concept of
conditional probability.

Important: the conditional expectation is a random variable!

Even more: E[X |Y ] is a function of Y , i.e. there exists a function
f : R → R such that

E[X |Y ] = f (Y ).

David R. Banos STK4500: Life insurance and finance Spring 2024 2 / 20



Conditional expectation: intuition
Consider (X ,Y ) a random vector (X and Y can be dependent).
Comments:

Q: What is our best guess for X? A: Point estimates, e.g. E[X ] or
median, etc.

Q: Does knowing Y improve our best guess on X? A: if they are
dependent yes!

Q: What would we expect X to be, knowing the outcome of Y? A: the
conditional expectation of X , given Y !

We denote by E[X |Y ] the conditional expectation of X given Y .

The concept of conditional expectation is based on the concept of
conditional probability.

Important: the conditional expectation is a random variable!

Even more: E[X |Y ] is a function of Y , i.e. there exists a function
f : R → R such that

E[X |Y ] = f (Y ).

David R. Banos STK4500: Life insurance and finance Spring 2024 2 / 20



Conditional expectation: intuition
Consider (X ,Y ) a random vector (X and Y can be dependent).
Comments:

Q: What is our best guess for X? A: Point estimates, e.g. E[X ] or
median, etc.

Q: Does knowing Y improve our best guess on X? A: if they are
dependent yes!

Q: What would we expect X to be, knowing the outcome of Y? A: the
conditional expectation of X , given Y !

We denote by E[X |Y ] the conditional expectation of X given Y .

The concept of conditional expectation is based on the concept of
conditional probability.

Important: the conditional expectation is a random variable!

Even more: E[X |Y ] is a function of Y , i.e. there exists a function
f : R → R such that

E[X |Y ] = f (Y ).

David R. Banos STK4500: Life insurance and finance Spring 2024 2 / 20



Conditional expectation: geometric intuition

Figure: If G ⊂ F then E[X |F ] is a better approximation of X than E[X |G]
(explain).
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Conditional expectation w.r.t. an event
Let X be a random variable and A an event. Then it holds

E[X |A] = 1
P[A]

E[1AX ].

If A is independent of X then

E[X |A] = 1
P[A]

E[1AX ] =
1

P[A]
E[1A]E[X ] =

1
P[A]

P[A]E[X ] = E[X ]

as it should be.
Example: X result from die toss A = {odd outcome}. Then E[X ] = 3.5 but

E[X |A] = 1
P[A]

E[1AX ] =
1

1/2

6∑
x=1

x1{1,3,5}
1
6
= 2 (1 + 3 + 5)

1
6
= 3.
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Conditional expectation: discrete/discrete
(X ,Y ) discrete with joint probability mass function P[X = x ,Y = y ]. Then

E[X |Y = y ] =
∑

x

xP[X = x |Y = y ].

Comment: This case can be understood as E[X |A] with the event
A = {Y = y}.

Example: P[X = x ,Y = y ] = x+y
4 for x , y = 0,1. Then

P[Y = y ] =
∑

x P[X = x ,Y = y ] = 2y+1
4 and hence

P[X = x |Y = y ] =
P[X = x ,Y = y ]

P[Y = y ]
=

4
2y + 1

x + y
4

=
x + y
2y + 1

.

E[X |Y = y ] =
∑

x

xP[X = x |Y = y ] =
∑

x

x
x + y
2y + 1

=
y + 1
2y + 1

.

Note that indeed E[X |Y ] is a random variable:

E[X |Y ] =
Y + 1
2Y + 1

.
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Conditional expectation: continuous/discrete
(X ,Y ) with joint distribution function P[X ≤ x ,Y = y ]. Then

E[X |Y = y ] =
∫

x
xfX |Y (x |y)dx ,

where fX |Y (x |y) is the conditional density of X given y , that is the derivative of
the conditional distribution function FX |Y (x |y) := P[X ≤ x |Y = y ].

Example: Let (X ,Y ) with joint distribution

P[X ≤ x ,Y = y ] =
1
2

∫ x

−∞

1√
2π

e− (z−y)2

2 dz, (x , y) ∈ R× {0,1}.

Observation: X |Y ∼ N(Y , 1) and Y is Bernoulli with parameter 1/2. So X has
distribution (explain on blackboard)

P[X ≤ x |Y = y ] =
P[X ≤ x ,Y = y ]

P[Y = y ]
=

∫ x

−∞

1√
2π

e− (z−y)2

2 dz.

Hence,

E[X |Y = y ] =
∫
R

xfX |Y (x |y)dx =

∫
R

x
1√
2π

e− (x−y)2

2 dx = y .
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Conditional expectation: discrete/continuous
X discrete and Y continuous. Let (X ,Y ) with joint distribution function
P[X = x ,Y ≤ y ]. Then

E[X |Y = y ] =
∑

x

xP[X = x |Y = y ],

where

P[X = x |Y = y ] =
fY |X (y |x)P[X = x ]

fY (y)

and where fY |X (y |x) is the conditional density of Y given X and fY is the
density of Y .

Example: Let (X ,Y ) with joint distribution

P[X = x ,Y = y ] =
(
y1{x=1} + (1 − y)1{x=0}

)
fY (y),

where fY is the density function of Y .
Then find E[X |Y ]. You should obtain: E[X |Y ] = Y .
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Definition of conditional expectation
(X ,Y ) with joint density function fX ,Y (x , y) = d2

dxdy P[X ≤ x ,Y ≤ y ]. Then

E[X |Y = y ] =
∫

x
xfX |Y (x |y)dx ,

where fX |Y (x |y) is the conditional density of X given Y = y defined as

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
.

Example: Let (X ,Y ) with joint distribution fX ,Y (x , y) = λy e−λy 1[0,y ](x),

(x , y) ∈ [0,∞)2. Show that E[X |Y ] = Y
2 and if you want: E[Y |X ] = e−λX∫ ∞

X
λ
y e−λy dy

.
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Properties of conditional expectation
X , Y and Z are random variables.

It is linear: E[aX + bY |Z ] = aE[X |Z ] + bE[Y |Z ].

If X and Y are indep. then E[X |Y ] = E[X ].

If X is a function of Y , i.e. X = f (Y ) then E[X |Y ] = X .

If knowing Y implies knowing Z then E[E[X |Y ]|Z ] = E[X |Z ].
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Conditional expectation for our needs
In insurance we have V (t), V−(t) and V+(t) random variables and Z (t) the
state of the insured.

The random variables V (t), V−(t) and V+(t) depend on Z (t), 0 ≤ t ≤ T .
Remember that Z (t) is a discrete random variable for every fixed t .
At a given time t , one can condition on the whole family of random variables
{Z (s),0 ≤ s ≤ t} until time t . One would typically write

E[V (t)|Z (s),0 ≤ s ≤ t ]

meaning: the conditional expectation of the present value V (t), given that we
fully know all the states of the insured from 0 to a hypothetical time t .
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Conditional expectation for our needs
Since V (t) = V−(t) + V+(t) then

E[V (t)|Z (s), 0 ≤ s ≤ t ] = E[V−(t)|Z (s), 0 ≤ s ≤ t ] + E[V+(t)|Z (s), 0 ≤ s ≤ t ].

Hence, we can focus on computing E[V±(t)|Z (s),0 ≤ s ≤ t ] separately.

For V−(t) we have

V−(t) =
1

v(t)

∑
i

∫
[0,t]

IZ
i (s)dai(s) +

∑
i,j:j ̸=i

∫
[0,t]

aij(s)dNZ
ij (s)

 .

Note that V−(t) depends only on Z (s) for 0 ≤ s ≤ t through IZ
i (s) and dNZ

ij (s)
on [0, t ]. Hence, knowing Z (s) for all 0 ≤ s ≤ t would imply knowing V−(t)
fully! Thus,

E[V−(t)|Z (s),0 ≤ s ≤ t ] = V−(t).
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Conditional expectation for our needs
On the other hand, for V+(t) we have

V+(t) =
1

v(t)

∑
i

∫
(t,∞)

IZ
i (s)dai(s) +

∑
i,j:j ̸=i

∫
(t,∞)

aij(s)dNZ
ij (s)

 .

Note that V+(t) depends only on the future states Z (s) for s ∈ (t ,∞) through
IZ
i (s) and dNZ

ij (s) on (t ,∞). However, we only know the past, i.e. Z (s) for all
0 ≤ s ≤ t and not Z (s), s ∈ (t ,∞). Hence,

E[V+(t)|Z (s),0 ≤ s ≤ t ]̸=V+(t).

V+(t) is a functional of the future states Z (s), s ≥ t and we know Z (s) for all
past times s ∈ [0, t ]. Since Z is Markov we can conclude with the following
important property:

E[V+(t)|Z (s),0 ≤ s ≤ t ] = E[V+(t)|Z (t)].

This is known as the Markov property! We only need to use the last state
Z (t) to guess the future V+(t).
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Conditional expectation for our needs
In a summary

E[V (t)|Z (s),0 ≤ s ≤ t ] = V−(t) + E[V+(t)|Z (t)].

In this course, we will focus entirely in computing E[V+(t)|Z (t)] which is a
conditional expectation of a random variable V+(t) given a (discrete) random
variable Z (t). See previous slides.

Recall that Z (t) takes values in Z hence we can compute

V+
i (t) ≜ E[V+(t)|Z (t) = i].

Then
E[V+(t)|Z (t)] = V+

Z (t)(t)

and the following relation follows

V+
Z (t)(t) =

∑
i∈Z

V+
i (t)IZ

i (t), (explain).
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