
$\mathrm{UiO}:$ Department of Mathematics University of Oslo

STK4500: Life insurance and finance

Expected values and single premium

Table of contents

1 Summary and aims

2 Expected prospective value

3 Expected initial cost (single premium)

4 Discrete time formulas (no proof)

Where we are and where we aim at

- Z Markov process with finite state space $\mathcal{Z}, p_{i j}(t, s), \mu_{i j}(s)$.

Where we are and where we aim at

- Z Markov process with finite state space $\mathcal{Z}, p_{i j}(t, s), \mu_{i j}(s)$.
- Policy cash flow:

$$
\begin{aligned}
d C(s) & =\sum_{i} l_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j: j \neq i} a_{i j}(s) d N_{i j}^{Z}(s), \quad s \in[0, \infty) \\
\Delta C_{n} & =\sum_{i} l_{i}^{Z}(n) a_{i}(n)+\sum_{i, j} a_{i j}(n) \Delta N_{i j}^{Z}(n), \quad n=0,1, \ldots
\end{aligned}
$$

Where we are and where we aim at

- Z Markov process with finite state space $\mathcal{Z}, p_{i j}(t, s), \mu_{i j}(s)$.
- Policy cash flow:

$$
\begin{aligned}
d C(s) & =\sum_{i} l_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j: j \neq i} a_{i j}(s) d N_{i j}^{Z}(s), \quad s \in[0, \infty) \\
\Delta C_{n} & =\sum_{i} l_{i}^{Z}(n) a_{i}(n)+\sum_{i, j} a_{i j}(n) \Delta N_{i j}^{Z}(n), \quad n=0,1, \ldots
\end{aligned}
$$

- t-value, retrospective and prospective values:

$$
\begin{aligned}
& V(t)=\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s), \quad V^{-}(t)=\frac{1}{v(t)} \int_{[0, t]} v(s) d C(s), \quad V^{+}(t)=\frac{1}{v(t)} \int_{(t, \infty)} v(s) d C(s) \\
& V(n)=\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k}, \quad V^{-}(n)=\frac{1}{v(n)} \sum_{k=0}^{n} v(k) \Delta C_{k}, \quad V^{+}(n)=\frac{1}{v(n)} \sum_{k=n+1}^{\infty} v(k) \Delta C_{k}
\end{aligned}
$$

Where we are and where we aim at

- Z Markov process with finite state space $\mathcal{Z}, p_{i j}(t, s), \mu_{i j}(s)$.
- Policy cash flow:

$$
\begin{aligned}
d C(s) & =\sum_{i} l_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j: j \neq i} a_{i j}(s) d N_{i j}^{Z}(s), \quad s \in[0, \infty), \\
\Delta C_{n} & =\sum_{i} l_{i}^{Z}(n) a_{i}(n)+\sum_{i, j} a_{i j}(n) \Delta N_{i j}^{Z}(n), \quad n=0,1, \ldots
\end{aligned}
$$

- t-value, retrospective and prospective values:

$$
\begin{aligned}
& V(t)=\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s), \quad V^{-}(t)=\frac{1}{v(t)} \int_{[0, t]} v(s) d C(s), \quad V^{+}(t)=\frac{1}{v(t)} \int_{(t, \infty)} v(s) d C(s), \\
& V(n)=\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k}, \quad V^{-}(n)=\frac{1}{v(n)} \sum_{k=0}^{n} v(k) \Delta C_{k}, \quad V^{+}(n)=\frac{1}{v(n)} \sum_{k=n+1}^{\infty} v(k) \Delta C_{k} .
\end{aligned}
$$

- Initial cost (random variable)

$$
\begin{aligned}
\text { (continuous time) } \quad V(0) & =\int_{[0, \infty)} v(s) d C(s) \\
\text { (discrete time) } \quad V(0) & =\sum_{k=0}^{\infty} v(k) \Delta C_{k}
\end{aligned}
$$

Where we are and where we aim at

- Z Markov process with finite state space $\mathcal{Z}, p_{i j}(t, s), \mu_{i j}(s)$.
- Policy cash flow:

$$
\begin{aligned}
d C(s) & =\sum_{i} l_{i}^{Z}(s) d a_{i}(s)+\sum_{i, j: j \neq i} a_{i j}(s) d N_{i j}^{Z}(s), \quad s \in[0, \infty), \\
\Delta C_{n} & =\sum_{i} l_{i}^{Z}(n) a_{i}(n)+\sum_{i, j} a_{i j}(n) \Delta N_{i j}^{Z}(n), \quad n=0,1, \ldots
\end{aligned}
$$

- t-value, retrospective and prospective values:

$$
\begin{aligned}
& V(t)=\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s), \quad V^{-}(t)=\frac{1}{v(t)} \int_{[0, t]} v(s) d C(s), \quad V^{+}(t)=\frac{1}{v(t)} \int_{(t, \infty)} v(s) d C(s), \\
& V(n)=\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k}, \quad V^{-}(n)=\frac{1}{v(n)} \sum_{k=0}^{n} v(k) \Delta C_{k}, \quad V^{+}(n)=\frac{1}{v(n)} \sum_{k=n+1}^{\infty} v(k) \Delta C_{k} .
\end{aligned}
$$

- Initial cost (random variable)

$$
\begin{aligned}
\text { (continuous time) } & V(0)=\int_{[0, \infty)} v(s) d C(s), \\
\text { (discrete time) } & V(0)=\sum_{k=0}^{\infty} v(k) \Delta C_{k} .
\end{aligned}
$$

- Expected initial cost (aka single premium $\left.\pi_{0}\right) \pi_{0}=\mathbb{E}[V(0) \mid Z(0)=*]$.

Where we are and where we aim at

- Z Markov process with finite state space $\mathcal{Z}, p_{i j}(t, s), \mu_{i j}(s)$.
- Policy cash flow:

$$
\begin{aligned}
d C(s) & =\sum_{i} l_{i}^{z}(s) d a_{i}(s)+\sum_{i, j: j \neq i} a_{i j}(s) d N_{i j}^{Z}(s), \quad s \in[0, \infty), \\
\Delta C_{n} & =\sum_{i} l_{i}^{z}(n) a_{i}(n)+\sum_{i, j} a_{i j}(n) \Delta N_{i j}^{z}(n), \quad n=0,1, \ldots
\end{aligned}
$$

- t-value, retrospective and prospective values:

$$
\begin{aligned}
& V(t)=\frac{1}{v(t)} \int_{[0, \infty)} v(s) d C(s), \quad V^{-}(t)=\frac{1}{v(t)} \int_{[0, t]} v(s) d C(s), \quad V^{+}(t)=\frac{1}{v(t)} \int_{(t, \infty)} v(s) d C(s), \\
& V(n)=\frac{1}{v(n)} \sum_{k=0}^{\infty} v(k) \Delta C_{k}, \quad V^{-}(n)=\frac{1}{v(n)} \sum_{k=0}^{n} v(k) \Delta C_{k}, \quad V^{+}(n)=\frac{1}{v(n)} \sum_{k=n+1}^{\infty} v(k) \Delta C_{k} .
\end{aligned}
$$

- Initial cost (random variable)

$$
\begin{aligned}
\text { (continuous time) } & V(0)=\int_{[0, \infty)} v(s) d C(s), \\
\text { (discrete time) } & V(0)=\sum_{k=0}^{\infty} v(k) \Delta C_{k} .
\end{aligned}
$$

- Expected initial cost (aka single premium π_{0}) $\pi_{0}=\mathbb{E}[V(0) \mid Z(0)=*]$.
- Aim of this chapter:

$$
\text { Compute analytically: } \quad \pi_{0}=\mathbb{E}[V(0)], \quad V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right] .
$$

both in discrete and continuous time.

Table of contents

1 Summary and aims

2 Expected prospective value

3 Expected initial cost (single premium)

4 Discrete time formulas (no proof)

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

We have $V^{+}(t)=\frac{1}{v(t)} \int_{(t, \infty)} v(s) d C(s)$ the prospective value of the future cash flow C after time t.

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

We have $V^{+}(t)=\frac{1}{v(t)} \int_{(t, \infty)} v(s) d C(s)$ the prospective value of the future cash flow C after time t.
A meaningful quantity is obviously the expectation of this random variable, given the current state of the insured, i.e.

$$
V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right] .
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

We focus on the continuous time case:

$$
V^{+}(t)=\frac{1}{v(t)} \sum_{j} \int_{(t, \infty)} v(s) I_{j}^{Z}(s) d a_{j}(s)+\frac{1}{v(t)} \sum_{j, k: k \neq j} \int_{(t, \infty)} v(s) a_{j k}(s) d N_{j k}^{Z}(s)
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

We highlight the stochastic parts

$$
V^{+}(t)=\frac{1}{v(t)} \sum_{j} \int_{(t, \infty)} v(s) l_{j}^{Z}(s) d a_{j}(s)+\frac{1}{v(t)} \sum_{j, k: k \neq j} \int_{(t, \infty)} v(s) a_{j k}(s) d N_{j k}^{Z}(s)
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$
So expectation affects only the stochastic parts:
$\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]=\frac{1}{v(t)} \sum_{j} \mathbb{E}\left[\int_{(t, \infty)} v(s) l_{j}^{Z}(s) d a_{j}(s) \mid Z(t)=i\right]+\frac{1}{v(t)} \sum_{j, k: k \neq j} \mathbb{E}\left[\int_{(t, \infty)} v(s) a_{j k}(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right]$.

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

$$
\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]=\frac{1}{v(t)} \sum_{j} \mathbb{E}\left[\int_{(t, \infty)} v(s) l_{j}^{Z}(s) d a_{j}(s) \mid Z(t)=i\right]+\frac{1}{v(t)} \sum_{j, k: k \neq j} \mathbb{E}\left[\int_{(t, \infty)} v(s) a_{j k}(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right]
$$

Aim: to compute things of the type

$$
\mathbb{E}\left[\int_{(t, \infty)} f(s) l_{j}^{Z}(s) d a(s) \mid Z(t)=i\right] \quad \text { and } \quad \mathbb{E}\left[\int_{(t, \infty)} f(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right]
$$

for functions f and a.

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

Aim: to compute things of the type

$$
\mathbb{E}\left[\int_{(t, \infty)} f(s) I_{j}^{Z}(s) d a(s) \mid Z(t)=i\right]
$$

for functions f and a. This is the easy one.

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

Aim: to compute things of the type

$$
\mathbb{E}\left[\int_{(t, \infty)} f(s) l_{j}^{Z}(s) d a(s) \mid Z(t)=i\right]
$$

for functions f and a. This is the easy one.
Note that for $s>t$,

$$
\mathbb{E}\left[l_{j}^{Z}(s) \mid Z(t)=i\right]=\mathbb{E}\left[\mathbb{I}_{\{Z(s)=j\}} \mid Z(t)=i\right]=\mathbb{P}[Z(s)=j \mid Z(t)=i]=p_{i j}(t, s) .
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

Aim: to compute things of the type

$$
\mathbb{E}\left[\int_{(t, \infty)} f(s) l_{j}^{Z}(s) d a(s) \mid Z(t)=i\right]
$$

for functions f and a. This is the easy one.
Note that for $s>t$,

$$
\mathbb{E}\left[l_{j}^{Z}(s) \mid Z(t)=i\right]=\mathbb{E}\left[\mathbb{I}_{\{Z(s)=j\}} \mid Z(t)=i\right]=\mathbb{P}[Z(s)=j \mid Z(t)=i]=p_{i j}(t, s) .
$$

Therefore,
$\mathbb{E}\left[\int_{(t, \infty)} f(s) l_{j}^{Z}(s) d a(s) \mid Z(t)=i\right]=\int_{(t, \infty)} f(s) \mathbb{E}\left[l_{j}^{Z}(s) \mid Z(t)=i\right] d g(s)=\int_{(t, \infty)} f(s) p_{i j}(t, s) d a(s)$.

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

Aim: to compute things of the type

$$
\mathbb{E}\left[\int_{(t, \infty)} f(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right]
$$

for function f. This is the harder one.

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

Aim: to compute things of the type

$$
\mathbb{E}\left[\int_{(t, \infty)} f(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right]
$$

for function f. This is the harder one.
Idea: assume just that $f(s)=\mathbb{I}_{[a, b]}(s)$ then the result follows from standard limit theorems from analysis.

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

Aim: to compute things of the type

$$
\mathbb{E}\left[\int_{(t, \infty)} f(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right]
$$

for function f. This is the harder one.
Idea: assume just that $f(s)=\mathbb{I}_{[a, b]}(s)$ then the result follows from standard limit theorems from analysis.
Define

$$
g(s) \triangleq \mathbb{E}\left[N_{j k}^{Z}(s) \mid Z(t)=i\right], \quad s \geq t
$$

the expected number of jumps from j to k in $[0, s]$ given $Z(t)=i$.

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

It is sufficient to assume that $f(s)=\mathbb{I}_{[a, b]}(s)$. Define

$$
g(s) \triangleq \mathbb{E}\left[N_{j k}^{Z}(s) \mid Z(t)=i\right], \quad s \geq t
$$

the expected number of jumps from j to k in $[0, s]$ given $Z(t)=i$.

$$
\begin{aligned}
g(s+h)-g(s) & =\mathbb{E}\left[N_{j k}^{X}(s+h)-N_{j k}^{Z}(s) \mid Z(t)=i\right] \\
& =\sum_{l} \mathbb{E}\left[\mathbb{I}_{\{Z(s)=l\}}\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mid Z(t)=i\right]
\end{aligned}
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

It is sufficient to assume that $f(s)=\mathbb{I}_{[a, b]}(s)$. Define

$$
g(s) \triangleq \mathbb{E}\left[N_{j k}^{Z}(s) \mid Z(t)=i\right], \quad s \geq t
$$

the expected number of jumps from j to k in $[0, s]$ given $Z(t)=i$.

$$
\begin{aligned}
g(s+h)-g(s) & =\mathbb{E}\left[N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s) \mid Z(t)=i\right] \\
& =\sum_{l} \mathbb{E}\left[\mathbb{I}_{\{Z(s)=l\}}\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mid Z(t)=i\right] \\
& =\sum_{l} \frac{1}{\mathbb{P}[Z(t)=i]} \mathbb{E}\left[\mathbb{I}_{\{Z(s)=l\}}\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mathbb{I}_{\{Z(t)=i\}}\right]
\end{aligned}
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

It is sufficient to assume that $f(s)=\mathbb{I}_{[a, b]}(s)$. Define

$$
g(s) \triangleq \mathbb{E}\left[N_{j k}^{Z}(s) \mid Z(t)=i\right], \quad s \geq t
$$

the expected number of jumps from j to k in $[0, s]$ given $Z(t)=i$.

$$
\begin{aligned}
g(s+h)-g(s) & =\mathbb{E}\left[N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s) \mid Z(t)=i\right] \\
& =\sum_{l} \mathbb{E}\left[\mathbb{I}_{\{Z(s)=l\}}\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mid Z(t)=i\right] \\
& =\sum_{l} \frac{1}{\mathbb{P}[Z(t)=i]} \mathbb{E}\left[\mathbb{I}_{\{Z(s)=l\}}\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mathbb{I}_{\{Z(t)=i\}}\right] \\
& =\sum_{l} \frac{\mathbb{P}[Z(s)=I]}{\mathbb{P}[Z(t)=i]} \mathbb{E}\left[\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mathbb{I}_{\{Z(t)=i\}} \mid Z(s)=l\right] .
\end{aligned}
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

$N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)$ number of jumps from j to k in $[s, s+h]$ is independent of $Z(t)=i$, given $Z(s)=l$.

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

$N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)$ number of jumps from j to k in $[s, s+h]$ is independent of $Z(t)=i$, given $Z(s)=l$.

Hence,

$$
\begin{aligned}
& \mathbb{E}\left[\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mathbb{I}_{\{Z(t)=i\}} \mid Z(s)=!\right]= \\
&=\mathbb{E}\left[\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mid Z(s)=l\right] \mathbb{E}\left[\mathbb{I}_{\{Z(t)=i\}} \mid Z(s)=\ell\right] \\
&=\mathbb{E}\left[\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mid Z(s)=l\right] \mathbb{P}[Z(t)=i \mid Z(s)=!] \\
&=\mathbb{E}\left[\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mid Z(s)=l\right] \frac{\mathbb{P}[Z(t)=i, Z(s)=I]}{\mathbb{P}[Z(s)=l]} .
\end{aligned}
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

$$
\begin{aligned}
g(s+h)-g(s) & =\sum_{l} \frac{\mathbb{P}[Z(s)=\eta}{\mathbb{P}[Z(t)=i]} \mathbb{E}\left[\left(N_{\mathbb{K}}^{Z}(s+h)-N_{\mathbb{K}}^{Z}(s)\right) \mathbb{I}_{\{Z(t) i\}} \mid Z(s)=\eta\right. \\
& =\sum_{l} \frac{\mathbb{P}[Z(s)=\eta]}{\mathbb{P}[Z(t)=i]} \mathbb{E}\left[\left(N_{\mathbb{K}}^{Z}(s+h)-N_{\mathbb{K}}^{Z}(s)\right) \left\lvert\, Z(s)=\eta \frac{\mathbb{P}[Z(t)=i, Z(s)=\eta]}{\mathbb{P}[Z(s)=\rceil}\right.\right. \\
& =\sum_{l} \mathbb{E}\left[\left(N_{\mathbb{K}}^{Z}(s+h)-N_{\mathbb{K}}^{Z}(s) \mid Z(s)=\eta p_{i}(t, s) .\right.\right.
\end{aligned}
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

$$
\begin{aligned}
& g(s+h)-g(s)=\sum_{1} \frac{\mathbb{P}[Z(s)=\eta}{\mathbb{P}[Z(t)=I]} \mathbb{E}\left[\left(N_{\mathbb{K}}^{Z}(s+h)-N_{k}^{Z}(s)\right) \mathbb{I}_{\{Z(t)=i]} \mid Z(s)=1\right] \\
& =\sum_{1} \frac{\mathbb{P}[Z(s)=\eta}{\mathbb{P}[Z(t)=i]} \mathbb{E}\left[\left(N_{\mathbb{K}}^{Z}(s+h)-N_{\mathbb{K}}^{Z}(s) \left\lvert\, Z(s)=\eta \frac{\mathbb{P}[Z(t)=i, Z(s)=1]}{\mathbb{P}[Z(s)=\eta]}\right.\right.\right. \\
& =\sum_{l} \mathbb{E}\left[\left(N_{k}^{Z}(s+h)-N_{K}^{Z}(s)\right) \mid Z(s)=\| p_{i /}(t, s)\right. \text {. }
\end{aligned}
$$

Observe that

$$
\Delta(h) \triangleq \mathbb{E}\left[\left(N_{j k}^{X}(s+h)-N_{j k}^{X}(s)\right) \mid X_{s}=I\right]=o(h), \text { for all } I \neq j .
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

$$
\begin{aligned}
g(s+h)-g(s) & =\sum_{l} \frac{\mathbb{P}[Z(s)=\eta]}{\mathbb{P}[Z(t)=i]} \mathbb{E}\left[\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mathbb{I}_{\{Z(t)=i\}} \mid Z(s)=\eta\right] \\
& =\sum_{l} \frac{\mathbb{P}[Z(s)=\eta]}{\mathbb{P}[Z(t)=i]} \mathbb{E}\left[\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mid Z(s)=\eta\right] \frac{\mathbb{P}[Z(t)=i, Z(s)=\eta]}{\mathbb{P}[Z(s)=\eta]} \\
& =\sum_{l} \mathbb{E}\left[\left(N_{j k}^{Z}(s+h)-N_{j k}^{Z}(s)\right) \mid Z(s)=\eta\right] p_{i l}(t, s) .
\end{aligned}
$$

Observe that

$$
\Delta(h) \triangleq \mathbb{E}\left[\left(N_{j k}^{X}(s+h)-N_{j k}^{X}(s)\right) \mid X_{s}=I\right]=o(h), \text { for all } I \neq j .
$$

Taking into account that $Z(t, \omega)$ is right-continuous with left limits and \mathcal{Z} finite we find that

$$
\frac{\Delta(h)}{h} \xrightarrow{n \backslash 0}\left\{\begin{array}{l}
\mu_{k}(s), \text { if } I=j, \\
0, \text { else }
\end{array} .\right.
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

Hence,

$$
g^{\prime}(s)=\lim _{h \rightarrow 0} \frac{g(s+h)-g(s)}{h}=p_{i j}(t, s) \mu_{j k}(s)
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

Hence,

$$
g^{\prime}(s)=\lim _{h \rightarrow 0} \frac{g(s+h)-g(s)}{h}=p_{i j}(t, s) \mu_{j k}(s)
$$

Integrating,

$$
g(b)-g(a)=\int_{a}^{b} g^{\prime}(s) d s=\int_{a}^{b} p_{i j}(t, s) \mu_{j k}(s) d s=\int_{[0, \infty)} f(s) p_{i j}(t, s) \mu_{j k}(s) d s
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

Hence,

$$
g^{\prime}(s)=\lim _{h \rightarrow 0} \frac{g(s+h)-g(s)}{h}=p_{i j}(t, s) \mu_{j k}(s)
$$

Integrating,

$$
g(b)-g(a)=\int_{a}^{b} g^{\prime}(s) d s=\int_{a}^{b} p_{i j}(t, s) \mu_{j k}(s) d s=\int_{[0, \infty)} f(s) p_{i j}(t, s) \mu_{j k}(s) d s
$$

On the other hand,

$$
\begin{aligned}
g(b)-g(a) & =\mathbb{E}\left[N_{j k}^{X}(b)-N_{j k}^{X}(a) \mid X_{t}=i\right]=\mathbb{E}\left[\int_{a}^{b} d N_{j k}^{X}(s) \mid X_{t}=i\right] \\
& =\mathbb{E}\left[\int_{[0, \infty)} f(s) d N_{j k}^{X}(s) \mid X_{t}=i\right]
\end{aligned}
$$

Computing $V_{i}^{+}(t)=\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]$

Hence,

$$
g^{\prime}(s)=\lim _{h \rightarrow 0} \frac{g(s+h)-g(s)}{h}=p_{i j}(t, s) \mu_{j k}(s)
$$

Integrating,

$$
g(b)-g(a)=\int_{a}^{b} g^{\prime}(s) d s=\int_{a}^{b} p_{i j}(t, s) \mu_{j k}(s) d s=\int_{[0, \infty)} f(s) p_{i j}(t, s) \mu_{j k}(s) d s
$$

On the other hand,

$$
\begin{aligned}
g(b)-g(a) & =\mathbb{E}\left[N_{j k}^{X}(b)-N_{j k}^{X}(a) \mid X_{t}=i\right]=\mathbb{E}\left[\int_{a}^{b} d N_{j k}^{X}(s) \mid X_{t}=i\right] \\
& =\mathbb{E}\left[\int_{[0, \infty)} f(s) d N_{j k}^{X}(s) \mid X_{t}=i\right]
\end{aligned}
$$

Therefore,

$$
\mathbb{E}\left[\int_{[0, \infty)} f(s) d N_{j k}^{X}(s) \mid X_{t}=i\right]=\int_{[0, \infty)} f(s) p_{i j}(t, s) \mu_{j k}(s) d s,
$$

for $f(s)=\mathbb{I}_{[a, b]}(s)$. Hence, for linear combinations of f as well and by a density argument, for integrable functions.

Recap and conclusion

Aim: to compute things of the type

$$
\mathbb{E}\left[\int_{(t, \infty)} f(s) l_{j}^{Z}(s) d a(s) \mid Z(t)=i\right] \quad \text { and } \quad \mathbb{E}\left[\int_{(t, \infty)} f(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right]
$$

for functions f and a.

Recap and conclusion

$$
\begin{aligned}
\mathbb{E}\left[\int_{(t, \infty)} f(s) l_{j}^{Z}(s) d a(s) \mid Z(t)=i\right] & =\int_{(t, \infty)} f(s) p_{i j}(t, s) d a(s) \\
\mathbb{E}\left[\int_{(t, \infty)} f(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right] & =\int_{(t, \infty)} f(s) p_{i j}(t, s) \mu_{j k}(s) d s
\end{aligned}
$$

Recap and conclusion

$$
\begin{aligned}
\mathbb{E}\left[\int_{(t, \infty)} f(s) l_{j}^{Z}(s) d a(s) \mid Z(t)=i\right] & =\int_{(t, \infty)} f(s) p_{i j}(t, s) d a(s) \\
\mathbb{E}\left[\int_{(t, \infty)} f(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right] & =\int_{(t, \infty)} f(s) p_{i j}(t, s) \mu_{j k}(s) d s
\end{aligned}
$$

Compare with:

$$
\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]=\frac{1}{v(t)} \sum_{j} \mathbb{E}\left[\int_{(t, \infty)} v(s) l_{j}^{Z}(s) d a_{j}(s) \mid Z(t)=i\right]+\frac{1}{v(t)} \sum_{j, k: k \neq j} \mathbb{E}\left[\int_{(t, \infty)} v(s) a_{j k}(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right] .
$$

Recap and conclusion

$$
\begin{aligned}
\mathbb{E}\left[\int_{(t, \infty)} f(s) l_{j}^{Z}(s) d a(s) \mid Z(t)=i\right] & =\int_{(t, \infty)} f(s) p_{i j}(t, s) d a(s) \\
\mathbb{E}\left[\int_{(t, \infty)} f(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right] & =\int_{(t, \infty)} f(s) p_{i j}(t, s) \mu_{j k}(s) d s
\end{aligned}
$$

Compare with:

$$
\begin{gathered}
\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]=\frac{1}{v(t)} \sum_{j} \mathbb{E}\left[\int_{(t, \infty)} v(s) l_{j}^{Z}(s) d a_{j}(s) \mid Z(t)=i\right]+\frac{1}{v(t)} \sum_{j, k: k \neq j} \mathbb{E}\left[\int_{(t, \infty)} v(s) a_{j k}(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right] . \\
\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]=\frac{1}{v(t)} \sum_{j} \int_{(t, \infty)} v(s) p_{i j}(t, s) d a_{j}(s)+\frac{1}{v(t)} \sum_{j, k: k \neq j} \int_{(t, \infty)} v(s) a_{j k}(s) p_{i j}(t, s) \mu_{j k}(s) d s .
\end{gathered}
$$

Recap and conclusion

$$
\begin{aligned}
\mathbb{E}\left[\int_{(t, \infty)} f(s) l_{j}^{Z}(s) d a(s) \mid Z(t)=i\right] & =\int_{(t, \infty)} f(s) p_{i j}(t, s) d a(s) \\
\mathbb{E}\left[\int_{(t, \infty)} f(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right] & =\int_{(t, \infty)} f(s) p_{i j}(t, s) \mu_{j k}(s) d s
\end{aligned}
$$

Compare with:

$$
\begin{gathered}
\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]=\frac{1}{v(t)} \sum_{j} \mathbb{E}\left[\left.\int_{(t, \infty)} v(s)\right|_{j} ^{Z}(s) d a_{j}(s) \mid Z(t)=i\right]+\frac{1}{v(t)} \sum_{j, k: k \neq j} \mathbb{E}\left[\int_{(t, \infty)} v(s) a_{j k}(s) d N_{j k}^{Z}(s) \mid Z(t)=i\right] . \\
\mathbb{E}\left[V^{+}(t) \mid Z(t)=i\right]=\frac{1}{v(t)} \sum_{j} \int_{(t, \infty)} v(s) p_{i j}(t, s) d a_{j}(s)+\frac{1}{v(t)} \sum_{j, k: k \neq j} \int_{(t, \infty)} v(s) a_{j k}(s) p_{i j}(t, s) \mu_{j k}(s) d s .
\end{gathered}
$$

In a summary,

$$
V_{i}^{+}(t)=\frac{1}{v(t)} \sum_{j} \int_{(t, \infty)} v(s) p_{i j}(t, s) d a_{j}(s)+\frac{1}{v(t)} \sum_{j, k: k \neq j} \int_{(t, \infty)} v(s) a_{j k}(s) p_{i j}(t, s) \mu_{j k}(s) d s
$$

Table of contents

1 Summary and aims

2 Expected prospective value

3 Expected initial cost (single premium)

4 Discrete time formulas (no proof)

Computing $\mathbb{E}[V(0) \mid Z(0)=i]$

It is quite immediate to deduce that $V_{i}(0)=\mathbb{E}[V(0) \mid Z(0)=i]$ has the following analytic expression

$$
\pi_{0} \triangleq V_{i}(0)=\sum_{j} \int_{[0, \infty)} v(s) p_{i j}(0, s) d a_{j}(s)+\sum_{j, k: k \neq j} \int_{[0, \infty)} v(s) a_{j k}(s) p_{j k}(0, s) \mu_{j k}(s) d s
$$

which corresponds to the single premium or premium paid upfront of the policy given that the insured enters the contract in state i. Usually $i=*$.

Table of contents

1 Summary and aims

2 Expected prospective value

3 Expected initial cost (single premium)

4 Discrete time formulas (no proof)

Expected prospective value and single premium in discrete

time

The expected prospective value for $n=0,1, \ldots$ is given by

$$
V_{i}^{+}(n)=\frac{1}{v(n)} \sum_{j} \sum_{m=n+1}^{\infty} v(m) p_{i j}(n, m) a_{j}(m)+\frac{1}{v(n)} \sum_{j, k} \sum_{m=n+1}^{\infty} v(m) p_{i j}(n, m-1) p_{j k}(m-1, m) a_{j k}(m)
$$

and the single premium π_{0} by

$$
\pi_{0}=V_{i}(0)=\sum_{j} \sum_{m=0}^{\infty} v(m) p_{i j}(0, m) a_{j}(m)+\sum_{j, k} \sum_{m=1}^{\infty} v(m) p_{i j}(0, m-1) p_{j k}(m-1, m) a_{j k}(m)
$$

Exercise: prove the formulas. Take $\mathbb{E}\left[\cdot \mid Z_{n}=i\right]$ on the discrete version of the prospective value $V^{+}(n)$. Use the law of total probability with $\mathbb{I}_{\left\{Z_{m-1}=/\right\}}$ and use the Markov property. In other words: follow the steps as for the continuous time case. Here, the proof is easier.

UiO 8 Department of Mathematics University of Oslo

David R. Banos

STK4500: Life insurance and finance Expected values and single premium

