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Problem 1: Mortgage loan insurance

You work in the risk department of a bank and have been entrusted with the task to
implement a continuous time model for mortgage loans and assess the risk of default
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due to demise of the borrower.
A mortgage is a contract between a lender, usually a bank, and a borrower,

usually a private person. The loan grants the borrower a �xed amount of money,
known as the principal. The borrower agrees to pay back the loan on a monthly
basis for a certain period of time. The monthly amounts are known as instalments
and the repayment period can be upto several years, for instance, 25 or 30 years.
The purpose of the mortgage is to buy a property, which serves as collateral to
secure the loan.

We will consider a loan with principal P and monthly instalments of B monetary
units. We employ the technical discount factor v(t) = e−rt, t ≥ 0, where r is a
constant nominal rate (yearly).

(a) Express the cash �ow of a bank loan with principal P transferred today with
monthly instalments of equal amounts of B monetary units starting from next
month, for a period of T months, that is T/12 years. Assuming a constant
technical interest rate r, write down the present value V (t), the retrospective
value V −(t) and the prospective value V +(t) of the loan.

Solution: The basic time unit t will be months. You could have chosen t = 1
one year and t = 1/12 a month as well. It does not matter as long as you
use the right interest rate. For instance, if you choose t = 1 monthly, then
r = 5%/12 is the right rate to use, whereas if you use t = 1 a year, then you
can use r = 5% and in your formulas it will appear r/12 automatically. The
point is that the basic time unit for t should match the basic time unit for
which r is given. Therefore, we will use r = 5%/12.

The cash �ow is given by

C(t) =



P, t ∈ [0, 1),

P −B, t ∈ [1, 2),

. . . ,

P −Bk, t ∈ [k, k + 1),

. . . ,

P −B(T − 1), t ∈ [(T − 1), T ),

P −BT, t ∈ [T,∞).
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If you chose t to be in units of years then Cyearly is given by

Cyearly(t) =



P, t ∈ [0, h),

P −B, t ∈ [h, 2h),

. . . ,

P −Bk, t ∈ [kh, (k + 1)h),

. . . ,

P −B(n− 1), t ∈ [(n− 1)h, nh),

P −Bn, t ∈ [T,∞),

where h = 1/12 is one month and n = T/h the number of months.

This cash �ow is a (decreasing) step function with jumps at times t ∈ {0, 1, . . . , T},
a total of T +1 jumps with ∆C(0) = P and ∆C(k) = −B for all k = 1, . . . , T .

The present value, retrospective and prospective values are de�ned by

V (t) =
1

v(t)

∫
[0,∞)

v(s)dC(s), t ≥ 0

and

V −(t) =
1

v(t)

∫
[0,t]

v(s)dC(s), V +(t) =
1

v(t)

∫
(t,∞)

v(s)dC(s), t ∈ [0, T ].

The Riemann-Stieltjes integral with C ′(s) = 0 where C is di�erentiable and
has T + 1 jumps is given by

V (t) =
P

v(t)
− B

v(t)

T∑
k=1

v(k).

The expression above makes sense. It is the t-value of the principal P and the
t-value of each payment of B monetary units executed at each future month
k.

In a similar fashion we can compute V −(t) and V +(t). We have,

V −(t) =
P

v(t)
− B

v(t)

T∑
k=1

v(k)I[0,t](k) =
P

v(t)
− B

v(t)

⌊t⌋∑
k=1

v(k), t ∈ [0, T ]

and

V +(t) = − B

v(t)

T∑
k=1

v(k)I(t,∞)(k) = − B

v(t)

T∑
k=⌊t⌋+1

v(k), t ∈ [0, T ].

3



(b) Let P = 1500 000 kr with a repayment period of 20 years (i.e. T = 240
months) with 5% yearly interest rate. Compute how much are the monthly
instalments B that the borrower must pay back to the bank. Plot the present,
retrospective and prospective values for each t ∈ [0, T ). What do you observe?
After 7 years, the borrower wishes to cancel the loan and pay back everything
left at once. How much would that be?

Solution: The time variable t is given in month units, hence, the constant
rate for a month is r = 5%/12 = 0.4166%. To make the cash �ow even, we
need to impose that today's value is 0, i.e.

V (0) = 0.

This gives the equation

P = B
T∑

k=1

v(k).

Since v(k) = e−rk then we have a geometric series. So,

T∑
k=1

e−rk =
1− e−rT

er − 1
,

where r = 5%/12 is the monthly rate.

As a result,

B = Per
∗T er − 1

erT − 1
= 9 907.98 kr.

R code for this item:

P <- 1500000

T <- 12*20

r <- 0.05/12

v <- function(k) exp(-r*k)

B <- P/((v(1)-v(T+1))/(1-v(1)))

The monthly payments were chosen so that the present value of the cash �ow
is zero, i.e.

V (0) =

∫
[0,∞)

v(s)dC(s) = 0,

which implies that

V (t) =
1

v(t)
V (0) = 0
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for all t ∈ [0, T ).

Then since V −(t) + V +(t) = V (t) = 0 we see that V −(t) and V +(t) are mir-
rored quantities. This makes sense. The value V +(t) is what the borrower owes
the bank at time t. This quantity is negative since we adopted the widespread
convention that bene�ts have positive sign and payments/premiums have neg-
ative sign. In other words, cash from bank/insurer to customer is positive and
cash from customer to bank/insurer has negative sign.

Figure 1: Present value is always 0 (in red). Retrospective value (in blue) and
prospective value (in green).

It is not possible to appreciate in Figure 1, but the green and blue curves are
actually discontinuous with jumps every month. Just to see it, we zoomed in
the �gure around the last 40 and 10 months of the loan, respectively.
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(a) The last 40 months. (b) The last 10 months.

Figure 2: Present value (in red), retrospective value (in blue) and prospective value
(in green) during the last months of the period. We can appreciate a discontinuity
at each monthly instalment.

R code for this item:

PV <- function(t) P/v(t)-(1/v(t))*B*((v(1)-v(T+1))/(1-v(1)))

rV <- function(t) P/v(t)-(1/v(t))*B*((v(1)-v(floor(t)+1))/(1-v(1)))

pV <- function(t) -(1/v(t))*B*((v(floor(t)+1)-v(T+1))/(1-v(1)))

time <- seq(0,T,by=0.1)

PV.val <- sapply(time,PV)

rV.val <- sapply(time,rV)

pV.val <- sapply(time,pV)

ggplot()+

geom_point(aes(x = time, y = PV.val),color = "red", size=0.1)+

geom_point(aes(x = time, y = rV.val),color = "blue", size=0.1)+

geom_point(aes(x = time, y = pV.val),color = "green", size=0.1)+

xlab("Time (years)")+ylab("Value")+geom_hline(yintercept=0,

linetype="dashed")

Seven years corresponds to 7 · 12 = 84 months, i.e. 84 payments. Hence, the
outstanding loan would be V +(7 · 12) = −1 134 169 kr.

(c) In reality, most of the mortgages are so-called adjustable-rate interest mort-

gages meaning that the interest rate can change according to some interest rate
index. Here, we take as example interest rates for mortgages from December
2021 to December 2023. See the Figure 9 below.
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Figure 3: Interest rate applied to new loans issued monthly. Source: SSB.

Interest rate evolution for new loans

Month Rate (%)
Dec 2021 1.92
Jan 2022 2.06
Feb 2022 2.10
Mar 2022 2.12
Apr 2022 2.28
May 2022 2.35
June 2022 2.38
July 2022 2.67
Aug 2022 2.88
Sept 2022 3.27
Oct 2022 3.65
Nov 2022 3.87
Dec 2022 3.99
Jan 2023 4.17
Feb 2023 4.19
Mar 2023 4.22
Apr 2023 4.38
May 2023 4.52
June 2023 4.69
July 2023 4.98
Aug 2023 5.19
Sept 2023 5.33
Oct 2023 5.46
Nov 2023 5.54
Dec 2023 5.57

Table 1: Yearly loan rates.

The table shows the interest rate �uctuations for 25 months. Assume for a
moment that the loan in item (c) was granted on the 1st of December 2021 and
the �rst instalment is due on the 1st of January 2022. Compute the amount
B that is o�ered to the borrower on the 1st of December 2021, hereby B0.
Thereafter, when the new rate is published on the 1st of January, the amount
B0 is readjusted to a new amount B1 according to the new interest rate. For
the �rst step we start with r = 1.92% then it is increased to r = 2.06% and so
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on. Compute the new amount B1 and do the same for the coming months, B2,
. . . , B24. You can still assume that T = 20 years. This exercise is just about
updating the mortgage instalments according to the interest rate �uctuations.

Compute the �nal balance that the borrower has paid for these 25 months
and the �xed constant rate that would make up to the same balance. This
rate, would be the threshold under which a �xed-rate mortgage would be more
pro�table than an adjustable-rate mortgage.

Solution:

In this part of the exercise we look at a non-constant interest rate curve r, i.e.
r(t) = ri for t ∈ [i, i + 1), for i = 0, . . . , 24, where ri is the rate in the table
starting from r0 = 1.92%.

The principle used to �nd the constant instalments B is equivalence, i.e. one
needs to impose that

V (0) = 0

giving rise to the equation

V (0) = P −B
T∑

k=1

v(k) = 0.

The present value needs to be zero at any time, since V (t) = V (0)
v(t)

= 0. The

issue here is that once we apply the equivalence principle for r0 = 1.92%
to obtain B0 = 9907.98 kr then after one month the new rate destroys the
equivalence so that V (1) ̸= 0 (if r increases then the bank loses and vice
versa). Hence, future instalments must be updated to respect equivalence of
the outstanding loan.

Since we now have a di�erent rate r1 to be used. We need thus to split the
cash �ow into the retrospective value V −(1, r0), where the old rate r0 was used
and the prospective value V +(1, r1), where the new rate is used. Then, to �nd
the new instalments B1 we need to impose that

V (1) = V −(1, r0)︸ ︷︷ ︸
retrospective cash

with old rate

+ V +(1, r1)︸ ︷︷ ︸
prospective cash
with new rate

= 0.

This is equivalent to saying that

P

v(1; r0)
−B0︸ ︷︷ ︸

=V −(1,r0)

=
B1

v(1; r1)

T∑
k=2

v(k; r1)︸ ︷︷ ︸
=−V +(1,r1)

(
= B1

T−1∑
k=1

v(k; r1)

)
, (1)
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where v(k; r) denotes the discount factor with rate r. Note that the left-hand
side of (1) is the paid-in part, where the loan P has been compounded with
one month factor 1

v(1;r0)
w.r.t. the old interest rate and the right-hand side is

the future (new) payments that are now evaluated w.r.t. the new interest rate
r1 = 2.06%.

Now, on the 1st of January, we have a �new� loan with principal P1 =
P

v(1;r0)
−

B0 and rate r1 with instalments of size B1 to be paid in T − 1 months.

Iterating this argument, the instalment B2 should ful�l

P1

v(1; r1)
−B1 = B2

T−2∑
k=1

v(k; r2).

De�ning

Pi =
Pi−1

v(1; ri−1)
−Bi−1, P0 = P

then, assuming that we know Bi−1, we can �nd the updated instalment Bi by
solving

Pi = Bi

T−i∑
k=1

v(k; ri).

We obtained the following results:

Figure 4: Series of updated instalments according to the new published nominal
rates for the given 25 months (from 1st Dec. 21 to 1st Dec. 23).

We see that the increase is most prominent between the 8th and the 11th
months, which coincides with the highest interest rate increases.
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The question on whether which is the (constant) interest rate for which (con-
stant) instalments match the variable ones is not entirely uniquely determined.
It depends on how much monthly B we are willing to pay.

The total balance paid for the (variable) instalments B0, . . . , B24 is given by
the retrospective value V −(24) at the 25th month. Careful here, because the

discount factor v(t) = e−
∫ t
0 r(s)ds is not constant and r(s) is de�ned by

r(s) =
∞∑
k=0

rkI[k,k+1)(s),

where rk = r24 for all k ≥ 25, where r24 is the last interest rate we know of.

Hence,

V −(24) =
P

v(24)
− 1

v(24)

24∑
k=0

Bkv(k),

where we used the formula for the retrospective value with t = 24. So, today's
value of the paid-in cash is

v(24)V −(24) = P −
24∑
k=0

Bkv(k).

Now, Today's value of constant instalments B for 24 months at constant in-
terest rate is

P −B
24∑
k=0

e−rk.

We thus need to match

v(24)V −(24) = P −B

24∑
k=0

e−rk

which gives

P −
24∑
k=0

Bkv(k) = P −B

24∑
k=0

e−rk

and thus
24∑
k=0

Bkv(k) = B
1− e−25·r

1− e−r
.

The left-hand side above is a number, say b, while the right-hand side depends
on the simultaneous choice of B and r.
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The number b turned out to be: b = 150 709.7 which is today's value of the
paid in B0, . . . , B24 for the given interest rate table. Then the relation between
B and r matching the same value is given in the next �gure.

Figure 5: For each given rate, we see the value of (constant) B whose present
value matches the present value for the variable rate loan, which was 150 709.7. For
instance, for constant monthly B = 1

25

∑24
k=0Bk = 8898.84 the rate is r = 0.0351 =

3.51%, which is not the mean of the rates in Table 1.

If the borrower could guess the future interest rate evolution, i.e. Table 1 and,
in particular, the starting rate 1.92% and they were willing to pay a constant
monthly amount of 8 898.84 kr., then they should choose a �xed-rate mortgage
if the �xed rate was at most 3.51%.

We used the following code:

rk <- c(0.0192, 0.0206, 0.0210, 0.0212, 0.0228, 0.0235, 0.0238,

0.0267, 0.0288, 0.0327, 0.0365, 0.0387, 0.0399, 0.0417, 0.0419,

0.0422, 0.0438, 0.0452, 0.0469, 0.0498, 0.0519, 0.0533, 0.0546,

0.0554, 0.0557)

vr <- function(r,t) exp(-(r/12)*t)

Bvec <- rep(0,length(rk))

Pvec <- B

Pvec[1] <- P

Bvec[1] <- Pvec[1]/( (vr(rk[1],1)-vr(rk[1],T+1))/(1-vr(rk[1],1)))

for(j in 2:25){

Pvec[j] <- Pvec[j-1]/vr(rk[j-1],1) - Bvec[j-1]

aux <- (vr(rk[j],1)-vr(rk[j],T-j+1))/(1-vr(rk[j],1))

Bvec[j] <- Pvec[j]/aux
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}

ggplot()+ geom_point(aes(x =1:25, y =Bvec),color = "red") +

xlab("Time (years)")+ylab("Value instalment")

#Relation between (constant) B and (constant) r

#Total balance for the B_k and r_k:

bal <- sum(Bvec*exp(-cumsum(rk)))

#We plot (r,B) such that bal=B*((1-exp(-25*r))/(1-exp(-r)))

fun.B <- function(r) bal*((1-exp(-r))/(1-exp(-25*r)))

r.val <- seq(0,0.2,by=0.001) #We just look up to 20% rate, higher is

overkill

B.val <- sapply(r.val,fun.B)

B.val[1] <- bal/25

ggplot()+ geom_line(aes(x =r.val, y =B.val),color = "red") +

xlab("Interest rate") + ylab("Value instalment")

#We find the rate which correponds to a B equal to the mean of B_k

f1 <- function(r) mean(Bvec)-bal*((1-exp(-r))/(1-exp(-25*r)))

r.fixed <- uniroot(f1,c(0.0001,1))$root

(d) Assume again that r = 5% is the employed technical rate by the bank to price
loans. Assess the risk of loss due to death of the borrower. Use the mortality
basis published by Finanstilsynet in their K2013 letter. You can take your age
and legal gender as example. Use mortality risk. For the solution we will use:
z = 30 in Y = 2024 and G = R = 0.

More concretely, carry out the following computations:

(i) Estimate the loss distribution of the bank due to death.

(ii) Compute the mean loss analytically and by Monte-Carlo. Compare the
results.

(iii) Compute the solvency capital requirement, i.e. the 99.5%-quantile of the
loss distribution.

Hint: the loss caused by death is naturally a distribution, whose values di�er
from person to person. The present value of the outstanding loan at time t is
V +(t) from item (a). If τ denotes the death time of the borrower, then the
relevant quantity to look at would be v(τ)V +(τ)I{τ≤T}, which is the discounted
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outstanding loan at the time of death where a loss happens only if death occurs
before expiration of the loan.

Solution:

To generate a histogram we simply generate lives (in units of months) and
look at compute the values v(τ)V +(τ). Next �gure shows the result.

Taking the perspective of insurance: the cost would correspond to the present
value of a death bene�t corresponding to the prospective value of the loan at
the time of death. Hence, a term insurance with bene�t V +(t). This means

a∗†(t) = V +(t), t ∈ [0, T ).

The present value of such policy would be

V (0) =

∫
[0,∞)

v(s)a∗†(s)dN
Z
∗†(s) =

∫
[0,∞)

v(s)V +(s)I[0,T ](s)dN
Z
∗†(s).

Now, the integral has a unique jump of size 1 at s = τ . Hence,

V (0) = v(τ)V +(τ)I[0,T ](τ).

The expectation (single premium) would be

π0 = E[V (0)] =

∫ T

0

v(s)V +(s)fτ (s)ds,

where fτ is the density function of τ (death time in months). We know the
distribution of τ in years, which is given by Finanstilsynet (K2013),

P[τ/12 > t] = e−
∫ t
0 µKol(z+u,Y+u)du,

where z is the initial age and Y the starting year of the loan.

If s is a number of months then the distribution of the life time τ (in months)
is

Fτ (s) = 1− P[τ > s] = 1− e−
∫ s/12
0 µKol(z+u,Y+u)du.

Hence, the density of τ is given by

fτ (s) =
1

12
e−

∫ s/12
0 µKol(z+u,Y+u)duµKol(z + s/12, Y + s/12).

Finally,

π0 = E[V (0)] =

∫ T

0

v(s)V +(s)fτ (s)ds,
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which is exactly the formula for the expected prospective value at time t = 0
of a term insurance with death bene�t equal to the prospective value a∗†(t) =
V +(t). See and compare with Theorem 5.1.2 or Corollary 5.1.3 from the lecture
notes. In units of years the formula looks like

π0 = E[V (0)] =

∫ T/12

0

v(12s)V +(12s)e−
∫ s
0 µKol(z+u,Y+u)duµKol(z + s, Y + s)ds.

We obtained
π0 = −5 539.67 .

Figure 6: Histogram of V (0) = v(τ)V +(τ)I{τ≤t}, where τ is death time in months,
based on 1 000 000 simulations. Empirical mean −5 387.72.Seed used:1. Execution
time: ∼ 2h 8m.

The histogram shows very few deaths, since we are looking at a z = 30 year old
borrower in 2024 for a period of 20 years. The probability of surviving from
30 to 50 is very high in Norway (according to the K13 model it is p∗∗(0, 20) =
0.9892), and even higher for females. You can try plotting an histogram for
the loss distribution when the loan is granted to a, say 50 and 70 year old
individual. You will see a di�erent shape. We did it for the sake of fun.

14



(a) Individual of age 50. (b) Individual of age 70.

Figure 7: Histogram of V (0) = v(τ)V +(τ)I{τ≤t} based on 10 000 simulations for ages
z = 50 (left) and z = 70 (right). Seed used:1.

Back to our exercise, we computed the empirical mean for n ∈ {103, 104, 105, 106}
simulations, using seed 1. The results are collected in the next table.

Empirical quantities using Monte-Carlo

nr. simulations 103 104 105 106

Mean −6 268.40 −4 514.89 −5 479.8 −5 387.72
99.5%-solvency capital −331 462.4 −355 576.6 −456 761.8 −429 345.8

Execution time 15s 1m 20s ∼ 13m ∼ 2h 8m

Table 2: Empirical premium computed by generating lives, computing loss and
taking the mean. Seed used: 1. We see the importance of the accuracy in the
number of simulations which comes at a computational cost.

The mean using the exact formula is

π0 = E[V (0)] = −5 539.67 kr.

We see that they are close as we increase the number of simulations, although
it took at least 100 000 simulations to get close and quite some time for the
empirical one!

library(ggplot2)

source("K2013.R")

source("probabilityK2013.R")

source("lifeK2013.R")

set.seed(1)

z <- 30 #age at year Y

Y <- 2024 #current year of choice

G <- 0 #gender

R <- 0 #risk
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sim <- 100000 #number of lives

tau <- 12*(life.K13(z,sim)-z) #simulating lives (in months)

loss <- v(tau)*pV(tau)*(tau<T) #loss distribution

df <- data.frame(loss)

ggplot(df,

aes(x=loss))+geom_histogram()+xlab("Value")+ylab("Frequency")

#Exact mean

f2 <- function(s) (1/12)*v(s)*pV(s)*p.K13(0,s/12)*my.kol(z+s/12 ,Y+

s/12)

pi0 <- integrate(Vectorize(f2),0,T, subdivisions=500)$value

#Comparison

mean(loss)

pi0

#Empirical quantile

quantile(-loss,0.995)

(e) Compute the monthly premium from item (d), i.e. the deferred premium on
a monthly basis for that policy. Assume that premiums are paid monthly in
advance and the last payments occurs on the �rst day of the 239th month.

Solution:

The total cost of the loss due to demise of the borrower was computed in the
previous item, given by π0. This is the quantity that the borrower should
pay the bank to hedge against the risk of losing the house in case of death.
The bank can o�er the borrower to pay π0 by means of monthly (or yearly)
payments. The idea is to �spread� the amount π0 along the T = 240 months
of the contract. To do so, we create an �arti�cial� policy which consists of
payment of premiums on a monthly basis.

The policy function describing this setting is given by

aPrem∗ (t) =



−π, t ∈ [0, 1),

−2π, t ∈ [1, 2),

. . . ,

kπ, t ∈ [k, k + 1),

. . . ,

π(T − 1), t ∈ [(T − 1),∞).

The policy cash �ow is then given by

dCPrem(s) = IZ∗ (s)da
Prem
∗ (s).
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Then, we need to compute the expected present value of this policy cash �ow
and match it with π0 so that we can retrieve the monthly quantity π to be
paid.

The expected present value (at t = 0) of this policy cash �ow is given by

V∗(0, C
Prem) =

∫
[0,∞)

v(s)p∗∗(0, s)da
Prem
∗ (s) = −π

T−1∑
k=1

v(k)p∗∗(0, k).

Hence, we need to impose that

V∗(0, C) + V∗(0, C
Prem) = 0,

where C is the loan cash �ow and CPrem is the cash �ow of premiums. Here,
π0 = V∗(0, C) is the single premium. Hence, the equation for π that we obtain
is

π0 = π
T−1∑
k=1

v(k)p∗∗(0, k)

and �nally,

π =
π0∑T−1

k=1 v(k)p∗∗(0, k)
.

The value we obtain is:
π = 36.82 kr.

This is a reasonable monthly premium for such a young borrower. Usually,
the bank charge us more than that per month for administrative and other
type of costs.

Note that we use a continuous time model, but impose that payments are
made at discrete times, for this reason we obtain sums instead of integrals.
If you model the payment of premiums on a continuous basis (as if one were
paying daily, kind of) then you would have obtained integrals, like some of the
examples in the lecture notes.

The R-code used was:

aux <- 0

for(k in 1:(T-1)){

aux <- aux + v(k)*p.K13(0,k/12)

}

pi <- -pi0/aux
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Problem 2: Disability insurance with retirement

We consider a multistate-state Markov model with three states in continuous time,
see Figure 8. Z will be the Markov process with states in Z = {0, 1, 2} where 0 is
the active/alive state, 1 is the disability state and 2 is the life ending state.

Figure 8: Disability model.

The transition rates that we will assume are contained in the following transition
rate matrix

Λ(t) =

µ00(t) µ01(t) µ02(t)
µ10(t) µ11(t) µ12(t)
µ20(t) µ21(t) µ22(t)

 .

Biometric speci�cations: Assume the following transition rates

µ01(x) = 0.0004 + 100.06x−5.46, µ02(x) = 0.0005 + 100.038x−4.12,

µ10(x) = 0.05, µ12(x) = µ02(x),

where x is age.
Policy speci�cations: Policyholder is a z = 30 year old individual with right

to a disability pension of D = 100 000 monetary units per annum as long as they are
in the disability state from contract inception until retirement time T0 = 40 years
after inception and right to pension of P = 300 000 monetary units per annum from
retirement time T0 to expiry time T = 80 as long as they are in the active/alive or
disability state.

Economic/�nancial speci�cation: We assume a technical constant interest
rate of r = 3% per annum.

(a) Find the transition probabilities for this model by solving Kolmogorov's equa-
tion numerically.

Then, make a program that simulates random lives, i.e. random paths of
t 7→ Z(t, ω) where ω is the life of an individual. An example of what a path
should look like is given in Figure 9 below.
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Figure 9: Example of a life performance of an individual.

To simulate lives from this model, you may use the following algorithm:

1. Take a partition of [0, T ] of size h and let ti = ih, i = 0, . . . , n where
n = T

h
.

2. Set Z(0) = 0.

3. For i = 1, . . . , n, generate a random observation, say ji, from {0, 1, 2} with
the probabilities {pZ(ti−1),0(ti−1, ti), pZ(ti−1),1(ti−1, ti), pZ(ti−1),2(ti−1, ti)}. Set
Z(ti) = ji.

After completing the algorithm you will have a vector of n+ 1 states, one for
each time point ti, i = 0, . . . , n and where Z(0) = 0. Plot two, three or four
random paths in one �gure.

Solution:

To obtain the transition probabilities we need to solve Kolmogorov's equation
which, in matrix form, is given by

d

dt
P (s, t) = P (s, t)Λ(t), t ≥ s,

where P (s, t) is the matrix with entries pij(s, t) and Λ is the matrix with entries
µij(t). We used a classical Euler scheme with monthly steps h = 1/12, i.e.

P (s, t+ h) ≈ P (s, t) + hP (s, t)Λ(t) = P (s, t) (I + hΛ(t)) ,

where I stands for the identity matrix. Then, we start from s = 30 and,
P (30, 30) = I and compute P (30, 30 + h) as

P (30, 30 + h) ≈ P (30, 30) (I + hΛ(30))

and so on.
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Figure 10: Transition probabilities pij(30, s) for s ∈ [30, 12] and i, j ∈ {0, 1, 2}.
There is an overlap for p02 and p12 which are the red and orange ones, respectively.
This is because µ02(t) = µ12(t) in this exercise, otherwise they would not overlap.

To simulate paths, we note that at each step we need to sample from {0, 1, 2}
with vector of probabilities (pi0(kh, (k + 1)h), pi1(kh, (k + 1)h), pi2(kh, (k + 1)h))
for i ∈ {0, 1, 2} and k = 0, . . . , n. These vectors correspond to the ith row of
the transition probability matrix P (kh, (k+1)h). Note that (k+1)h−kh = h
which is a small time step. Hence, we can use the following numerical approx-
imation for the derivative

d

dt
P (s, t) ≈ P (s, t+ h)− P (s, t)

h

with s = t = kh. Hence, we get that

P (kh, (k + 1)h) ≈ P (kh, kh) (I + hΛ(kh)) = I + hΛ(kh).

The above is nothing else than Euler's method.

The algorithm we use is as follows. We �x an initial age z = 30 and a �nal
age 110. Then, for each tk = z + kh for k = 0, . . . n, where n is the number of
points such that z + nh = 110, we compute

P (tk, tk+1) = P (z + kh, z + (k + 1)h) ≈ I + hΛ(z + kh).
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Starting from k = 0, we have Z(0) = 0, then we pick the �rst row which
corresponds to (p00(0, h), p01(0, h), p02(0, h)) and sample from {0, 1, 2} with
the given probabilities. We set Z(h) equal to the sampled value and proceed
to retrieve P (h, 2h) and pick the row corresponding to Z(h) to generate the
next value and so on. See the R code employed further below.

We generated 100 lives and selected the �rst four, displayed in the �gure below.

Figure 11: Example of four randomly generated life paths of an active 30 year old
individual. Seed used: 1.

The �gure shows the random performance of four individuals. We can see that
the blue one was disabled for a short period of time before death. The red
one had two periods of illness and the yellow and green ones had no periods of
illness. As pointed out in the exercise, we will only consider subsidy for illness
before retirement, i.e. before age 70, where pensions start.

We used the following code:

library(ggplot2)

library(latex2exp)

L <- function(u){

mu01 <- 0.0004+10^(0.06*u-5.46)

mu02 <- 0.0005+10^(0.038*u-4.12)

mu00 <- -mu01-mu02
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mu10 <- 0.05

mu12 <- 0.0005+10^(0.038*u-4.12)

mu11 <- -mu10-mu12

val <- matrix(c(mu00,mu01,mu02,mu10,mu11,mu12,0,0,0), nrow=3,

byrow=TRUE)

return(val)

}

field <- function(t,M){

return(M%*%L(t))

}

Euler <- function(t0,P0,h,tn){

if(t0==tn){ return(P0)}

N<- ceiling((tn-t0)/h)

D <- dim(P0)[1]

#Initial condition at s

P <- array( P0 , dim=c(D,D,N+1) )

#First iteration

P[,,1] <- P0 + h*field(t0,P0)

for(n in 1:N){

P[,,n+1] <- P[,,n]+h*field(t0+n*h,P[,,n])

}

return(P)

}

t0 <- 30

P0 <- diag(3)

tn <- 110

h <- 1/12

Euler_sol <- Euler(t0,P0,h,tn)

df <- data.frame(Time=seq(t0,tn,by=h), p00=Euler_sol[1,1,],

p01=Euler_sol[1,2,], p02=Euler_sol[1,3,], p10=Euler_sol[2,1,],

p11=Euler_sol[2,2,], p12=Euler_sol[2,3,])

ggplot(data = df, aes(x = Time)) +

geom_line(aes(y = p00, colour = "00")) +

geom_line(aes(y = p01, colour = "01")) +

geom_line(aes(y = p02, colour = "02")) +

geom_line(aes(y = p10, colour = "10")) +
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geom_line(aes(y = p11, colour = "11")) +

geom_line(aes(y = p12, colour = "12")) +

ylab("Probability")+

scale_colour_manual("",

breaks = c("00", "01", "02", "10", "11", "12"),

values = c("green", "yellow", "red", "blue",

"brown", "orange") )

h <- 1/12

N <- 110/h

sim <- 1000 #number of individuals

life <- matrix(rep(0,(N+1)*sim), nrow=N+1, byrow=TRUE)

z <- 30

#set.seed(1)

for(j in 1:sim){

for(i in 1:N){

P <- diag(3)+h*L(z+i*h) #starting from 30 yo individual

p <- P[life[i,j]+1,]

life[i+1,j] <- sample(c(0,1,2),1,p,replace=TRUE)

}

}

time <- z+seq(0,N*h,by=h)

df <- data.frame(time,life[,1],life[,2],life[,3],life[,4])

ggplot(df)+

geom_point(aes(x = time, y = life[,1]),color = "red", shape=0,

size=0.1)+

geom_point(aes(x = time, y = life[,2]+0.02),color = "blue",

shape=1, size=0.1)+

geom_point(aes(x = time, y = life[,3]+0.04),color = "green",

shape=2, size=0.1)+

geom_point(aes(x = time, y = life[,4]+0.06),color = "yellow",

shape=3, size=0.1)+xlab("Time (years)")+ylab("State")

(b) Write down the policy functions of this insurance policy, the policy cash �ow
C described by the policy functions and the associated present, retrospective
and prospective values of the policy cash �ow.

Solution: The policy functions of interest are a0, a1, a02 and a12. See De�ni-
tion 4.3.4 for their de�nition.

The policy functions for sojourns a0 and a1 are given by
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a0(t) =


0, t ∈ [0, T0),

P (t− T0), t ∈ [T0, T ),

P (T − T0), t ∈ [T,∞).

a1(t) =


Dt, t ∈ [0, T0),

DT0 + P (t− T0), t ∈ [T0, T )

DT0 + P (T − T0), t ∈ [T,∞).

The two policy functions above determine the entire policy bene�ts. If you
wish to introduce a bene�t due to death from any of the two living states
(healthy and disabled) and at any time during the contract you can do so by
including the policy functions for transitions a02 and a12, which are given by

a02(t) =

{
B, t ∈ [0, T ),

0, t ∈ [T,∞).
a12(t) =

{
B, t ∈ [0, T ),

0, t ∈ [T,∞).

However, the exercise did not ask for a death bene�t, yet, so we just consider
a0 and a1.

A general insurance cash �ow in multistate modelling (see De�nition 4.3.5)
looks like

dC(s) =
∑
i∈Z

IZi (s)dai(s) +
∑
i,j∈Z
j ̸=i

aij(s)dN
Z
ij (s), s ∈ [0,∞).

Now that we have identi�ed our policy functions we can �nd C, which is given
by

dC(s) = IZ0 (s)da0(s) + IZ1 (s)da1(s).

Since the functions a0 and a1 are continuous and a.e. di�erentiable with deriva-
tives a′0(s) = P I(T0,T )(s) and a′1(s) = DI(0,T0)(s) + P I(T0,T )(s), respectively, we
can simplify dC(s) slightly as follows,

dC(s) =P I(T0,T )(s)I
Z
0 (s)ds+

(
DI(0,T0)(s) + P I(T0,T )(s)

)
IZ1 (s)ds.

More compactly,

dC(s) =
(
DI(0,T0)(s)I

Z
1 (s) + P I(T0,T )(s)

(
IZ0 (s) + IZ1 (s)

))
ds.

The above cash �ow says that a pension P is paid out (in�nitesimally) during
the retirement phase (T0, T ) both when being in state 0 or 1, while the dis-
ability pension D is paid out (in�nitesimally) during the working phase (0, T0)
only when being in state 1 (disabled).
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The present, retrospective and prospective values are de�ned by

V (t, C) =
1

v(t)

∫
[0,∞)

v(s)dC(s),

V −(t, C) =
1

v(t)

∫
[0,t]

v(s)dC(s),

V +(t, C) =
1

v(t)

∫
(t,∞)

v(s)dC(s),

where v(t) = e−
∫ t
0 r(s)ds is the discount factor. Hence, we have

V (t, C) =
D

v(t)

∫ T0

0

v(s)IZ1 (s)ds+
P

v(t)

∫ T

T0

v(s)(IZ0 (s) + IZ1 (s))ds.

For V ±(t, C) the integrals are similar, but the limits of the integrals need to
be adjusted accordingly. We have,

V −(t, C) =
D

v(t)

∫ T0∧t

0

v(s)IZ1 (s)ds+
P

v(t)

∫ T∧t

T0∧t
v(s)(IZ0 (s) + IZ1 (s))ds

and

V +(t, C) =
D

v(t)

∫ T0∨t

t

v(s)IZ1 (s)ds+
P

v(t)

∫ T∨t

T0∨t
v(s)(IZ0 (s) + IZ1 (s))ds.

(c) Plot the expected prospective values V +
0 (t) and V +

1 (t) for t ∈ [0, T ] and explain
what these functions mean.

Solution:

The expected values V +
0 (t) and V +

1 (t) are obtained by taking conditional ex-
pectation E[ · |Z(t) = 0] and E[ · |Z(t) = 1], respectively of the (random)
prospective value V +(t). That is

V +
0 (t) = E[V +(t)|Z(t) = 0], V +

1 (t) = E[V +(t)|Z(t) = 1].

There are formulas for V +
0 (t) and V +

1 (t) that can be found in Theorem 5.1.2
from the lecture notes. The general formula is

V +
i (t) =

1

v(t)

∑
j

∫ ∞

t

v(s)pij(t, s)daj(s)+
1

v(t)

∑
k ̸=j

∫ ∞

t

v(s)pij(t, s)µjk(s)ajk(s)ds.

Hence, in our case we have

V +
0 (t) =

D

v(t)

∫ T0∨t

t

v(s)p01(t, s)ds+
P

v(t)

∫ T∨t

T0∨t
v(s)(p00(t, s) + p01(t, s))ds
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and

V +
1 (t) =

D

v(t)

∫ T0∨t

t

v(s)p11(t, s)ds+
P

v(t)

∫ T∨t

T0∨t
v(s)(p10(t, s) + p11(t, s))ds.

However, plotting these quantities numerically appears to be quite cumber-
some. It can be done, but it requires that, for every time t, we need to solve
Kolmogorov's equations to �nd pij(t, s) for every s ∈ [t, T ] and then plug them
into the integrals.

Thiele's equation allow us to compute V +
0 and V +

1 without needing pij. You
may think of Thiele's equation as a combination of Kolmogorov's equations
and numerical computation of the integrals in the expressions above.

Thiele's equation (see Theorem 5.4.3) in general is given by

d

dt
V +
i (t) = r(t)V +

i (t)− a′i(t)−
∑
j∈Z
j ̸=i

µij(t)
(
aij(t) + V +

j (t)− V +
i (t)

)
,

where in our case we only have two relevant states, since V +
2 (t) = 0 for all

t. Moreover, in our case we have and aij = 0 and a′0(t) = P I(T0,T )(t) and
a′1(t) = DI(0,T0)(t). Hence, Thiele's equation for V +

0 and V +
1 (t) (which are

intertwined) becomes

d

dt
V +
0 (t) = rV +

0 (t)−P I(T0,T )(t))−µ01(z+t)
(
V +
1 (t)− V +

0 (t)
)
−µ02(z+t)

(
V +
2 (t)− V +

0 (t)
)
,

d

dt
V +
1 (t) = rV +

0 (t)−DI(0,T0)(t)−µ10(z+t)
(
V +
0 (t)− V +

1 (t)
)
−µ12(z+t)

(
V +
2 (t)− V +

1 (t)
)
,

with �nal condition V +
0 (T ) = V +

1 (T ) = 0. Recall that V +
2 (t) = 0 so,

d

dt
V +
0 (t) = rV +

0 (t)−P I(T0,T )(t))−µ01(z+t)
(
V +
1 (t)− V +

0 (t)
)
+µ02(z+t)V +

0 (t),

d

dt
V +
1 (t) = rV +

0 (t)−DI(0,T0)(t)−µ10(z+ t)
(
V +
0 (t)− V +

1 (t)
)
+µ12(z+ t)V +

1 (t),

with �nal condition V +
0 (T−) = V +

1 (T−) = 0.

Obs: the transition probabilities pij(t, s) and rates µij(t) need to be age-
adjusted. At time t the insured is z + t years old, that is why we �nally
wrote µij(z+ t) in Thiele's equation. We did not write z before for notational
ease.

We present the quantities V +
0 (t) and V +

1 (t) for each t ∈ [0, T ] in the next
�gure.
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Figure 12: Expected prospective values, V +
0 (t) and V +

1 (t), in the two possible states:
alive, disabled, at each time of the contract. We used a rather small step size
h = 0.0001 for better accuracy.

The functions t 7→ V +
i (t) for states i = 0, 1 are the expected cost of the remain-

ing future contractual payments from t to end of contract (hence prospective),
assuming that the insured is in state i at the time t of interest. Obviously, if
the insured is in the disabled state, before retirement T0, we need to expect
more loss due to the disability pension. As time approaches retirement T0 both
expected values merge, since it is indi�erent whether the insured is disabled
or not after retirement. The pension P will be paid out anyway.

We know that the single premium is the initial value of the insurance, which
is given by

π0 = V0(0, C) = ∆a0(0)︸ ︷︷ ︸
=0

+V +
0 (0, C)︸ ︷︷ ︸

�rst value in
the green line

= 642 019.9 kr.

We used the following R-code as a continuation to the previous one. It make
take some time to run, since h = 0.0001 here.
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#Policy

#k: time, j:life

h <- 0.0001

r <- 0.03

z <- 30 #age

T0 <- 40 #retirement (30+40=70)

T <- 80 #ending contract age (30+80=110)

P <- 300000 #yearly pension

D <- 100000 #yearly disability benefit

v <- function(s) exp(-r*s)

n <- T/h

#Expected prospective values via Thiele's equation

time <- seq(0,T,by=h)

nt <- length(time)-1

V0 <- V1 <- rep(0,nt+1)

da0 <- function(t){

return(P*1*(T0<t)*(t<T))

}

da1 <- function(t){

return(D*1*(0<t)*(t<T0)+P*1*(T0<t)*(t<T))

}

for(k in nt:1){

V0[k] <- V0[k+1] - h*(r*V0[k+1] - da0(k*h) -

L(z+k*h)[1,2]*(V1[k+1]-V0[k+1])+L(z+k*h)[1,3]*V0[k+1])

V1[k] <- V1[k+1] - h*(r*V1[k+1] - da1(k*h) -

L(z+k*h)[2,1]*(V0[k+1]-V1[k+1])+L(z+k*h)[2,3]*V1[k+1])

}

df.pV <- data.frame(time,V0,V1)

ggplot(df.pV, aes(x=time))+geom_line(aes(y = V0, colour = "Active"))+

geom_line(aes(y = V1, colour =

"Disabled"))+xlab("Time")+ylab("Prospective values")+

scale_colour_manual("",

breaks = c("Active", "Disabled"),

values = c("green", "red") )

(d) Simulate a histogram of V (0, C) using the algorithm in (a). Compute the
empirical mean of V (0, C) and the single premium using the exact formula
from the lecture notes. Compare and discuss. Compute the yearly premiums
of this insurance assuming that the insured pays premiums during the working
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period only if they are in the active state and plot the function t 7→ V +
∗ (t, C)+

V +
∗ (t, Cπ), where Cπ is the cash �ow associated to the payment of premiums.

Solution:

At t = 0 the initial value of the insurance is given by the random variable

V (0, C) =D

∫ T0

0

v(s)IZ1 (s)ds+ P

∫ T

T0

v(s)(IZ0 (s) + IZ1 (s))ds.

The distribution V (0, C) consists of discounted bene�ts due to retirement (pen-
sion), illness and either a death bene�t from state 0 or from state 1.

We simulate an histogram by using the outcomes generated from item (a) and
applying the formula V (0, C) above, that is, associating to each life perfor-
mance its insurance cost. We obtain the following �gure.

Figure 13: Histogram of V (0) for 100 000 simulations. Seed used: 1. The empirical
mean obtained is: 637 706.7 kr. Execution time: ∼ 46 minutes.

We see that a signi�cant part of the pool of lives costs 0 and some others cost
some money, due to either disability, pension or both. It may seem strange
that so many cost 0 (or around 0) since this actually means that they were
not disabled and then died before retirement, but taking a closer look to the
survival probability p00(z, z+T0) we see that p00(z, z+T0) ≈ 0.5 for the given
(arti�cial) model, so it is not so surprising after all. If we want to make the
model more realistic, we should tweak the values for µij slightly.

The exact initial value of the policy is given by

π0 = V +
0 (0) =D

∫ T0

0

v(s)p01(0, s)ds+ P

∫ T

T0

v(s) (p00(0, s) + p01(0, s)) ds.
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We computed it already using Thiele's equation, π0 = 642 019.9 kr.

We see that the theoretical premium (using Thiele) is �fairly� close to the
empirical one having used 1 000 simulated lives, which took us some time.
Recall that the empirical value of 637 706.7 is for the seed number 1, if we try
other seeds we can obtain closer values to the exact one or even further away.

Now, we compute the yearly premiums π to be paid as long as the insured
is in state 0. To do so, we keep the total cost of the insurance which is
π0 = 642 019.9 and we create a �new� cash �ow which pays 1 monetary unit
a year only in state 0, i.e.

aπ=1
0 (t) =

{
−t, t ∈ [0, T0),

−T0, t ∈ [T0,∞).
,

which essentially means that if the insured is in state 0 all the time and pay 1
unit per year, they will have paid T0 during the working time which lasts for
T0 years. Since premiums are negative, hence the sign.

Now, we know that the present value of yearly π is given by

V +
0 (0, Cπ) = π

∫ T0

0

v(s)p00(0, s)ds

and by the equivalence principle we have

0 = V (0, C)︸ ︷︷ ︸
=π0

+V (0, Cπ),

which implies

π = − π0∫ T0

0
v(s)p00(0, s)ds

≈ 30 610.15 kr.

#Initial (random) cost (histogram)

pV <- rep(0,sim)

for(j in 1:sim){

aux <- 0

for(k in 0:N){

aux <- aux + D*h*v(k*h)*1*(life[k+1,j]==1)*(k*h>=0)*(k*h<T0) +

P*h*v(k*h)*(1-1*(life[k+1,j]==2))*(k*h>=T0)*(k*h<T)

}

pV[j] <- aux

}

df <- data.frame(pV)
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ggplot(df, aes(x=pV))+geom_histogram()+xlab("Value")+ylab("Frequency")

#Empirical premium vs exact premium

mean(pV)

pi0 <- V0[1]

#Deferred premium

aux1 <- 0

for(k in 1:(T0/h)){

aux1 <- aux1 + h*v((k-1)*h)*Euler_sol[1,1,k]

}

pi <- pi0/aux1

(e) Consider now the case where a death bene�t is paid out corresponding to the
expected prospective value of the policy at death time (refund guarantee).
Recompute the single premium of this policy when adding such bene�t to the
contract. Comment.

Solution:

This exercise is easy if we use Thiele's equation. Recall the general Thiele's
equation (see Theorem 5.4.3)

d

dt
V +
i (t) = r(t)V +

i (t)− a′i(t)−
∑
j∈Z
j ̸=i

µij(t)
(
aij(t) + V +

j (t)− V +
i (t)

)
,

Then in our case, if we keep policy functions a02 and a12 corresponding to
death bene�ts we have

d

dt
V +
0 (t) = rV +

0 (t)−P I(T0,T )(t))−µ01(z+t)
(
V +
1 (t)− V +

0 (t)
)
−µ02(z+t)

(
a02(t)− V +

0 (t)
)
,

d

dt
V +
1 (t) = rV +

0 (t)−DI(0,T0)(t)−µ10(z+t)
(
V +
0 (t)− V +

1 (t)
)
−µ12(z+t)

(
a12(t)− V +

1 (t)
)
.

Choosing a02(t) = V +
0 (t) and a12(t) = V +

1 (t) the prospective value itself as the

exercise suggests, kills the contribution of the terms multiplied by µ02 and µ12,

respectively, giving thus rise to a much simpler Thiele's equation. Namely,

d

dt
V +
0 (t) = rV +

0 (t)− P I(T0,T )(t))− µ01(z + t)
(
V +
1 (t)− V +

0 (t)
)
,

d

dt
V +
1 (t) = rV +

0 (t)−DI(0,T0)(t)− µ10(z + t)
(
V +
0 (t)− V +

1 (t)
)
,

with �nal condition V +
0 (T−) = V +

1 (T−) = 0.
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Solving the above equation is a matter of using the same program as in item (c)

removing the last term of each equation. This gives the following result:

Figure 14: Expected prospective values, V +
0 (t) and V +

1 (t), in the two possible states:
alive, disabled, at each time of the contract considering refund guarantee, in case of
death, corresponding to the prospective value in the last state. We used a rather
small step size h = 0.0001 for better accuracy.

The initial cost of this insurance (with death bene�t) is:

π0 = V0(0, C) = ∆a0(0)︸ ︷︷ ︸
=0

+ V +
0 (0, C)︸ ︷︷ ︸

�rst value in
the green line

= 2186 522 kr.

It is much higher since we are always o�ering a death bene�t. The mathematical

reason why it is higher can be seen by looking at Thiele's equation. In the equation

without death bene�t, a positive term µi2(t)V
+
i (t) appears in equation i = 0, 1, thus

reducing the value of V +
i . By removing this term, we increase the value of V +

i .
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