1 Financial derivatives

1.1 Introduction

Derivatives are contracts derived from primary assets. With financial derivatives those are
equity, bonds, interest rates or currency. The idea is to pass some of the risk for an adverse
development on to somebody else. Savings with guaranteed return is an example. A financial
institution will then reimburse customers when earnings fall below a certain floor. Companies
also seek protection themselves. If it is inconvenient to carry the entire burden of the stock
market going down or interest rates dropping, it may pay another company to take over. The
similarity to insurance and re-insurance is striking. What is different is the detailed mathe-
matical models and above all a possibility of hedging financial risk that with insurance simply
wasn’t there.

To indicate why such considerations must influence the valuation of derivative contracts in
a free market system consider an institution responsible for a financial option that will result
in a pay-off when the stock market goes down. Contracts of that kind was called puts in
Section 3.7. The risk of the option seller was

X = max(ry — R,0)S)

where Sy is the value of the orginal shares and R the return of such investments. There is a
pay-off if R < r4. Now, introduce a second operation where an amount ASy of the underlying
equity is sold short. Payment is then received today for shares rebought and delivered later.
The net earning in this is —RAS), gaining if the market has fallen, losing otherwise. When
the option and the short position are added, the balance sheet becomes

—max(ry — R,0)0Sy —  RAS,
put option short selling

and as R changes the two contributions move in the opposite direction. The second operation
hedges the first.

Risk is lowered if A is selected judisciously. In a well functioning market that must influ-
ence the price an option seller is able to charge. Indeed, it will emerge in Section 14.4 that
option contracts turn into veritable money machines for the sellers if the prices are at the
ordinary actuarial F(X). But how much smaller than E(X) should they be? That is a riddle
with a neat solution if we are allowed to run multiple risk-reducing operations and fine-tune
many times the stock ASy held on the side. The argument is subtle and works equally well
with currency. Interest rate derivatives are different since the underlying asset is missing. We
can’t buy interest! What we can do, is to reduce risk through assets that correlate with the
derivative, the stronger the better, and the idea remains the same. Prices must adjust to reflect
the risk after the hedging has been taken into account. Interest rates derivatives are among the
most important risk-reducing tools of all. It could be borrowers protecting themselves from
high interest rates or the opposite, insurance companies with gurantees towards its customers
fearing low rates. Names are colourful ones like swaps, caps, and floors. Interest rate deriva-
tives are discussed in Sections 14.6 and 14.7.

This chapter is an informal introduction to the subject, sufficient to get the main ideas, and it



will enable us to incorporate risk-reducing strategies in the ensuing Chapter 15. The formal-
ism of stochastic analysis is not used. An elementary text supplementing the material in that
direction is Neftci (2003).

1.2 Arbitrage and risk neutrality

Introduction

American economists Fischer Black, Robert Merton and Myron Scholes started in 1973 an
avalanche of research into the consequences of assuming financial markets to be free of arbi-
trage; see Black and Scholes (1973) or Merton (1973). Let r be the risk-free rate of interest, in
much of the chapter continously compounded so that an ordinary bank account over a period
of length T' grows by the factor exp(rT'). No arbitrage means that it is impossible to set up a
financial portfolio for which we can be certain that a future value X exceeds the initial value
Ay added risk-free interest. In other words, things can not be arranged so that with certainty

X >eTx, and sometimes X >eTA,.

A discount formula illustrates the concept in the simplest form imaginable. If you buy a zero-
coupon bond of face 1 for delivery at T" in an environment where the rate of interest r is fixed,
surely you should pay exp(—rT'). Otherwise one of the parties is a sure winner.

Actually there are people earning money in this way. They are known as arbitrageurs and
operate in terms of very small margins and huge size. It is a fair assumption that their activi-
ties wipe out riskless income possibilities, leading to markets free of arbitrage. This innocently
looking assumption has turned out to have wide reaching consequences and has lead to a tidy
theory for derivative pricing. Here is a second, less trivial example.

The price of forward contracts

Forward contracts are arrangements for which the price of future transactions is fixed before-
hand. Suppose a financial asset is to be delivered at time T' = Kh in exchange for an agreed
payment Vo(K)'. What price V; should be charged for such a deal today? It may be mildly
surprising that there exists a solution that do not take future market uncertainty into account
at all. The argument is based on no arbitrage and runs like this.

Start by buying the asset (which costs Vj) and finance it through the sale of zero-coupon
bonds with face one maturing at 7. Let Py.x be the price of one such bond. To cover the
amount Vj the number we have sold is Vy/Py.x. At T = Kh where all contracts expire we
collect the agreed Vp(K) for the asset and have to transfer Vy/Py.; to the bond holders. The
net value of these operations is

VE)(K) - %/PO:K

asset sale bond repayments
There has been no risk at any time. Surely the net value is zero. If so, we have proved that

Vo = Vo(K) Po:xc, (1.1)

I This is a notation we shall use for forward forward contacts with Vj(K) being a price agreed at
time ¢ for an asset traded at time 7" = Kh.



as anything else would imply profit from risk-less investments (that could be scaled up to
enormous proportions!). It is precisely such things that the no arbitrage assumption rules out.
Note that the actual price of the underlying asset at expiry is irrelevant?. Also note that the
argument applies to any liquid asset and that no assumption is made on the future movements
of bond prices and interest. The relationship (1.1) will be crucial for pricing interest rate
derivatives in Section 14.6.

Binomial movements
A useful exercise is to analyse the consequences of no arbitrage for assets moving binomially.
By this is meant that the return (at 7' = 1 say) is either

R=¢e"-1 or R=¢€"-1 where Ty <1 < Ty (1.2)

Excluding other possibilities may appear highly artificial, yet not only is it a useful illustration
of the main idea, but it could also be the first step in a more general construction; see below.
The pay-off X = H(R) of a derivative of such an asset is either

Hy=H(e" -1) or H, = H(e™ —1),

and the issue is the value Vj of such a contract at the time it is set up.

To answer this question consider an additional portfolio consisting of investments in the risky
asset and a risk-less bank account. If weights are w; and we, the portfolio is worth w; + we at
the start and grows at the end of the period to

wie + woe” or wire™ + woe'.

There are just these two possibilities, and they move with the derivative exactly if wy and w9
are determined from

wie™ +wee” = Hy and wie™ + woe” = Hy,. (1.3)

If you try to solve these equations (we do it below), you will immediately discover that it works
because r; < r < r,. The portfolio is a known as a replicating one.

Consider the balance sheet of an institution which is responsible for the orginal derivative
and has set up the replicating portfolio on the side. It looks like this:

Value derivative -V —H;, or —H,
Value replicate w1 +we H; or H,
start end of period

Such a strategy of being long in a carefully constructed portfolio to compensate for the risk
in the derivative leads to net risk zero! Whatever happens there is no net payment at the end
of the period. But then net payment must be zero even in the beginning, as there would be
risk-less income for someone otherwise. It follows that Vy = w1 + we which can be determined
by solving the equations (1.3). Rewrite them as

wy (e —e€") + (w1 +we)e" = H; and wi(e™ —€") + (w1 + we)e" = Hy,.

2Tt could be worth more or less than V5 (K) at that time.



Then eliminate w; and deduce that

elu — ¢l el — el
_ T

Vo= (G B ) (14)
which has an interesting interpretation, discussed next.
Risk neutrality
The value Vj under binomial movements can be rewritten in a highly suggestive way as

W= e_T(QIHl + QuHu)a (1'5)
where

e —e" e — e

Clearly q; + ¢, = 1, and condition (1.2) right also ensures that both quantities are positive.
Hence, (g;,qu) is a probability distribution, usually denoted @. The second factor in (1.5) is an
expectation with respect to this model, and the option premium can therefore be re-expressed
as

W = e’ x  Eqo{H(R)},

1.7
discounting expected pay-off (1.7)

which calls for a number of comments.

Discounting is obvious (payments under the option is for the future and premium is charged
today). The interesting factor is the second one. The probability distribution @ is called the
risk-neutral model (or measure). Since R is either exp(r;) — 1 or exp(ry,) — 1, it follows that

EQ(R) = ql(e” — ].) + qu(e” — ]_) =e -1

after inserting (1.6) for ¢; and gy. In other words, the expected return under the risk-neutral
model grows exactly as an ordinary bank account. Why charging the expected pay-off under
this model? The answer is that being responsible for the option entails no risk, and valuation
is therefore in terms of a model within which there is no payment for risk. Note that the
probabilities of R jumping up and down in the real market were not mentioned at all.

Of course, the situation is highly artificial. In practice assets change value in an infinite
number of ways, not just two. What is remarkable is that the entire construction generalizes,
including the pricing formula (1.7), which becomes valid generally if the replicating operation
is repeated continously. It is a little like sums of binomial variables becoming normal in the
limit. You will find this approach in many textbooks. The line pursued here is different and
closer to the actual hedging operations in the market. We shall then end up with a risk-neutral
model of the form

1
R =exp (r - 502 + 06) -1 where e ~ N(0,1),

which gain satisfies Eg(R) = exp(r) —1 if you recall the formula for log-normal means (Chapter
2).



1.3 Options on equity

Introduction
Derivatives in equity are in financial literature often written in terms of so-called strikes rather
than guranteed returns. Put and call options are then

Xp = max(4 — S,0) and X = max(S — A4,0),

put option call option

(1.8)

where S is the terminal value of shares priced as Sy in the beginning. The barrier A is known
as the strike. With put options there is a right to sell at the price A, and the option holder
chooses to do so if A > S, gaining A — S. The owner is protected against a downside of
his stock. Calls are the opposite. Now there is a right to buy at an agreed price, an option
exercised if the market value is higher.

The link to the earlier version in terms of returns R is simple. Since S = (1 + R)Sp, it
follows that

A —
A—S:A—(1+R)SO:SO( SSO—R)
0

and for puts

A-5Sp

Xp = max(4 - 5,0) = So max(ry — R,0) where rg="73g
0

(1.9)
Guaranteed returns and strikes is the same thing with a simple connection between them. The
argument for calls is similar.

The pricing theory will be developed in terms of S rather than R. Let Sy be the value of
the underlying asset at time ¢y = kh for k = 0,1,2... K where Sy = s¢ is at present (and
known) and the rest belong to the future. The purpose of this section is to review some main
types of options and apply simple arbitrage arguments to deduce some immediate properties
regarding their value. Pricing through hedging is dealt with in the ensuing sections.

Types of contracts
Derivatives may be classified according to whether or not they expire at some fixed point
T = Kh. They are called European if they do. The pay-off function is then of the form

X = H(Sk)

where K (or equivalently 7T') is often referred to as the point of maturity. The puts and calls
above were of this type as was the cliquet option treated in Section 3.7.

Derivatives which are not European are path-dependent; i.e. the pay-off is now influenced
by the the entire sequence Si,...,Sk. Variations are enormously many. An important type
is the so-called American analogies to the European calls and puts where the option holder
may decide to sell or buy at any time of his choosing. For example, if a call is exercised at
tr, he gains Sy — A. The pricing of American style options may seem more difficult than
their European counterparts since there is a decision rule when to sell or buy involved in their
valuation. It turns out that there is a simple solution for the call, but not for the put; see
below. American puts and calls are among the most important equity options of all.



So-called exotic versions employ other functions of the path Sy, S1,...Sk. Often mentioned
in the literature is the Asian type for which

1
K-L

X:H(SK) where SK (SL+1+...+SK).

is the average from t741 up to T = tx. By varying the function H we obtain Asian calls,
Asian puts and even Asian cliquets. Numerous other forms have been invented, and quite a
lot is known about their pricing.

Valuation: A first look

We shall only be concerned with European options. Their concrete valuation is a subtle theme
and the topic of the next section (Section 14.6 too), but what, exactly, can be said at the
outset through purely qualitative reasoning? Suppose the contract is drawn up at ¢ = 0. A
European option must then be worth Vy = V(s¢,T) where Sy = s is the value of the under-
lying asset at that time. Note that the earlier history prior to ¢ = 0 is absent. That is surely
reasonable if asset fluctuations are described through Markov models (as we assume), because
all information about future movements then resides in sg.

Next, what happens during the life of the option? At time # the value of the asset has changed
to s say and now the time to expiry is T'—¢. The value must have become V (s, T —t) using the
same function V(s,T) as in the beginning. This must be so since, apart from the underlying
asset and the time to maturity having changed, the situation remains what it was (invoke the
Markov condition again). Later the value will be followed over the time sequence ¢, = kh
where it will be written

Vi =V (Sk, T — tg) with Vik = H(Sk). (1.10)

At expiry the option coincides the pay-out function, but prior to that it is (as yet) a mystery
what price we should charge for it if traded and by how much we should allow it to enter our
balance sheet. What we can assume is that the function V(s,T) is smooth; i.e. that small
changes in s or T" can’t imply more that small changes in V. The precise mathematical mean-
ing that will be attached to this is that the value function is twice differentiable in s and once
in T. Why that is needed will emerge in the next section.

Of course, the value of the option also depends on the strike A, the risk-free interest r and pa-
rameters in the model for the underlying asset, but there is no point in introducing those fixed
quantities into the notation. The central point is that we have to portray value fluctuations
as the financial market evolves.

The put-call parity

It is possible to gain some insight into valuation through simple arbitage arguments similar
to those in the preceding section. One particularly useful deduction is a simple connection
between the values of European calls and puts, known as their parity relationship. To derive
this important result let Vp(s,T') and Vi(s,T) be prices for put and call. Consider a portfolio
where we have purchased a (European) call and is responsible for a (European) put. There is
also a short position in the underlying stock and an amount of cash. The balance sheet in the
beginng and in the end is as follows:



attg =10 attg =T

European call Ve (So, T) max(Skg — A,0)
- European put —Vp(So,T) — max(A — Sk, 0)
- underlying asset -5 Sk

Cash exp(—rT)A A
Portfolio value ? 0

At expiry T = Kh assets possess the values shown. The first and the second line follows
directly from the definitions of calls and puts. Whether S < A or > A, it is easy to check
that the value of the total portfolio at expiry is exactly zero. But then the value must zero at
the start, as well, as otherwise an arbitrage possibility is created. It follows that

Ve(So,T) + exp(—rT)A = Vp(So, T) + So, (1.11)

which shows that pricing European puts and calls amounts to the same thing.

A first look on calls
The parity relation produces a useful lower bound on the value of an European call option.
Note that P(s,T) > 0; holding a put option can not be worse than nothing. Hence, from (1.11)

Ve(So, T) > So — exp(—rT)A. (1.12)

Remarkably, this simple result solves the problem of evaluating American call options. Recall
that the difference when compared with the European is in the freedom of terminating the
contract. This means that the value, say C*™(s,T) of an American call is as least as large as
the European. Hence, from (1.12)

V& (S, T) > So — exp(—rT)A > Sy — A,

since r > 0. But the right hand side is the amount we receive by exercising the option at
to = 0, which can’t be advisable since the value of our American option is higher.

In other words, liquidating an American call option early, creates an arbitrage opportunity
for the opposite party. In a world where arbitrage are absent, American calls will never be
exercised early and should be priced as European calls. This does not quite hold for
didvidend-paying stock, see Hull (2002), chapter 7.

A first look on puts
Clearly V(s,T) > 0; an derivative contact is always worth something (not less than zero, at
any rate). It follows from the parity relation (1.11) that

Vp(So,T) > Sy — Aexp(—rT), (1.13)

similar to (1.12) for the call.

But unlike above we can not from this lower bound deduce the price of American puts. In-
deed, the situation is known to be more complicated than for American calls. If the prices
of the assets are low enough, it is profitable to cash in on an American put. Closed pricing
formulas, similar to those we shall derive later in this chapter are not available for American
puts. These technical complications are beyond the natural limit of this introductory text; a
good exposition can be found in Hull (2002).



1.4 Hedging and valuation

Introduction

The binomial model in Section 14.2 produced explicit pricing of derivatives without specifying
any probabilities at all (the risk-neutral model was derived). This is a forerunner of what is to
come, although more realistic situations do require probabilities. With equity options pricing
is invariably based on the geometric random walk introduced in Section 5.6. It is then assumed
that

Sk+1 = Sk exp(éh + 0\/HE]C) where ex ~ N(0,1), (1.14)

for k =0,1,.... As usual the sequence {€x} is an independent one. Note that the mean and
variance in (1.14) now are £h and 02h. Why the model has that form was explained in Section
5.6. An immediate consequence is that the random term (proportional to v/A) dominates for
small h. This has profound influence on option theory. We shall below run hedging operations
at each t; = kh and let h — 0. The random effects are then the most important ones and
must be analysed more thoroughly than the others. When A — 0, the model is often called
geometrical Brownian motion.

The purpose of this section is to examine hedging and its consequences in an intuitive way
and demonstrate why such opportunites influence prices in a liquid market (where there buy-
ers and sellers for everything). A hedging process will be simulated in the computer at the
end enabling us to see what happens in concrete terms. Much of the detailed mathematics is
deferred to Section 14.5

Actuarial and risk-neutral pricing
Consider the following two valuations of a future pay-off X = H(Sk) at time tp = 0 where
SO = S§0-

Vo =e"TE{H(Sk)|s0} and Vo =e "™ EQ{H(SK)|s0}

actuarial @Q-model, risk-neutral

(1.15)

Uncertainty at expiry is influenced by the value of the underlying asset to-day (hence the
conditional means), and there is a discount. The ordinary actuarial valuation on the left is
under the model assumed. In insurance that lead to a break-even situation with neither party
gaining or losing. But now this is no longer so since the real risk, reduced though hedging, is
lower. Indeed, when the entire process is simulated in the computer in Figure 14.1 below, we
shall see that actuarial pricing would entail very high profits for the seller.

Taking hedging into account will eventually lead to evaluation under the risk-neutral ()-model
on the right in (1.15). The old ¢ is then replaced by

Eg=1—0%/2 (risk-neutral &), (1.16)

but the model is otherwise the same as it was, with the same volatility for example. One
consequence is that the price does not depend on the real £ at all. That is fortunate since £ is
very hard to pin down (Section 2.2). The actual price is then the question of recalling from
the discussion in Section 5.6 that

Sk = soexp{T(r — 2/2) + VToe} (under Q-model),



where e ~ N(0,1), and we may calculate the right hand side of (1.15). In the general case this
may require simulation (or numerical integration), but puts and calls admit closed expressions.
Those are

Vp(s0,T) = e "TA®(a) — s59®(a — oVT), (European put) (1.17)
Vo(so, T) = s0®(—a + oVT) — e " ®(—a) (European call) (1.18)

where
log(A/sg) — rT + o2T/2
a =
oVT

The formula for the put is adapted from (??) in Section 3.7, and the call from the parity
relation (1.11); see Exercises 7?7 and ?? for details. The volatility o is typically taken from
observed trading through the so-called implied view. Prices observed is then entered on the
left in (1.17) or (1.18) and solved for o.

(1.19)

The hedge portfolio and its properties
Hedging must start with an understanding of how the values {V}} of an option evolves. Sup-
pose Vi = V (S, T — ti) where V(s,T — t) (which will be determined eventually) is a smooth
function of s and ¢ that can be approximated by an ordinary Taylor series around S; and .
With the required terms included this yields

1
V(s, T —1t) =V (Sk,tx) + Ar(s — Sk) + §Pk(8 — Sk)* + Ot — t)

where

OV (Sg, T — tg) O*V (Sk, T — ty) OV (S, T — 1)
Ak =, Fk = —_— .

Os 0s? ot

Note the unequal treatment of s and t. Inserting s = Sx11 and ¢ = tx4; yields the approxima-
tion

and O, =

(1.20)

. 1
Vitr = Vi = 8k(Sky1— k) + 5Tk(Skr1—S)® + Ok(trsr — i), (1.21)
order Vh order h order h

where the magnitude of the three contributions on the right has been indicated (more on the
details in the next section). To capture contributions of order h two terms are needed in s and

only one in £. A full Taylor series require an infinite number. Terms neglected are all of order
h3/? and smaller.

Consider now the hedge portfolio indicated in Section 14.1 where the option seller at time
tr buys AgSy of the underlying asset. When the the obligation for the option is added, the
value of this portfolio is

Hi = Vi + AkSk and Hir = —Vit1 + ApSkta-

value at time ty, value at time tp41

(1.22)

The change from tj to tx11 is caused by both the derivative and the asset. Now

Hik — He = —(Vit1 — Vi) + ApSk1 — AgSk,

9



or after inserting (1.21)
.1
Hag = My = = 5Th(Ski = Si)? — Op(trg1 — tr)- (1.23)

The dominant first term on the right in (1.21) has disappeared! This is precisely what we
sought. Volatilatility in the hedge portfolio is smaller than in the option itself.

Financial status over time

To understand the aggregated effect of hedging we have to analyse the financial state of the
option seller from beginning to end. In addition to the sequence of values {Vy} and {AgS;}
of derivatives and hedges there are also holdings { By} in cash which will fluctuate as the un-
derlying asset is bought and sold. Suppose the seller collects the option premium upfront and
uses parts of it to purchase underlying stock, borrowing if necessary. The cash holding then
develops according to the scheme

By = Vo — LoSo, By = €""By_1 + (Ap—1 — Ag) Sk, Bk =e"™Bg_;.

1.24
at the start fork=1,2,...K -1 at expiry ( )

At time t;, the equity holding is rebalanced. The seller now possesses Ay_1Sk from the previous
round and wants ASk, leading to a change of the account. There is (of course) no such
rebalancing at expiry. The sequence of values {Xj} of the entire portfolio of derivative, asset
and cash are then

X =0, Xy = —Vj, + AgSk + By, Xk = —H(Sk)+ Ak-1Sk + Bk,

1.25
at the start fork=1,2..., K—-1 at expiry ( )

written down after the underlying asset held has been adjusted for the next period. Of course,
there is no rebalancing at expiry where the value of the option and the pay-off H(Sk) is the
same.

These relationships will be studied theoretically in the next section. In the present sequel
what happens will be examined through simulations. Consider a call option. Its value
Vie = Vo (Sk, T — tx) at time # can be adapted from (1.18). This leads to

Ver = Sk@(—ak +oT — tk) — e_r(T_tk)@(—ak)
where
_ log(A/Sk) — (T —tg) +o*(T — 1) /2
k= 0\/T — tk

The hedge A, must be found by differentiating Vi with respect to Si. That is straightforward
(see Execise 14.7 for details) yielding

Ay = <I>(—ak +ovT — tk).

A simulation is then a question of generating asset development S}, through (1.14), calculating
option values V;* = C} and hedges A} by means of the formulas given and finally plugging
those into (1.24) and (1.25) to find simulated cash B}, and portfolio values A}

Numerical experiment
The call option portfolio X} has been simulated ten times in Figure 14.1. Rebalancing was

10
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Figure 14.1 Simulated scenarios of a portfolio set up to hedge call options. Rebalancing is daily
(left) and monthly (right).

monthly to the left and every six hours to the right®. The detailed conditions are as follows:

Equity drift: 10% annually Time to maturity: ~ One year
Equity volatility: 25% annually Option strike: 100
Riskfree interest: 4% annually Initial value equity: 100

Note that the simulations are run from the true asset model. What we see is that frequent
rebalancing leads to a a radical reduction of the risk. There was no money involved at the
start and almost none at the end. The spread will vanish completely when we let h — 0 in the
next section.

What would have happened if the market had allowed actuarial pricing of the derivative?
An option seller who knew the ropes would have been able to run the same risk-reducing op-
erations, but would now have collected more money upfront. From (1.36) left we may deduce
that the actuarial option premium is

., _ log(4/80) —¢T
NT

see Exercise 14.7. This reduces to (1.18) if the risk-neutral ¢, = 7 — 02 /2 is inserted for &.
Under the conditions given above option prices become?*

SOeT(§+a2/2—T)‘I)(_a + o\/T) — e ®(—a) where

18.334 under ¢ = 10% 11.837 under ¢ = 0.875%,

actuarial risk-neutral

where the risk-neutral ¢ is much smaller than the real one. The actuarial option price would
have been about 6.5 higher, and all simulations in Figure 14.1 would have been lifted this
amount if the market had been willing to pay that much. That would have lead to a very
handsome profit indeed for the option seller with little risk attached.

3With 250 days in a financial year this corresponds to rebalancing being carried out K = 1000 times.
“The risk-neutral £ is under the parameters assumed &, = 0.04 — % x 0.252 = 0.00875.

11



The conclusion is clear and robust. Free markets do not permit that kind of (almost) risk-less
profit, and would force pricing based on the real risk. Rebalancing costs have been ignored,
but they do not move things substantially.

1.5 Mathematics of equity options

Introduction

Hedging and risk-neutral pricing evidently works. No money was put into the scheme in Figure
14.1, and the account X} fluctuated appropriately around the origin! But why the particular
form of the @-model, and above all, why is the drift £ immaterial for pricing? It is the aim
of this section to provide answers to both questions. The second one is intuitive. Hedging
removes the effect of everything foreseeable, therefore £. If that is accepted, the derivation of
option prices becomes a simple matter. A bit of mathematics at the end of the section will
establish that £ is indeed irrelevant.

The essential conditions are liquid markets free of arbitrage and dynamic rebalancing of the
hedge portfolio at no cost. In the preceding section these operations took place at all time
points ty = kh, k = 0,1,..., K — 1 right up to the point of maturity. As with elementary
Poisson processes in Chapter 8 we may simultaneously let h — 0 and K — oo while keeping
their product T' = Kh fixed. Simplified mathematical expressions then appear in the limit.
There will be errors coming from higher order terms in the series expansions, but those can be
overlooked if they are of order of magnitude A%/2 or smaller. The reason is that there are K
contributions to the total error, one for each time the portfolio is rebalanced. Their combined
effect is of order

Kh*? =TvVh—0 ash—0,

suggesting that the goal should be to identify the terms up to size h, and forget the rest.

The situation at expiry

When the option matures at time ¢ = T', the option seller has been involved in three different
types of transactions. The premium V; (by now grown to exp(rT)V,) was collected originally,
then there is a claim H(Sk) to be paid and finally the cumulative effect of all the hedging
positions AySy will have produced earning (or loss). A convenient way to express the latter is
through

Gp =e ""ApSki1 — DSk, (1.26)

which is the gain from the k’th hedge when discounted back to tx. When all these transactions
are added with appropriate interest, we must obtain the financial state of the option seller at
expiry, or

X = Voe'T — H(Sk) + SR GrerT—te),

premium received pay-off accumulated through hedging

(1.27)

which is obvious from an economic point of view. That’s simply how a sequence of transactions
adds up.
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In case you remain unconvinced, here is a mathematical proof using (1.24) and (1.25). Con-
sider first the cash account Bk, which is (as always) the sum of all deposits/withdrawals with
interest. From (1.24) we have

K-1
Br = (Vo — DoSo)e™ + 3 (Ap—1 — Ag)Se™ M),
k=1

which in combination with (1.25) right yields
Xk = —H(Sk)+ Ak_1Sk + Bk

=

-1
= —H(Sk) + Ax_1Sk + (Vo — ApSo)e’” + (Ap_1 — Ap)Spe™T ),
k=1

Each Ay are involved in precisely two terms. When those are identified, the expression for Xk

can be rewritten
K—1

X =Voe'T — H(SK) + Y Ap(Spyre”T 1) — Gper(T=H))
k=1
K—1
= Vo' — H(Sk) + Y Ap(e™™"Sps1 — Sp)e" 1),

k=0

which is (1.27).

Valuation
The option seller has made no investment so a break-even, pure premium would make at expiry

BE(Xk|so) = 0.

In insurance a price for risk (the risk loading) would come on top, but here things are arranged
so that there is no variability in Xk at all (at least in theory), making the break-even premium
logical on economic grounds. The very same argument will also show that the value of £ is
irrelevant. Indeed, it was absent in all previous formulas; why will be seen below.

Start by applying expectation to all terms in the decomposition formula (1.27). This yields

K-1
E(Xk|so) = Vo' — E{H(Sk)|so} + Y E(G|so)e" ™),
k=0
where Vj is a constant, fixed by sg. Equating this with zero leads to

K-1
W) = e_TTE{H(SKNS()} — Z E(Gk|80)6_”k, (1.28)
k=0

an interesting identity revealing that the “fair” option price is its expected, discounted pay-off
at expiry minus the expected discounted result of all hedge operations. Note that the actual
risk of the seller now is taken into account.

The expected gain from the hedging operations may be calculated. By (1.26) and (1.14)

Gy = <€rh% _ 1) ApSy = (efrh+£h+0\/i_u-:k — 1)AS
k
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and
E(Gy|s0) = E(e T ehtovher _ 1150V E(A,Sk|s0)

since the two factors are stochastically independent. But the standard formula for the mean
of log-normal variables now yields

E(Gg|so) = (M4 /27 1) B(AgSk|s0). (1.29)

Suppose it is assumed that Vj does not depend on £. That must apply to the right hand side
of (1.28) too, and any value of ¢ may be inserted. The risk-neutral £ = r — 2/2 is the most
convenient one. Now E(Gg|sg) = 0 by (1.29), and we are left with

Vo = e T EQ{H (Sk|s0)}-

The expectation is calculated under the risk-neutral @, precisely as claimed in (1.15) right.

Why the risk is eliminated

Remaining issues are why hedging makes the variability of the terminal Xk disappear, and
why valuation isn’t influenced by the drift £&. The latter is sometimes regarded as “extremely
surprising”, but it isn’t really. It is certainely plausible that hedging and re-hedging at will
removes the impact of anything predictable! To argue the case we must let h — 0 and
K =T/h — oo and examine the fluctuations under small time incements. There is no extra
difficulty in extending the asset model to

Spy1 = Speletonvher where &k = &k (Sk) and op = ok (Sk), (1.30)
allowing time-varying drift and volatility influenced by the current price of the asset.
The argument is based on the changes in the hedge portfolio of the option seller. Introduce

Dy = Hip, — €y, (1.31)

where Hj) and Hi; are the values of at t; and tx,1; see (1.22). Moreover, we also have
from (1.25) that

Xy, = Hy + By and Xir1 = Hug + "By,

expressing how the value of Xj, grows with the hedge portfolio and the cash holding. But now
Di = (Xpy1 — € By) — e( X — B) = X1 — € X,

or
X1 =€ X, + D, k=0,...,K—1 starting at X, = 0.

This is from a mathematical point of view the same as an interest-earning bank account with
Dy, as deposits. At the end X is the sum of all contributions with appropriate interest; i.e.

K-1
Xg = Z eT(T_tk)Dk where Dy = M — " Hy,
k=0
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and Dj must be studied. The central quantity is
6k = Dy — E(Dg|s0) (1.32)

with which Xx can be rewritten

K-1 K-1
Xk = Z " T E(Dylso) + Ex where €k = Z er(T=t)g, . (1.33)
k=0 k=0

Here £k is a remainder term with zero mean (an immediate consequence of all ¢ having zero
mean), and it will be shown below that its variance become zero as h — 0 (and K = T'/h — 0).

This tells us that as the hedging operations are carried out more and more frequently all
uncertainty is disposed of. In the limit the the entire sequence dy, ..., Kk _1 becomes zero, and
all Dy are to equal their expectations. But surely those must then be zero! If they are not, the
value of the risk-less hedge portfolio H; would grow differently from the risk-less rate and that
would be arbitrage. It follows that all Dy = 0 and Xx = £k in (1.33). But both mean and
variance of Xk then vanish in the limit (as indicated in Figure 14.1), supporting the pricing
scheme used above.

Why the drift is eliminated too
To understand why the drift ¢ is absent in the valuation formulas we have to examine the
hedging operations in more detail. Recall from (1.23) that

1
Mg — Hi = _Erk(sk—i—l — Sk)? — Ok (tpr1 — tr),

and (1.30) is needed to examine the the first term on the right. Take z = &h + oxvVhe, in
the approximation e* — 1 = z (accurate for small z), and deduce that

Spi1 — S = (eMHovhen )5 = (6h+ oV her) Sp.
This yields

(Sk+1 — Sk)? = hoger Sk,
having disposed of terms of order h%/? and smaller. It follows that

_ 1
Hip — Hy = —h(ifkoﬁSﬁeﬁ + 6y)

so that
Dy = Huk — "My = (Hap — Hy) —rhHy = —h(3TxolS2+Op+1Hy) + &
fixed given Sy, random
where
h
519 = 51“;65,30,%(5% — 1). (1.34)

Note that ¢ is the same quantity as in (1.32), though we haven’t proved that yet. It will
follow when we verify that E(dx) = 0.
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The crucial point is that whereas the volatility o is present in the approximations for Dy, the
drift & has dropped out. This tells us that that we do not have to know & to carry out the
hedge. True, the fluctuations {Sk} of the asset do depend on {£;}, but as long as we progress
as above our operations are risk-free regardless. But then the option premium collected in the
beginning can’t depend on &. If it did, we would collect the fee for a set {£x} the market
believes in and set up the hedge process for one of the cheaper ones. There is then a surplus
over Xy = 0 in the beginning which carries through until the end with no risk, violating the
basic assumption of no arbitrage.

An auxiliary result
What remains is the study of d; in (1.34). It is convenient notationally to rewrite as

1
O = hYgny where Y, = Ea,%s,%rk and 7 = si —1.

Since €g,...,ex—1 are independent and Normal (0, 1), it follows that 7g,...,nx—1 are also
independent with
E(nk) =0 and E(ny) = 2;

see Appendix A for the latter. Moreover, all preceding Yi,...,Y; must be independent of 7.
It is under these circumstances simple to study the accumulated effect of d;. Start by noting
that

E(6) = E{hYyni} = hE(Yk)E(nk) =0

and on a similar argument
var(0p) = E(6;) = E{h’Yn;} = W’ E(Y?)E(ng) = 20 E(Y).

Moreover, the entire sequence dy, ...,k _1 is uncorrelated. To see this, suppose ¢ > k. Then
cov{0k, 6} = E(0x6:) = E{hYinphYimi} = W’ E{YyniY;} E(n;) = 0.

Let’s go back to the remainder £k in (1.33) right. The ordinary sums of expectation and
variance formulas yield

K-1 K-1
E(EK) =0 and va,r(gK) - Z var (eT(Tftk)ék) — 942 Z 627"(T7tk)E(Yk2),
k=0 k=0

and the remaining question is why the variance tends to zero as h — 0 and K = T'/h.

Here is an informal argument. Both o, and T'y are bounded above by some constant, the
former because anything else is nonsensical and the latter becuse it is the second partial
derivative of the option price, therefore a smooth function of (s,t), and hence bounded over
a bounded region. Since the fourth order moment of the log-normal Sj is bounded too, there
must exist a constant D (not depending on k) so that

P B(¥P) = ) - B(o7T}SE) < D.
But then

K-1 K-1
var (Z e"(T—tk)Jk> =2n? Y T E(Y?) < 2K KD = 2hTD,
k=0 k=0

and the right hand side tends to zero as h — 0. This tells us that var(Ex) — 0.
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1.6 Interest rate derivatives

Introduction

Derivatives in the money market are no less important than those for equity. Their duration is
longer, up to decades (whereas equity options typically expire within a year). As an example,
consider an interest rate floor. This is a series of put agreements (known as floorlets) under
which the option holder is reimbursed when the floating rate of interest falls below some barrier
r4. At tp = kh there will be a pay-off

X = max(rg — g, 0)vg, (1.35)

where vy is the the amount of capital involved. Note that r4 and rx now apply to an inter-
val of fixed length h. Interest rates are in this (and next) section not compounded continuously.

A floor is an interest rate guarantee, providing compensation whenever rx < r4. Such an
instrument could be used by indviduals and institutions seeking a certain minimum return on
their investments in the money market. Whether that is a sensible strategy or not depends.
The price for equity options in Section 3.7 was quite steep, but conditions are now altered.
There is a huge number of money market risk-reducing instruments. The cap is the call-like
opposite of the floor. Now a borrower worries about high future floating rates of interest and
seeks compensation when that happens. This and other common types will be reviewed below.
The obvious question is valuation. How much should money market derivatives cost? Hedging
is again a key issue, but the argument is not the same as with equity. The crucial difference is
that interest rate is not a commodity that can be purchased as a hedge. Instead the seller of
such derivatives must reduce risk by investing in other money market products. The theory is
more varied and less settled than for equity, but there is a standard approach leading to the
pricing used in practice. That is the line presented.

Martingale pricing
The martingale perspective unifies equity and money market derivatives. Options in equity
have been priced through

Vo = Po.x EQ{H(Sk)|s0}

where the discount (instead of the earlier e™"7') now is written as Py.x. Here Pj.x is the price

at 1 of a bond of face one expiring at Tx = T'. In particular, Px.x = 1. Introduce

_ e and My = VK H(Sk),
Pk:K

M, =
k Pg.x

and it follows that the price equation may be re-expressed
My = Eg(Mk]|so) or for general k My, = Eq(Mk|sk)-

Stochastic processes { My} satisfying the condition on the right is known as martingales.
Their properties are much studied in the probabilistic literature; see Section 14.8, but not
much of that will be of direct use here.

This martingale edifice was derived through hedging and no arbitrage, and it applies to money
market derivatives too, although the detailed theory is different. An (uncertain) value Vi of

17



some asset in the money market now takes the place of the pay-off H(Sk), and the pricing
equation becomes

Vo = Po.c Eq(Vk), (1.36)

where @) is again a risk-neutral model. Note that the information available at time ¢ty = 0
is not made visible in the mathematical notation (as was done with equity). All valuation of
money market derivatives below is carried out through (1.36). Justification through hedging
and no arbitrage is given in the next section.

Forward contracts and prices

The pricing of interest derivatives makes use of forward contracts observed in the market. Sup-
pose Vi is traded at T'= Kh for a price Vy(K) agreed at typ = 0. That situation was analysed
in Section 14.2 and lead to

Vo = Po.x Vo(K)

as the value of the contract at ¢y = 0; see (1.1). But when comparing with (1.36) it emerges
that

Eq(Vk) = Vo(K), (1.37)

and the expected value of Vi under risk neutrality can be taken from forward prices Vj(K)
quoted in the market.

As an example, consider the floorlet in (1.35). We need the distribution of the floating rate of
interest 7, under risk neutrality. The forward rate ro(k) applies to same the period (from tj_;
to tx), but is settled today, and its information is available. What (1.37) relates is that

Eq(ry) = ro(k). (1.38)

This will go into floor, cap and swap pricing below.

There are many other examples of forward money market products. Indeed, the modern
financial world has erected a veritable system of them. A bond maturing at Tk, = Koh may
be sold at Tk, = Kih for a price Py(K; : Kj) agreed at time ¢ty = 0. There are forward
rates of interest 79(K; : K2) with a similar meaning (intimately connected to forward bonds,
of course). Note the notation where the parenthesis define the period and the subscript the
time of the agreement®. An almost bewildering number of interest quantities have now been
introduced. There are the floating rate of interest (ry), prices of unit face zero-coupon bonds
(Py.k), the money market yield (yo.x, see Section 6.4) and forward quantities such as r(K) and
Py(K). Between them there are a number of mathematical relationships, all a consequence of
no arbitrage.

Relevant for the derivative pricing is the connection between bond prices and forward rates.
Consider a bond expiring at ty, = kh. At ty = 0 its value is Vj = Py, and its forward price
Vo(k —1) =1/{1 + r9(k)}. Hence from (1.1)

_ 1
PO:k - PO:k—l 1+T0(k—1)’
value at tg =0 forward value

5Also note that Py(K) = Py(K —1: K) and 79(K) = ro(K — 1: K).
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which yields

(1 + yO:kz)k

_ Pog—1
(14 youe—1)*!

ro(k) = -1 and also ro(k) =

1, 1.39
PO:k: ( )

where the second relationship is due to Py, = 1/(1 + yo.1)¥; see Section 6.4. Forward rates
of interest can be calculated from current bond prices or (equivalently) the yield curve. A
numerical example is given in Figure 14.2 below. A similar result for forward bonds is

(1 + yO:K1)K1
(1 + yo:x,) K2

Py.k,

P()(K1 H KQ) = POK
2291

and P()(K1 : KQ) = - 1, (140)

which are both based on the same argument.

Floors and caps
Floors and caps are among the most important derivatives in the money market. Their pay-offs
at time t; are

Xpr = max(ra — rg,0)vg Xor = max(rg — r4,0)vg,

1.41
floorlet payment caplet payment ( )
which usually apply for many periods k£ under a single contract. Introduce
Vir = PoxEq(XFr) and Ver = PonEg(Xcw) (1.42)
floorlet price caplet price '

as the upfront floorlet and caplet prices, between which there is the parity relationship
Vik — Vor = Pog{ra — ro(k) }vo. (1.43)
Only the floorlet price Vg will be specified below.
To prove (1.43), note that
Xpr — Xk = (ra — 1r)vo,
which implies that
Eq(Xrpr) — Eg(Xck) = EQ(Xrr — Xck) = Eg(ra — ri)vo = {ra — Eq(rk) }vo.
Since ro(k) = Eg(ry), it follows that
Eq(Xrr) — Eq(Xck) = {ra —ro(k)}vo

and multiplying with Py, yields (1.43).

We need a risk-neutral model for the floating rate r,. The standard approach is to use the
log-normal which to make ro(k) = Eg(ry) must be of the form

Tp = ?"0(k)e_”—’%/ﬂg’“g'C where er ~ N(0,1).

Note that a specific dynamic model is not needed. All the linear ones considered in the
preceding chapter will do when applied on logarithmic scale. The underlying dynamics will
influence how the volatility o, vary with k, but they might in practice also be found from
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Figure 14.2 Forward rates of interest (left) and corresponding floorlet prices (right) under the
conditions described in the text.

market information (“the implied view”). With o, known from one source or another, the
detailed calculation is the same as for equity. We have to evaluate

E{max(r4 — 7, 0) }vo.
under the model assumed. This results in the floorlet price

Vik = Por{ra®(—ax + or) — ro(k)®(—ax)}vo (1.44)

where

_ log(ro(k)/ra) + 0}/2.
Ok

Qg (1.45)
see Exercise 14.7 for mathematical details. The upfront price for the entire floor is found by
adding over the individual floorlets. For caps and caplets see Exercise 14.7.

Numerical example

How expensive is a floor agreement? One of the quantities entering is the forward rate of
interest 79(k). In practice that is taken from market information, but here theoretical values
have been computed under the Black-Karisinsky model of Section 5.7. The forward rate was
converted from the yield curve; see (1.39), which was in turn obtained by the the procedure
in Section 6.4; see Algorithm 6.1 in particular. Although the details there were given for the
Vasicek model, they are not hard to modify. The parameters of the Black-Karisinsky model
were taken as

& = 4%, o= 0.25, a=0.7,

and three values of the initial rate of interest were tried; i.e. 1% (“low”, case A), 4% (“medium”,
case B) or 7% (“high”, case C). The resulting forward rates are plotted in Figure 14.2 left.
Note the impact of the initial state of the economy. In the beginning the forward rates is
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strongly influenced by the start, but after a while (roughly a decade) the reversion to mean
effect have forced all of them to coincide with the long term average ¢ = 4%.

Guarantee and risk-neutral volatilities for the floorlet were

ra = 3% and or = 0.35 x V1 —0.72%k

where the volatilties are those for the Black-Karisinsky model specified above; see Section 5.7.
That gave the floorlet prices on the right in Figure 14.2, which are not discounted. What is
plotted is Vg /Py (with vg = 1) indicating what fraction of the guarantee the option premium
is eating up. After a while the cost is down to around 0.15% in all three cases (compared to
the guarantee of 3%). In the beginning the expense strongly reflects the state of the economy.
For low interest rates the cost must be high since the guarantee is then likely to be used. The
reversion to mean effect is again evident in the premia charged.

Options on bonds

The financial markets also offer options on bonds. In the simplest, European case the holder
of the option may sell or buy a given bond at an agreed price A at a certain time T' = Kh.
Net pay-offs are similar to options on equity; i.e.

XP = max(A - PK:KUO) and XC = maX(PK:Kl - A, 0)
pay-off put pay-off call
where Pgk.x1 is the value at T = Kh of bonds expiring at T} = K1h. The option holder is in

a position to take advantage of the uncertainty in the future price Pk.k,.

The entire pricing theory is similar to that for floorlets and caplets. It follows from (1.37)
that

EqQ(Pg:k,) = Po(K : K1); (1.46)

i.e the risk-neutral, expected future bond price conincides with forward contracts traded today.
This yields a parity relation between prices Vpg and Vi for puts and calls, similar to (1.43).
Now

Vpk —Vek = Po.xk{A — Py(K : K1)}. (1.47)

Pricing is based on a log-normal model for the future bond price Pk.x,. Let ok be the
volatility. Then (1.44) and (1.45) with some of the quantities redefined yields

VPK = PO:K{AQ(—GK + UK) — Po(K : K1)<I>(—aK)} (148)

where

_ log(Py(K : K1)/A) + 0% /2.
oK

ag (1.49)
The price for a call follows from the parity relation.
Interest rate swaps

Swaps are cash flows or other assets two parties may find it mutually beneficial to switch
between them. There may be currency swaps, equity swaps, commodity swaps, even volatility
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swaps; see Hull (2003). Interest rate swaps of the simple vanilla form is the exchange of a
floating rate ri for a fixed rate rg (or the other way around). Many reasons could be advanced
for such an agreement to be advantageous for both parties. Swaps have become among the
most popular ways of managing risk. The fixed rate rg is called the swap rate.

Consider an interest rate swap lasting from K; to K. As usual the contract is drawn up
at tg = 0. If vy is the capital involved, the amount (rg — r%)vg is exchanged at ¢ty = kh. For
the entire scheme the total discounted pay-off is

K>
X =Y Pog-(rs—ri)vo,
k=K

where the net transfer at {; may be both positive and negative, depending on whether the
floating rate 7 is larger or smaller than the swap rate rg. The natural price for the contract
is the risk-neutral expectation Eg(X). Now

K> K>
Eq(X) = Z Po.x{rs — Eq(ri)}vo = Z Por{rs — ro(k) }vo,
k=K k=K1

where (k) is the forward interest rate. Contracts are customarily designed so that Eg(X) =0,
involving no premium upfront. The resulting equation can be solved for the swap rate rg. This
yields

K.
& Py,

rg = wyro(k where Wy, =
k;ﬁ (k) Po.kcy + ...+ Pox,

(1.50)

and the swap rate is a weighted sum of forward rates.

Options on swaps

Another popular interest rate derivative (and the last one to be considered) is options on swaps,
also known as swaptions. This instrument permits delayed entry into a swap on favourable
conditions. A receiver swaption gives the right to receive from a fixed date T' = Kh an agreed,
fixed rate rs4 in return for the floating rate. There is also the opposite payer swaption. Now
an agreed, fixed rate rg4 is payed in exchange for the floating rate. If rgx is the swap rate at
T = Kh, the option will be exercised if

TSA > TSK or rsA < TSK
recetver swaption payer swaption

i.e. if the agreed conditions are better than the market conditions at the expiry T' = Kh.
Like all other derivatives a swaptions implies transfer of money if the option holder makes
use of the right it implies. The future floating rate is immaterial; only the difference between

the floating swap rate rsx and the agreed one rg4 counts. At time ¢ the responsibility of the
option seller is

ka = max(rSA — TSK)’U() and XCk = max(TSK — TSA,O)’U(),
receiver swaption payer swaption

vo being the capital involved. We are again dealing with a put (receiver) and a call (payer)
option, and as above there is a simple parity relation between them (Exercise 14.7). Both
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Xpi and Xy, define payment streams starting at 7= Kh and extending up to some terminal
T, = Kih of the swap.

A swaption premium is payed up-front at the day (o = 0) the deal is struck, and its value
hinges on the risk-neutral distribution of the uncertain, future swap rate rgx. Standard pricing
is again based on the log-normal model with the mean taken from forward rates observed in
the market. In this case these are swap contracts lasting from 7' = Kh to T = K1h. If rgo(K)
is the forward swap rates for those, it follows from (1.37) that

Eq(rsk) = rso(K),

and all swaption payments can be priced if the volatilitiy cgx of rsx is known. For the receiver
version the formula resemples that of a floor, except that now the cash transferred the swaption
holder is the same everywhere; only the discounting varies between time points. It follows that
the permium becomes

Vek = (Po.ky + - - - + Po.ky ) {rsa®(—ax + osk) — ros(K)®(—ak)}vo (1.51)
where

_ log(ros(K)/rsa) + 0%k /2
oSK

ax (1.52)

Payer swaptions are dicussed in Exercise 77.

1.7 Mathematics of interest rate derivatives

Introduction

Pricing theory for interest rate derivatives is less settled than for equity. Omne reason is the
underlying model. There is for interest rates no default choice the way the geometric random
walk is for shares. The simplest approach is to let a single stochastic process drive price
fluctuations of all money market products. We are then assuming that a European derivative
7 which expires at T" has a value function of the form

Vik = Vj(r, T — tg). (1.53)

where {r;} a stochastic process (common to all products). We may in practice think of r as
a floating rate of interest. As it oscillates, so do the values of all money market products, sort
of in parallel.

A key issue is again hedging and its impact on valuation. For equity options that viewpoint
lead to unique solutions in Section 14.5, but the argument does not carry over, since hedges
now are in terms of other derivatives and not the floating rate itself (which isn’t an asset that
can be bought!). Hedge portfolios must therefore be designed though other instruments, and
this does not lead to unique prices. It will emerge that we have to be content with a system of
consistency requirements that rests on an universal process for the entire money market, the
so-called market price of risk. Much of the section is an erection of this important concept.
For concrete pricing of products it has to be pinned down for concrete pricing of products.
The presentation below owes a great deal to Hull (2003).

Technicalities are very much the same as those in Section 14.5. We shall again be dealing
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with a limiting process where h — 0 and T' = Kh is kept fixed. Taylor approximations will
be a principal tool. For terms of order at least A two terms in r and one in ¢ is required.
The reason is exactly the same as for equity. Remainder terms of size %2 and smaller can be
ignored.

Hedging in the money market

Let {Vix} and {Vax} be the value processes of a pair of money market derivatives. Their model
will be derived from a basic set-up at the end of the section. That will leave us with a joint
model of the form (j =1, 2)

V}',k—l—l = V}-k(l + thk + \/ETjkEk), where Cjk = Cjk(rk), Tk = Tjk(T'k). (1.54)

We are allowing drift and volatility to be influenced by {ry}. Note that the error process
{ex} driving the fluctuations are common to both derivatives. That is the consequence of the
assumption that there is a single stochastic process driving all money market derivatives and
products. As usuall the sequence €1, €9, ... are independent and Gaussian with mean zero and
standard deviation one.

As hedge portfolio consider
Hi = Vig + wi Vo with value at 2511 Hik = Vigs1 + wpVogi1-
Here wy, is a weight to be determined. Clearly
Hik — Hie = (Vig+1 + wiVorr1) — (Vie + weVar) = (Vg1 — Vig) + we(Vaer1 — Var)-
Inserting (1.54) this becomes
M1 — Hie = (Vierie + wiVarrar) Vher + (VikCur + wiVarCae) b
after collecting the terms in v/A and h. The random term vanishes if we select

w VikTik
E= "
Vaor ok

and when this weight is used, some simple manipulations show that

T T
Hi = Vi (1 - ﬁ) and Hi+1 — Hi = Vig (Clk - §2kik) h.
Tk Tik

But since the portfolio is risk-free, these quantities must be related through
Hy+1 — Hi = rghHg,

as there would be arbitrage otherwise. Hence
T2k T2k

Vik (Clk - C2ki> h = rghVig (1 - i) ;
Tik T1k

and with some re-arrangement we have proved that

Cik =Tk _ G2k — Tk
Tik Tok

: (1.55)
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which holds for arbitrary pairs of derivatives in the money market under the assumpitons in-
troduced. What consequences that has, are discussed next.

The market price of risk

The Sharpe ratio (1.55) was encountered in Chapter 5 where it was used to rank investment
projects. In the present sequel it defines a universal process {\y} characterizing the entire
money market. What (1.55) conveys is that the drift and volatility of an arbitrary security j
in that market may be written

Cjk — Tk

=M or Cjk =7+ lec)\lc, (1.56)
Tjk

where {\;} is independent of j. This universal process is known as the market price of
risk, and suggests that prices adjust to a fixed relationship between gain and volatility. As
the volatiltiy goes up (increasing risk), then that is compensated by higher expected gain. Or
(at least), so is the theory.

Hedging has lead to a consistency in the price system of the money market, but the sit-
uation differs from the one we met for equities where the hedging/no arbitrage argument lead
to a specific price. Here the valuation of interest rate derivatives demands a concrete position
on the market price of risk.

The pricing formula
The martingale pricing used in Section 14.6 has a simple link to the preceding theory. Consider
My, = Vi /Vor, where Vi and Vo, are the value processes introduced in (1.54). Now

1+ h¢igh + TigVhey
Vo k1 "1y hioph + TopVher

Vig+1
My =7—"—=

after inserting the defining model (1.54). We shall utilize that for small z is

1
1+

il—x+w2.

which is applied to the denominator in the relationship for My 1. Take x = h(oh + TokV'h €.
Then

My 1 = My(1 4 héay, + mipVheg) {1 — (BCok + mopVher) + (Coph + mopVher)?}.

When the right hand side is muliplied out and the terms of order v/h and h are collected, those
of order v/h cancel (1), and we are left with

Mpy1 = Mp{1 + h(Cip — Cok — TikTok + Tager) }

Taking expectations
E(Mp11) = E(Mg){1 + h(Cik — Cok — TikT2k + Top) }- (1.57)

The error is of order z3 or h%/2, small enough for it to go away as h — 0 and K =T /h — o0,
as explained in the introduction to Section 14.5.

25



Suppose we make the assumption that the market price of risk coincides with the volatil-
ity of the second uncertain quantity, admittedly rather arbitrary. This means that Ay = 7o
and that

Cik — Gok = /\k:(le - Tzk) = TZk(le - 7’2k) = T1kT2k — 722k

so that (1.57) becomes E(My1) = E(My), implying that E(Mg) = E(My). In the limit as
h — 0, we obtain the pricing equation

Eq(Mk) = Eq(My), (1.58)

after introducing risk neutrality in the notation. This leads directly to (1.36) when M} =
Vi / Pi.k is inserted (Pg.x is the bond price).

Modelling framework
It remains to derive the model (1.54) on which the pricing theory rests. We shall start from
the general model

hfk+\/ﬁak6k

Th1 = Tke where & = &k(rk), ok = ok(Tk), (1.59)

actually the framwork used with equity in Section 14.5. There are time-varying drift and
volatility functions (depending on the current floating rate), and (as usual) the process {ex} is
independent N (0, 1). Of course concrete specifications and parameters would now be different
(reversion to mean for example), but in the present context this does not matter. The expo-
nential form was used with the Black-Karisinsky model in Section 5.7 (and elsewhere), but we
could equally well have started from the linear version (as in the Vasi¢ek model); arguments
are virtually unchanged. Volatilities proportional to Vh are also as for equities and were for
interest rates justified in Section 5.7 in a special case.

Let Vi = V(rg, T — tx) be the value of some derivative at tx. As with equities we are as-
suming that V(r,t) is a smooth function that can be studied through a Taylor series. Indeed,
the following steps are exactly those carried out in Section 14.4 and 14.5 (but spread out a bit
there). Start by noting that

1
V(r,t) = V(rg, te) + ag(r —rg) + §bk(T —r1)% + e (t — 1)

where

0 = WV (rk,t) o = PV (reste) b = WV (rk; t)
k alr ’ k 87"2 9 k 8t .

Take r = rg41 and t = tx11, which yields

. 1
Vi1 — Vi = ap(rgsr — i) + §bk(7"lc+1 — 1)+ cr(tpyr — tr).

The quantities 1,41 — 7% can be simplified in the same manner as for equity prices. Indeed,
recall the Taylor series of the exponential function, the first three terms of which being

1
ewi1+$+§$2.
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Take z = £xh + oxvVher, and deduce that
1 1
etihronvhen = 1 4 goh + oy vhe + o (&b + oxVher)? =1+ Vhogey, + h(é + 5‘7135%%
ignoring terms of terms of order h3/2 and smaller. It follows that

1
Thtl — Tk = (efkh+g’“‘/ﬁg’“ —Drp = \/Eakak + h(€+ Ea,%s%)rk.

or, using the auxiliary result at the end of Section 14.5
1
T+l — Tk = \/i_LO'k&?k + h(f + 50']%)7%-

This may be inserted into the Taylor series for V. Then after collecting terms up to order A
it follows that

Vierr = Vi (1 + B¢y, + Vh 1rer) (1.60)
where
1. o
Ck = apCr + Ebkak +ck and Ty = G0k,

as assumed in (1.54). Note that under the assumption (1.53) the random terms ¢j are the
same for all derivatives whereas the functions (; and 7, will vary from one product to another.

1.8 Further reading
1.9 Exercises

Exercise 1
Suppose we form a portfolio consisting of the three instruments in the table:

Instrument Value at tg =0
European call Co(So)

- Underlying asset —-So
Cash exp(—rT)A

Note that we are long in the option and short in the underlying stock.

a) Determine the value of the three ingrdients of the table at the time of expiry of the option
and show that the value of the whole portfolio then is

max(A — Sk, 0),
b) Use this arbitrage and this result to deduce the lower bound (??) on European call options.
Exercise 2

Construct a portfolio similar to that in Exercise 1 that enables you to deduce the lower
bound (??) for European put options.
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