Exercise 2.1

Prove the floor formula in Chapter 14 (in Section 1.6).

Exercise 2.2

Suppose interest rate follows the Black-Karisinsky model with $\xi=4\%$, $\sigma=0.25$ and a=0.7. The initial rate is r=8%.

- a) Use the program in Exercise 1.3 to compute the theoretical bond price and the theoretical interest rate curve.
- b) What's their mathematical relationship?

If you haven't done it yourself, an approximate answer to a) is (in %)

c) Compute the steady-state volatility for r_k when the model is Black-Karisinsky model with the parameters above [Answer: 0.01015]

Suppose $\sigma_k = 0.0105\sqrt{1 - 0.7^{2k}}$ is the volatility function for the interest rate under the risk neutral model.

- d) Explain how the floorlet prices are determined from the information given.
- e) Write a program that computes the floor price when the derivative is annual and lasts from 1 to 10 years. What price is charged for for the entire floor?
- f) Suppose your intial capital is v_0 and that your purchase a floor, as above, to protect financial earnings. You use part of the capital to pay for the derivative. How much is left after expenses for the floor has been deducted?

Exercise 2.3

Write a program that computes the swap rate from the information in Exercise 2.2. What is the numerical value for it?