
Introducing copulas

Introduction
Let U1 and U2 be uniform, dependent random variables and introduce

X1 = F−1
1 (U1) and X2 = F−1

2 (U2), (0.1)

where F−1
1 (u1) and F−1

2 (u2) are the percentiles of two distribution functions F1(x) and F2(x). This
simple set-up defines an increasingly popular modelling strategy where dependence and univariate
variation are treated separately. The inversion algorithm (Section 2.3) ensures that the distribution
functions of X1 and X2 become F1(x1) and F2(x2) no matter how U1 and U2 depend on each other.
Their joint distribution function C(u1, u2) is called a copula and a huge number of models have
been proposed for it.

The idea goes back to the mid twentieth century, originating with the work of Sklar (1959). It
enables us to tackle situations as those in Figure 6.5 where the correlation depend on the level of
the variables. Equity in falling markets is an example (Longin and Solnik 2001), and such phenom-
ena have drawn interest in insurance too; see Wütrich (2004).

Copula modelling
A bivariate copula is the joint distribution function

C(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2), 0 < u1 ≤ 1, 0 < u2 ≤ 1. (0.2)

Any function C(u1, u2) that is to play this role must be increasing in u1 and u2 and satisfy

C(u1, 0) = 0, C(0, u2) = 0 and C(u1, 1) = u1, C(1, u2) = u2 (0.3)

where the conditions on the right ensures that U1 and U2 are uniform. Simple examples are

C(u1, u2) = u1u2 and C(u1, u2) = (u−θ
1 + u−θ

2 − 1)−1/θ

independent copula Clayton copula

where θ > 0 on the right. You can easily convince yourself that (0.3) is valid for both.

The copula approach rests on a representation theorem discovered by Sklar (1959). Any joint
distribution function F (x1, x2) with strictly increasing marginal distribution functions F1(x1) and
F2(x2) may be written

F (x1, x2) = C(u1, u2) where u1 = F1(x1), u2 = F2(x2)
copula modelling univariate modelling

(0.4)

with a modified version even for counts. The copula approach does not restrict the model at all,
and there are additional versions when antitetic twins (Section 4.3) are supplied for the uniforms.
Indeed, the copula on the left in (0.4) may be combined with either of

u1 = F1(x1), 1− u2 = F2(x2) orientation (1,2)

1− u1 = F1(x1), u2 = F2(x2) orientation (2,1)

1− u1 = F1(x1), 1− u2 = F2(x2) orientation (2,2),

(0.5)
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Figure 6.5 Simulated financial returns for Gaussians combined with the Clayton copula.

and the effect is to rotate the copula patterns 90◦, 180◦ and 270◦ compared to the orginal one
denoted orientation (1, 1); see Figure 6.5.

The Clayton copula
The definition of the Clayton copula can be extended to

C(u1, u2) = max
(

(u−θ
1 + u−θ

2 − 1)−1/θ, 0
)

, θ ≥ −1 (0.6)

where it is easy to check that the copula requirements (0.3) are satisfied for all θ 6= 0 (and ≥ −1).
Nor is it difficult to show (Exercise 6.7.3) that C(u1, u2)→ u1u2 as θ → 0 which means that θ = 0
is the independent case. When θ is negative,

C(u1, u2) = 0 if u2 < (1− u−θ
1 )−1/θ,

and certain pairs (u1, u2) are forbidden territory. Hard restrictions of that kind are often undesir-
able. Yet when negative θ is included, the family in a sense covers the entire range of dependency
that is logically possible.; see Exercises 6.7.1.and 6.7.2.

2



Simulated structures under the Clayton copula are shown in Figure 6.5 for normal X1 and X2

with mean ξ = 0.005 and volatility σ = 0.05, precisely as in Figure 2.5 (and realistic for monthly
equity returns). The cone-shapes patterns signify unequal dependence in unequal parts of the
space. Note, for example, the plot in the upper, left corner where correlations are much stronger
for downside returns. Ordinary Gaussian models don’t capture such phenomena which do appear
in real life; see Longin and Solnik (2001). The other plots in Figure 6.5 rotate patterns by changing
the orientation of the copula (two of them have become negatively correlated), and the degree of
dependence is adjusted by varying θ.

Conditional distributions under copulas
Additional insight is gained by examining conditional distributions. The conditional and joint
density functions are related to C(u1, u2) through

c(u2|u1) = c(u1, u2) =
∂2C(u1, u2)

∂u1u2
,

and when this is integrated with respect to u2

C(u2|u1) =

∫ u2

0
c(v|u1) dv =

∫ u2

0

∂2C(u1, v)

∂u1∂v
dv =

∂

∂u1

∫ u2

0

∂C(u1, v)

∂v
dv =

∂C(u1,u2)
∂u1

.

For the Clayton copula (0.6)

C(u2|u1) = u
−(1+θ)
1 max

(

(u−θ
1 + u−θ

2 − 1)−(1+1/θ), 0
)

, (0.7)

where the expression is zero when θ < 0 and u2 < (1− u−θ
1 )−1/θ. It has been plotted in Figure 6.6

with θ large and positive on the left and large and negative on the right. Shapes under u1 = 0.1
and u2 = 0.9 differ markedly, a sign of strong dependence, but the most notable feature is a lack
of symmetry. On the left U2 is largely confined to a narrow strip around u1 when u1 = 0.1, but
is much more variable when u1 = 0.9. It is precisely this feature that creates the cones in Figure 6.5.

The preceding argument may be flawed when the support of (U1, U2) (i.e. the region of posi-
tive probability) doesn’t cover the entire unit quadrate. Clayton copulas with negative θ is such a
case though for those the argument does go through; see Genest and Mackay (1986) for a simple
account of these issues.

Many variables and the Archimedean class
Copulas can be extended to any number of variables. A J-dimensional one is the distribution
function C(u1, . . . , uJ ) of J dependent, uniform variables U1, . . . , UJ and satisfies consistency re-
quirements similar to those in (0.3); see Exercise 6.7.6. Transformations back to the original
variables are now through X1 = F−1

1 (U1), . . . ,XJ = F−1
J (UJ), and there are 2J ways of rotating

patterns through antitetic twins, not just 4. Copulas of sub-vectors follows from higher-order ones.
For example, if j < J then, C(u1, . . . , uj , 1, . . . , 1) is the copula for U1, . . . , Uj .

Arguably the most convenient J-dimensional copulas are the Archimedean ones

C(u1, . . . , uJ) = φ−1{φ(u1) + . . . + φ(uJ )} (0.8)

3
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Figure 6.6 Conditional distribution functions for the second variable of a Clayton copula; given
first variable marked on each curve.

where φ(u) with inverse φ−1(x) is known as the generator. The Clayton copula is the special case

φ(u) =
1

θ
(u−θ − 1), and φ−1(x) = (1 + θx)−1/θ

from which (0.6) follows. It is usual to let θ ≥ 0 so that the support is the entire J-dimensional unit
quadrate. A huge list of generators is compiled in Nelsen (2006). They must in general be monotone
functions with φ(1) = 0, and it is usually desirable that φ(0) = ∞. If not, certain sub-regions of
the unit quadrate are completely ruled out which we may not want. Thus, generators for practical
use are more likely to look like the Clayton copula for θ = 0.2 on the right of Figure 6.7 than the
second example φ(u) = (1− u)3 on the right. Archimedean copulas go back to Kimberling (1974).

The Marshall-Olkin representation
Some of the most useful Archimedean copulas satisfy a stochastic representation due to Marshall
and Olkin (1988). Let Z be a positive random variable with density function g(z). Its moment
generating function (or Laplace transform) is

M(x) = E(e−xZ) =

∫ ∞

0
e−xzg(z) dz; (0.9)

see Section A.1. Only positive x is of interest, and M(x) decreases monotonely from one at x = 0
to zero at infinity. Define

Uj = M

(

−
log(Vj)

Z

)

, j = 1, . . . , J (0.10)

where V1, . . . , VJ is a sequence of independent and uniform random variables. It turns out that
U1, . . . , UJ are uniform too (not exactly obvious!), and their joint distribution function is an Archi-
median copula with generator φ(u) = M−1(u); see Section 6.8 for the proof.
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Figure 6.7 Generator functions for Archimedean copulas.

The Clayton copula emerges when Z is Gamma distributed with density function

g(z) =
αα

Γ(α)
zα−1e−αz where α = 1/θ.

Then

M(x) =

∫ ∞

0
e−xz αα

Γ(α)
zα−1e−αz dz =

(

1 +
x

α

)−α

= (1 + θx)−1/θ

which is the inverse Clayton generator. Positive distributions with simple moment generating func-
tions and inverses are natural candidates for Z.

Copula sampling
A Monte Carlo simulation U∗

1 , . . . , U∗
J of a copula vector is passed on to the original variables

through

X∗
1 ← F−1

1 (U∗
1 ), . . . ,X∗

J ← F−1
J (U∗

J ).

This is inversion sampling which does not work for all distributions, but the table look-up algorithm
of Section 4.2 (which is an approximate inversion) is a satisfactory way around.

What about U∗
1 , . . . , U∗

J itself? A general recursive scheme will be worked out in Section 6.8, but it
is far from being universally practical. One class of models that is easy to handle are Archimedean
copulas under the Marshall-Olkin stochastic representation. When (0.10) is copied in the computer:

Algorithm 6.3 Archimedean copulas
0 Input: φ(u)
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1 Draw Z∗ %Z with Laplace transform M(u) = φ−1(u)

2 For j = 1, . . . , J repeat
3 Draw V ∗ ∼ uniform and U∗

j ←M(− log(V ∗)/Z∗)
4 Return U∗

1 , . . . , U∗
J

A simulation from the Clayton copula is generated if Z∗ is drawn from the standard Gamma
distribution with shape α = 1/θ. There are for Clayton copulas an alternative which is justified by
the scheme in Section 6.8:

Algorithm 6.4 The Clayton copula
0 Input: θ > 0
1 Draw U∗

1 ∼ uniform and S∗ ← 0
2 For j = 2, . . . , J do
3 S∗ ← S∗ + (U∗

j−1)
−θ − 1 %Updating from preceding uniform

4 Draw V ∗ ∼ uniform
5 U∗

j ← {(1 + S∗)(V ∗)−θ/(1+(j−1)θ) − S∗}−1/θ %Next uniform

6 Return U∗
1 , . . . , U∗

J

The sample U∗
1 , . . . , U∗

J emerging from this second algorithm are smooth functions of θ. Why
is this useful? Consider the following:

Example: An equity portfolio
Let R = (R1 + R2)/2 be the return of an equally weighted portfolio with individual assets yielding

R1 = eξ1+σ1ε1 − 1 and R2 = eξ2+σ2ε2 − 1

where ε1 and ε2 are both N(0, 1). Suppose they are Clayton-dependent with parameter θ. The
lower 5% percentile and the standard deviation of the portfolio are in Figure 6.8 plotted against
its inverse α = 1/θ when ξ1 = ξ2 = 0.005 and σ1 = σ2 = 0.05. This might be monthly returns for
equity. Both downside and variability depend sensitively on α with low α for strong dependency
between asset returns.

There is a more technical side to the display in Figure 6.8. Monte Carlo (m = 10000 simulations)
was used for computation with common random numbers (Section 4.3) to smooth the curves. The
random number generator was then run from the same start for each of the 100 values of α plotted;
see Section 4.6 where the issue is explained. Yet the picture is smooth only when the copulas were
sampled by Algorithm 6.4. Why the erratic behaviour when Algorithm 6.3 was used? The reason
is the underlying Gamma variables being generated by Algorithm 2.9 which is a random stopping
rule with which common random numbers does not work well.

Example: Copula log-normals against pure log-normals
If the preceding copula log-normal is indeed the true model, how wrong is it to use the traditional
log-normal instead? Comparisons of that kind require careful calibration of models. The univariate
part is defined by ε1 = Φ−1(U1) and ε2 = Φ−1(U2) where Φ−1(u) is Gaussian percentiles. Now
ρ = cor(ε1, ε2) is by definition

ρ = E{Φ−1(U1),Φ
−1(U2)},

6
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Figure 6.8 Standard deviation (left) and lower 5% percentiles (right) under variation of the
inverse Clayton parameter for the equity portfolio described in the text (m = 10000 simulations).

and its value should be the same whether (U1, U2) comes from the Clayton copula or corresponds
to an ordinary bivariate normal.

The experiments reported in Figure 6.9 were based on the Clayton copula with θ = 1, and the cor-
responding ρ for the pure Gaussian was determined by Monte Carlo. If (U∗

1i, U
∗
2i) for i = 1, . . . ,m

are simulations of (U1, U2) under the copula, then ρ is approximated by

ρ∗ =
1

m

m
∑

i=1

Φ−1(U∗
1i)Φ

−1(U∗
2i)

which gave ρ∗ = 0.498. The other conditions were those of the preceding example. Density functions
of R are plottet in Figure 6.9 (one million simulations used). To the left all .simulations exceeding
−5% were discarded, and the rest used to portray the extreme downside. Discrepancies under the
two models are not negligable, but this changes on the right of Figure 6.9 which shows density
functions of five-year returns. Differences are now hardly visible at all. Five-year (or sixty-month)
returns were simulated through the recursion

R∗
0:k = R∗

0:k−1(1 +R∗
k), k = 1, . . . , 60 starting at R∗

0:0 = 1

where R∗
k is the Monte Carlo return in period k. Long-range asset risk may not be too strongly

influenced by subtle copula effects. Other values of θ gave similar results.

Mathematical arguments

The Marshall-Olkin representation Let V1, . . . , VJ , Z be independent random variables with
V1, . . . , VJ uniform and Z positive with density function g(z) and moment generating function

7



M(x) =
∫∞
0 e−xzg(z)dz. Define Uj = M(− log(Vj)/Z) for j = 1, . . . , J . We shall prove that

U1, . . . , UJ follow an Archimedean copula with generator φ(u) = M−1(u). First note that Vj =

e−M−1(Uj)Z . Hence, if Z = z is fixed, then

Pr(U1 ≤ u1, . . . , UJ ≤ uJ |z) = Pr(V1 ≤ e−M−1(u1)z . . . , VJ ≤ e−M−1(uJ )z|z)

and since V1, . . . , VJ are independent and uniform, this yields

Pr(U1 ≤ u1, . . . , UJ ≤ uJ |z) = e−M−1(u1)z−...−M−1(uJ )z.

But

Pr(U1 ≤ u1, . . . , UJ ≤ uJ) =

∫ ∞

0
Pr(U1 ≤ u1, . . . , UJ ≤ uJ |z)g(z) dz

so that

Pr(U1 ≤ u1, . . . , UJ ≤ uJ) =

∫ ∞

0
e−{M−1(u1)+...+M−1(uJ )}zg(z) dz

which can also be written

Pr(U1 ≤ u1, . . . , UJ ≤ uJ) = M{M−1(u1) + . . . + M−1(uJ)}.

This a Archimedean copula with generator φ(u) = M−1(u).

A general scheme for copula sampling
Some copulas can be sampled through inversion. Start by drawing J uniforms U∗

1 and V ∗
2 , . . . , V ∗

J

and proceed iteratively through

C(U∗
j |U

∗
1 , . . . , U∗

j−1) = V ∗
j , j = 2, . . . , J (0.11)

where C(uj|u1, . . . , uj−1) is the conditional distribution function of Uj given U1 . . . , Uj−1. This
would yield the desired vector U∗

1 , . . . , U∗
J , but whether it is practical hinges on the work needed

to solve the equations. We must in any case derive an expression for C(uj |u1, . . . , uj−1). Let
c(uj |u1, . . . , uJ−1) be its density function so that

C(uj|u1, . . . , uj−1) =

∫ uj

0
c(v|u1, . . . , uj−1) dv.

To calculate the integral let c(u1, . . . , uj) be the density function of U1, . . . , Uj and recall that
c(u1, . . . , uj−1, 1) is the density functions U1, . . . , Uj−1. It follows that

c(uj |u1, . . . , uj−1) =
c(u1, . . . , uj)

c(u1, . . . , uj−1, 1)
=

∂jC(u1, . . . , uj)/∂u1, . . . , ∂uj

∂j−1C(u1, . . . , uj−1, 1)/∂u1, . . . , ∂uj−1
.

Write D for the denominator. Then
∫ uj

0
c(v|u1, . . . , uj−1) dv = D−1

∫ uj

0

∂jC(u1, . . . , uj−1, v)

∂u1 . . . , ∂uj−1∂v
dv

= D−1 ∂j−1

∂u1, . . . , ∂uj−1

∫ uj

0

∂C(u1, . . . , uj−1, v)

∂v
dv

= D−1 ∂j−1C(u1, . . . , uj)

∂u1 . . . ∂uj−1
,

8



and it has been established that

C(uj|u1, . . . , uj−1) =
∂j−1C(u1, . . . , uj−1, uj)/∂u1 . . . ∂uj−1

∂j−1C(u1, . . . , uj−1, 1)/∂u1 . . . ∂uj−1
(0.12)

which is the extension of the bivariate case in Section 6.7. If the equation (0.11) is easy to solve
after having calculated the derivative, we have a sampling method.

Justifying Algorithm 6.4
The preceding recursive technique works for Clayton copulas if θ > 0. Then

C(u1, . . . , uj) =





j
∑

i=1

u−θ
i − j + 1





−1/θ

,

which is easily be differentiated with respect to u1, . . . , uj−1. After a little work

∂j−1C(u1, . . . , uj)

∂u1 . . . ∂uj−1
=





j
∑

i=1

u−θ
i − j + 1





−1/θ−j+1

×
j−1
∏

i=1

(

u
−(1+θ)
i {1 + (i− 1)θ}

)

,

and the conditional distribution function of Uj given u1, . . . , uj−1 may now be calculated from (0.12).
This yields

C(uj|u1, . . . , uj−1) =

(

∑j
i=1 u−θ

i − j + 1
∑j−1

i=1 u−θ
i − j + 2

)−1/θ−j+1

=

(

u−θ
j + sj−1

1 + sj−1

)−1/θ−j+1

where sj−1 =
∑j−1

i=1 u−θ
i − (j − 1). A Monte Carlo simulation of U∗

j given U∗
1 , . . . , U∗

j−1 is therefore
generated by drawing another uniform V ∗ and solving the equation

(

(U∗
j )−θ + S∗

j−1

1 + S∗
j−1

)−1/θ−j+1

= V ∗ where S∗
j−1 =

j−1
∑

i=1

(U∗
i )−θ − (j − 1).

The expression for U∗
j in Algorithm 6.4 follows from this.

Bibliographical notes

The interest in copulas exploded around the turn of the century, although Mikosch (2006) raises
a skeptical eye. General introductions for insurance and finance are Embrechts, P, Lindskog and
McNeil (2003) and Cherbini, Lucciano and Vecchiato (2004); see also Nelsen (2006) for a more
mathematical treatment or even Joe (1997) for a broader angle on dependence modelling. You
will find a good discussion of how Archimedean copulas are simulated in Whelan (2004); see also
Frees and Valdez (1998). For applications in insurance consult (among others) Klugman and Parsa
(1999), Carriére (2000), Venter (2003), Bäuerle and Grüber (2005) and Escarela and Carriére (2007).
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Sklar, A. (1959). Fonctions de Répartion à n Dimensions et Leur Marges. Publications de l’Institut
de Statistique de l’Université de Paris, 8, 229-231.
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Exercises

Exercise 6.7.1 Introduce the copulas

Cmin(u1, u2) = max(u1 + u2 − 1, 0) and Cmax(u1, u2) = min(u1, u2).

where 0 < u1, u2 < 1 a) Argue that Cmin(u1, u2) is the copula when U2 = 1 − U1. b) Also argue that
Cmax(u1, u2) corresponds to U2 = U1. c) Verify that any copula C(u1, u2) satisfies

Cmin(u1, u2) ≤ C(u1, u2) ≤ Cmax(u1, u2), 0 ≤ u1, u2 ≤ 1.

This is known as the Frechet-Hoeffding inequality and shows that Cmin(u1, u2) is a minimum and Cmax(u1, u2)
a maximum copula. [Hint: For the upper bound note that C(u1, u2) ≤ Pr(Ui ≤ ui) and for the lower one
introduce H(u1) = C(u1, u2)−(u1 +u2−1) for which H(1) = 0 and dH(u1)/du1 = Pr(U2 ≤ u2|u1)−1 ≤ 0.].

Exercise 6.7.2 Consider the Clayton copula C(u1, u2) = max(u−θ
1 + u−θ

2 , 0)−1/θ where θ ≥ −1. a) Ar-
gue that it coincides with the minimum copula Cmin(u1, u2) when θ = −1. b) Show that it converges to
the maximum copula Cmax(u1, u2) as θ → ∞ [Hint: The Clayton copula may for positive θ be written
exp{log(u−θ

1 + u−θ
2 − 1)/θ} and l’Hôpital’s rule applied to the exponent.]. The Clayton copula covers in this

sense the entire range of dependency.

Exercise 6.7.3 Show that the Clayton copula approaches the independent copula u1u2 as θ → 0 [Hint:
Use the argument of Exercise 6.7.2b.].
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Exercise 6.7.4 a) For the Archimedean copula with generator φ(u) = (1 − u)3 verify that C(u1, u2) = 0
whenever u2 ≤ {1 − (1 − u1)

3}1/3. Consider a general Archimedean copula with monotone decreasing gen-
erator φ(u) with finite φ(0). b) Show that the copula C(u1, u2) = 0 whenever φ(u1) + φ(u2) > φ(0) which
is the same as u2 > φ−1{φ(0)− φ(u1)}.

Exercise 6.7.5 Let R1 = eξ+σε − 1 and R2 = eξ+σε2 − 1 where ǫ1 and ǫ2 are N(0, 1) and Clayton-
dependent with parameter θ. a) Write a program which which generates m simulations of (R1, R2) [R-
commands: U1=runif(m); S=U1**(-θ)-1; U2=(1+S)*runif(m)**(θ/(1+θ))-S; R1=exp(ξ+σ*qnorm(U1))-
1; R2=exp(ξ + σ*qnorm(U2))-1.]. b) Run the program when ξ = 0.05, σ = 0.25 and θ = 0.1 using m = 100
and scatterplot to inspect the pattern [R-command: plot(R1,R2). c) Repeat b) when θ = 2 and θ = 10
and note how the pattern changes

Exercise 6.7.6 A popular model is the Franck copula which reads

C(u1, u2) =
1

θ
log

(

1 +
(eθu1 − 1)(eθu2 − 1)

eθ − 1

)

, 0 < u1, u2 < 1

where θ may be any real number. a) Check that the copula conditions are satisfied. b) Show that the
independent copula emerges as θ → 0 [Hint: Use the approximation ex .

= 1 + x, valid for small x, to write
C(u1, u2)

.
= log{1 + (θu1)(θ2u2)/θ}/θ→ u1u2 as θ → 0.].

Exercise 6.7.7 Verify that the Franck copula of the preceding exercise tends to the the maximum copula
Cmax(u1, u2) as θ → −∞ and the minimum one Cmin(u1, u2) as θ →∞. [Hint: Argue that eθ−1

.
= −1 when

θ → −∞ so that C(u1, u2)
.
= log(−e−θ(u1+u2) + eθu1 + eθu1)/θ which yields C(u1, u2)

.
= u1 + log(−eθu2 +

1 − eθ(u2−u1)) → u1 when u1 < u2. When θ → ∞, justify that C(u1, u2)
.
= log(1 + eθ(u1+u2−1)) →

max(u1 + u2 − 1, 0).].

Exercise 6.7.8 a) Differentiate the Franck copula and show that

∂C(u1, u2)

∂u1
=

eθu1(eθu2 − 1)

(eθ − 1)(eθu1 − 1)(eθu2 − 1)
.

b) Use this and the inversion algorithm to justify the Franck sampler

U∗

2 ←
1

θ
log

(

1 +
V ∗(eθ − 1)

V ∗ + eθU∗

1 (1− V ∗)

)

where U∗

1 , V ∗ ∼ uniform.

c) Implement this algorithm so that m simulations are generated [R-commands: U1=runif(m); V=runif(m);

Y=V*(e**θ-1)(V+e**(θ*U1)*(1-V)); U2=log(1+Y).]. d) Generate m = 100 simulations of (U1, U2) when

θ = −10 and θ = 10 and scatterplot them [R-command: plot(U1,U2).]

Exercise 6.7.9 Replace Clayton-dependence with Franck-dependence in the model for (R1, R2) in Exercise

6.7.5 a) Revise the simulation program accordingly [R-commands: Take U1 and U2 from Exercise 6.7.8.c)

and use R1=exp(ξ + σ*qnorm(U1))-1; R2=exp(ξ + σ*qnorm(U2))-1.]. b) Use θ = −10 and θ = 10 and

scatterplot m = 100 Monte Carlo samples when ξ = 0.05 and σ = 0.25 as in Exercise 6.7.5 [R-command:

plot(R1,R2).]. c) Redo b) when θ = −5 and θ = 5. d) Compare the patterns you have seen with those in

Exercise 6.7.5 and speculate which might be most appropriate for financial risk
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