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Non-life insurance from a financial perspective:

for a premium an insurance company commits itself to pay a sum if an event has occured

Overview
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Contract period

Policy holder 

signs up for an

insurance

Policy holder 

pays premium.

Insurance company

starts to earn

premium

During the duration of the policy, some of

the premium is earned, some is unearned

• How much premium is earned?

• How much premium is unearned?

• Is the unearned premium sufficient?

Premium reserve, prospective

prospectiveretrospective
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Why does it work??
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Client 1

Insurance

company

Client 2

Client n-1 Client n

•Economic risk is transferred from the policyholder to the insurer

•Due to the law of large numbers (many almost independent clients), 

the loss of the insurance company is much more predictable than that

of an individual

•Therefore the premium should be based on the expected loss that

is transferred from the policyholder to the insurer

Much of the course is about computing this expected loss

...but first some insurance economics

The balance sheet

Premium Income

Losses

Loss ratio

Costs

Result elements



Insurance mathematics is fundamental in 

insurance economics
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The result drivers of insurance economics:

Result elements: Result drivers:

 + Insurance premium 

Risk based pricing,                                                                           

reinsurance

 + financial income 

International economy for example interest rate level,                

risk profile for example stocks/no stocks

 - claims 

risk reducing measures (for example installing burglar alarm), 

risk selection (client behaviour),                                                

change in legislation,                                                                  

weather phenomenons,                                                         

demographic factors,                                                         

reinsurance

 - operational costs 

measures to increase operational efficiency,                                 

IT-systems,                                                                                            

wage development

 = result to be distributed among the owners and the authoritiesTax politics



Premium income

• Earning of premium adjustments take 2 years in non-life insurance:

• Assumes that premium adjustment is implemented

January 1st.

• Assumes that the portfolio’s maturity pattern is evenly

distributed during the year

Maturity 

pattern

Year 1 

Jan

Year 1 

Feb

Year 1     

Mar

Year 1       

Apr

Year 1        

May 

Year 1     

Jun

Year 1        

Jul

Year 1 

Aug

Year 1     

Sep

Year 1       

Oct

Year 1        

Nov

Year 1     

Dec

Year 2 

Jan

Year 2 

Feb

Year 2     

Mar

Year 2       

Apr

Year 2        

May 

Year 2     

Jun

Year 2        

Jul

Year 2 

Aug

Year 2     

Sep

Year 2       

Oct

Year 2        

Nov

Year 2     

Dec

January 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

February 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

March 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

April 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

May 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

June 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

July 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

August 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

September 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

October 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

November 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

December 8 % 0,3 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,7 % 0,3 %

Sum 0 % 1 % 3 % 6 % 9 % 13 % 17 % 22 % 28 % 35 % 42 % 50 % 58 % 65 % 72 % 78 % 83 % 88 % 91 % 94 % 97 % 99 % 100 % 100 %



Loss ratio

• Shows how much of the premium income is spent to cover losses

• What does the difference in loss ratio gross and net tell us?

Gross Net

Incurred losses 1070 (-870-200) 850

Earned premium 1340 (1450-110) 1095

Loss ratio 79.9% 77.6%

Amounts in 1 000 000 NOK 2012

Written gross premium 1 450        

 - ceded reinsurance premium -270          

Change in reserve for unearned gross premium -110          

 -change in reinsurance share of unearned premium 25              

Net premium income 1 095        

Amounts in 1 000 000 NOK 2012

Paid claims gross -870

 - Reinsurance share of paid claims gross 120

change in gross claims reserve -200

 -change in reinsurance part of gross claims reserve 100

Net claims costs -850          



Overview
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Important issues Models treated Curriculum

Duration (in 

lectures)

What is driving the result of a non-

life insurance company? insurance economics models Lecture notes 0,5

How is claim frequency modelled? 

Poisson, Compound Poisson 

and Poisson regression Section 8.2-4 EB 1,5

How can claims reserving be 

modelled?

Chain ladder, Bernhuetter 

Ferguson, Cape Cod, Note by Patrick Dahl 2

How can claim size be modelled?

Gamma distribution, log-

normal distribution Chapter 9 EB 2

How are insurance policies 

priced?

Generalized Linear models, 

estimation, testing and 

modelling. CRM models. Chapter 10 EB 2

Credibility theory Buhlmann Straub Chapter 10 EB 1

Reinsurance Chapter 10 EB 1

Solvency Chapter 10 EB 1

Repetition 1



Overview of this session
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Some important notions and some practice too

Examples of claim frequencies

Random intensities (Section 8.3 EB)

The Poisson model (Section 8.2 EB)



Introduction
• Pure premium = likelihood of claim event (claims frequency) * 

economic consequence of claim event (claim severity)

• What is the likelihood of a claim event?

• It depends!!....on

– risk exposure (extent and nature of use)

– object characteristics (quality and nature of
object)

– subject characteristics (behaviour of user)

– geographical characteristics (for example
weather conditions and traffic complexity)

• These dependencies are normally handled through regression, 
where the number of claims is the response and the factors above
are the explanatory variables

• Let us start by looking at the Poisson model

9

Some notions

Examples

Random intensities

Poisson



The world of Poisson (Chapter 8.2)
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t0=0 tk=T

Number of claims

tk-2 tk-1 tk tk+1

Ik-1 Ik Ik+1

•What is rare can be described mathematically by cutting a given time period T 

into K small pieces of equal length h=T/K

•On short intervals the chance of more than one incident is remote

•Assuming no more than 1 event per interval the count for the entire period is 

N=I1+...+IK , where Ij is either 0 or 1 for j=1,...,K

•If p=Pr(Ik=1) is equal for all k and events are independent, this is an ordinary

Bernoulli series

Knpp
nKn

K
nN nKn ,...,1,0for      ,)1(

)!(!

!
)Pr( 


 

•Assume that p is proportional to h and set hp  where 

is an intensity which applies per time unit

Some notions

Examples

Random intensities

Poisson



The world of Poisson
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In the limit N is Poisson distributed with parameter  T 
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The world of Poisson
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•Let us proceed removing the zero/one restriction on Ik. A more flexible

specification is

)()1Pr(I     ),()1Pr(    ),(1)0Pr( k hohohIhohI kk  

Where o(h) signifies a mathematical expression for which

0   as   0
)(

 h
h

ho

It is verified in Section 8.6 that o(h) does not count in the limit

Consider a portfolio with J policies. There are now J independent processes

in parallel and if is the intensity of policy j and Ik the total number

of claims in period k, then

 
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The world of Poisson
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•Both quanities simplify when the products are calculated and the powers of h 

identified
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•It follows that the portfolio number of claims N is Poisson distributed with

parameter

JTJT JJ /)...(      where,)...( 11  

•When claim intensities vary over the portfolio, only their average counts

Some notions

Examples
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When the intensity varies over time
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•A time varying function handles the mathematics. The binary

variables I1,...Ik are now based on different intensities

0    as   )(
1 0

  
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KktkK ,...,1for      )(        where,...., k1  

•When I1,...Ik are added to the total count N, this is the same issue as if K 

different policies apply on an interval of length h. In other words, N must still be 

Poisson, now with parameter 

where the limit is how integrals are defined. The Poisson parameter for N can

also be written

And the introduction of a time-varying function doesn’t change

things much.  A time average takes over from a constant
)(t

 

Some notions

Examples

Random intensities

Poisson



The intensity is an average over time and policies.

The Poisson distribution
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•Claim numbers, N for policies and N for portfolios, are Poisson distributed with

parameters

TJT        and     



Poisson models have useful operational properties. Mean, standard deviation

and skewness are

Policy level Portfolio level




1
)(     and     )(     ,)(  skewNsdNE

The sums of independent Poisson variables must remain Poisson, if N1,...,NJ are

independent and Poisson with parameters then

JNN  ...1Ν

J ,...,1

)...( 1 JPoisson  ~

Some notions
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Client

Policy

Insurable object

(risk)

Insurance cover
Cover element

/claim type

Claim

Policies and claims

Some notions

Examples

Random intensities

Poisson



Insurance cover third party liability

Third part liability

Car insurance client

Car insurance policy

Insurable object

(risk), car Claim

Policies and claims

Insurance cover partial hull

Legal aid

Driver and passenger acident

Fire

Theft from vehicle

Theft of vehicle

Rescue

Insurance cover hull
Own vehicle damage

Rental car

Accessories mounted rigidly

Some notions

Examples

Random intensities

Poisson
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Some notes on the different insurance covers on the previous slide:

Third part liability is a mandatory cover dictated by Norwegian law that covers damages

on third part vehicles, propterty and person. Some insurance companies

provide additional coverage, as legal aid and driver and passenger

accident insurance.

Partial Hull covers everything that the third part liability covers. In addition, partial hull covers damages on

own vehicle caused by fire, glass rupture, theft and vandalism in association with theft. Partial hull also

includes rescue. Partial hull does not cover damage on own vehicle caused by collision or landing in the

ditch. Therefore, partial hull is a more affordable cover than the Hull cover. Partial hull also cover salvage, 

home transport and help associated with disruptions in production, accidents or disease. 

Hull covers everything that partial hull covers. In addition, Hull covers damages on own vehicle in a 

collision, overturn, landing in a ditch or other sudden and unforeseen damage as for example fire, glass 

rupture, theft or vandalism. Hull may also be extended to cover rental car.

Some notes on some important concepts in insurance:

What is bonus?

Bonus is a reward for claim-free driving. For every claim-free year you obtain a reduction in the insurance

premium in relation to the basis premium. This continues until 75% reduction is obtained. 

What is deductible?

The deductible is the amount the policy holder is responsible for when a claim occurs. 

Does the deductible impact the insurance premium?

Yes, by selecting a higher deductible than the default deductible, the insurance premium may be 

significantly reduced. The higher deductible selected, the lower the insurance premium. 

How is the deductible taken into account when a claim is disbursed?

The insurance company calculates the total claim amount caused by a damage entitled to disbursement. 

What you get from the insurance company is then the calculated total claim amount minus the selected

deductible. 

Some notions

Examples

Random intensities

Poisson



Key ratios – claim frequency
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Claim frequency all covers motor

•The graph shows claim frequency for all covers for motor insurance

•Notice seasonal variations, due to changing weather condition throughout the years
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Key ratios – claim severity
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Average cost all covers motor

•The graph shows claim severity for all covers for motor insurance
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Key ratios – pure premium
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Pure premium all covers motor

•The graph shows pure premium for all covers for motor insurance
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Loss ratio all covers motor

Key ratios – pure premium

•The graph shows loss ratio for all covers for motor insurance
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Key ratios – claim frequency TPL 

and hull

•The graph shows claim frequency for third part liability and hull for 

motor insurance
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Average cost hull motor

Key ratios – claim frequency and 

claim severity

•The graph shows claim severity for third part liability and hull 

for motor insurance
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Random intensities (Chapter 8.3)

• How varies over the portfolio can partially be described by observables such as age 
or sex of the individual (treated in Chapter 8.4)

• There are however factors that have impact on the risk which the company can’t know 
much about
– Driver ability, personal risk averseness, 

• This randomeness can be managed by making a stochastic variable 

• This extension may serve to capture uncertainty affecting all policy holders jointly, as 
well, such as altering weather conditions

• The models are conditional ones of the form

• Let

which by double rules in Section 6.3 imply

• Now E(N)<var(N) and N is no longer Poisson distributed

25
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The rule of double variance
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Let X and Y be arbitrary random variables for which

)|var(     and     )|()( 2 xYxYEx  

Then we have the important identities

)}(var{)}(E{)     var(Yand     )}({)( 2 XXXEYE  
Rule of double expectation Rule of double variance

Recall rule of double expectation

)()(,,

)()())|(())|((

y ally all  xall

,

y all  xall

,

 xall y all

|

 xall

YEdyyyfdydxy)(xfydydxy)(xyf

dxxf(y|x)dyyfdxxfxYExYEE

YYXYX

XXYX





  

 
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wikipedia tells us how the rule of

double variance can be proved
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The rule of double variance

28

Var(Y) will now be proved from the rule of double expectation. Introduce

E(Y))E( that    note and     )(
^^

 YxY 

which is simply the rule of double expectation. Clearly

).)((2)()())()(()(
^^

2
^

2
^

2
^^

2   YYYYYYYYYY

Passing expectations over this equality yields

321 2)var( BBBY 

where

 ),)((    ,)(  ,)(
^^

3

2
^

2

2
^

1   YYYEBYEBYYEB

which will be handled separately. First note that

}|){(}|))({()( 2
^

22 xYYExxYEx  

and by the rule of double expectation applied to 
2

^

)( YY 

.){()}({ 1

2
^

2 BYYExE 

The second term makes use of the fact that by the

rule of double expectation so that

)(
^

YE
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The rule of double variance
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)}.(var{)var(
^

2 xYB 

The final term B3 makes use of the rule of double expectation once again which yields

)}({3 XcEB 

where

And B3=0. The second equality is true because the factor is 

fixed by X. Collecting the expression for B1, B2 and B3 proves the double 

variance formula

0))}({))}()|({

)}(|){(}|))({()(

^^^^^

^^^^









YYYYYxYE

YxYYExYYYEXc

)(
^

Y
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Random intensities
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Specific models for are handled through the mixing relationship

)Pr()|Pr()()|Pr()Pr(
0

i

i

inNdgnNnN   




Gamma models are traditional choices for and detailed below)(g

Estimates of can be obtained from historical data without

specifying . Let n1,...,nn be claims from n policy holders and T1,...,TJ their

exposure to risk.  The intensity if individual j is then estimated as .

    and    
)(g

j jjj Tn /
^



Uncertainty is huge. One solution is 



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

Both estimates are unbiased. See Section 8.6 for details. 10.5 returns to this.  

(1.5)

(1.6)
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The most commonly applied model for muh is the Gamma 

distribution. It is then assumed that

The negative binomial model

31

)Gamma(~        where  GG

Here is the standard Gamma distribution with mean one, and  

fluctuates around with uncertainty controlled by      . Specifically
)Gamma( 
 

 /)(sd   and     )( E

Since , the pure Poisson model with fixed intensity

emerges in the limit.
      as     0)sd(

The closed form of the density function of N is given by

T
p       where)1(

)()1(

)(
)Pr(







 







 npp

n

n
nN

for n=0,1,.... This is the negative binomial distribution to be denoted . 

Mean, standard deviation and skewness are

),nbin( 

)/1(

T/21
skew(N)    ,)/1()(    ,)(






TT
TTNsdTNE






Where E(N) and sd(N) follow from (1.3) when is inserted.

Note that if N1,...,NJ are iid then N1+...+NJ is nbin (convolution property). 

 /

(1.9)
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Fitting the negative binomial
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Moment estimation using (1.5) and (1.6) is simplest technically. The estimate of

is simply in (1.5), and for        invoke (1.8) right which yields

./ that   so     /
^

2
^
2

^^^^

 


^

 

If , interpret it as an infinite or a pure Poisson model. 0
^


^



Likelihood estimation: the log likelihood function follows by inserting nj for n in (1.9) 

and adding the logarithm for all j. This leads to the criterion













n

j
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n

j

j
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1

1

)log()()log(

)}log())({log()log(),(





where constant factors not depending on and have been omitted.  
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