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Overview

Non-life insurance from a financial perspective:
for a premium an insurance company commits itself to pay a sum if an event has occured
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Why does it work?? = =

*Economic risk is transferred from the policyholder to the insurer
*Due to the law of large numbers (many almost independent clients),
the loss of the insurance company is much more predictable than that
of an individual

*Therefore the premium should be based on the expected loss that

is transferred from the policyholder to the insurer

Much of the course is about computing this expected loss
...but first some insurance economics



Insurance mathematics Is fundamental In
Insurance economics

The result drivers of iInsurance economics:

Result elements:

Result drivers:

+ Insurance premium

Risk based pricing,
reinsurance

+ financial income

International economy for example interest rate level,
risk profile for example stocks/no stocks

risk reducing measures (for example installing burglar alarm),
risk selection (client behaviour),

change in legislation,

weather phenomenons,

demographic factors,

reinsurance

- claims
measures to increase operational efficiency,
IT-systems,

- operational costs wage development

=resultto be distributed among the owners and the | Tax politics




Premium iIncome

« Earning of premium adjustments take 2 years in non-life insurance:

Maturity Yearl Year1l Yearl Yearl Yearl Yearl Yearl Yearl Yearl Yearl Yearl Yearl VYear2

Year2 Year2 Year2 Year2

Year2 Year2 Year2 Year2 Year2 Year2 Year2

pattern Jan Feb  Mar  Apr May Jun  Jul Aug  Sep Oct Nov Dec  Jan Feb  Mar Apr May Jun  Jul Aug  Sep  Oct Nov Dec
January 8%[03% 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 0,7% 0,3%
February 8% 03% 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 03%
March 8% 03% 07% 07% 07% 07% 07% 07% 07% 07% 0,7% 07% 07% 03%
April 8% 03% 0,7% 0,7% 07% 07% 07% 07% 07% 07% 07% 07% 07% 03%
May 8% 03% 07% 07% 07% 07% 07% 07% 0,7% 07% 07% 07% 0,7% 0,3%
June 8% 03% 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 0,7% 03%
July 8% 03% 07% 07% 07% 07% 07% 07% 07% 07% 0,7% 07% 07% 03%
August 8% 03% 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 03%
September 8% 03% 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 03%
October 8% 03% 0,7% 0,7% 07% 07% 07% 0,7% 07% 07% 07% 07% 07% 03%
November 8% 03% 0,7% 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 03%
December 8 % 0,3 % 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 07% 03%
Sum 0% 1% 3% 6% 9% 13% 17% 22% 28% 35% 42% 50% 58% 65% 72% 78 % 83% 88% 91% 94% 97% 99% 100% 100 %
100,0% /
900% 7 * Assumes that premium adjustment is implemented
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0SS ratio

« Shows how much of the premium income is spent to cover losses

Amounts in 1 000 000 NOK 2012 Amounts in 1 000 000 NOK 2012
Written gross premium 1450 Paid claims gross -870
- ceded reinsurance premium -270 - Reinsurance share of paid claims gross 120
Change in reserve for unearned gross premium -110 change in gross claims reserve -200
-change in reinsurance share of unearned premium 25 -change in reinsurance part of gross claims reserve 100
Net premium income 1095 Net claims costs " -850
Gross Net

Incurred losses 1070 (-870-200) 850

Earned premium 1340 (1450-110) 1095

Loss ratio 79.9% 77.6%

« What does the difference in loss ratio gross and net tell us?



Overview

Duration (in
Importantissues Models treated Curriculum lectures)
Whatis driving the result of a non-
life insurance company? insurance economics models [Lecture notes 0,5
Poisson, Compound Poisson
How is claim frequency modelled? |and Poisson regression Section 8.2-4 EB 15
How can claims reserving be Chain ladder, Bernhuetter
modelled? Ferguson, Cape Cod, Note by Patrick Dahl 2
Gamma distribution, log-
How can claim size be modelled? |normal distribution Chapter 9 EB 2
Generalized Linear models,
How are insurance policies estimation, testing and
priced? modelling. CRM models. Chapter 10 EB 2
Credibility theory Buhlmann Straub Chapter 10 EB 1
Reinsurance Chapter 10 EB 1
Solvency Chapter 10 EB 1
Repetition 1




Overview of this session

The Poisson model (Section 8.2 EB)

Some important notions and some practice too

Examples of claim frequencies

Random intensities (Section 8.3 EB)




Introduction

Pure premium = likelihood of claim event (claims frequency) *
economic consequence of claim event (claim severity)

What is the |Ike|IhOOd of a claim event?

— risk exposure (extent and nature of use)

— object characteristics (quality and nature of
object)

— subject characteristics (behaviour of user)

— geographical characteristics (for example
weather conditions and traffic complexity)

These dependencies are normally handled through regression,
where the number of claims is the response and the factors above
are the explanatory variables

Let us start by looking at the Poisson model




The world of Poisson (Chapter 8.2)

Number of claims

Ik—l Ik Ik+l

t,=0 li2 tig t 0%} L=T

*What is rare can be described mathematically by cutting a given time period T
into K small pieces of equal length h=T/K

*On short intervals the chance of more than one incident is remote

*Assuming no more than 1 event per interval the count for the entire period is

N=I,+...+l, where | Is either O or 1 for j=1,...,K

*If p=Pr(l,=1) is equal for all k and events are independent, this is an ordinary
Bernoulli series

Kl
Pr(N =n) = "1-p)<™", for n=01....K
( ) (K —1)! p"(1-p)

«Assume that p is proportional to h and set p=n where u
IS an intensity which applies per time unit
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The world of Poisson

Kl n K-n
PN =)= = "0 )

()
(K -n)!I K K

_ (4T)" K(K=1)--(K=n+1) (1_ ,uTjK 1
n! K" K (1_m)“
K
—1 — e 51
K—o0 K > K —>ow

= Pr(N =n) —» (47) e

K—>o0 nl

In the limit N is Poisson distributed with parameter A = ul



The world of Poisson

Let us proceed removing the zero/one restriction on lk. A more flexible
specification is

Pr(l, =0)=1—zh+o(h), Pr(l, =1)=zh+o(h), Pr(l, >1)=o(h)
Where o(h) signifies a mathematical expression for which

%—)O as h—0

It is verified in Section 8.6 that o(h) does not count in the limit

Consider a portfolio with J policies. There are now J independent processes
in parallel and if £ is the intensity of policy jand Ik the total number
of claims in period K, then

Pr(Ik:O):ﬁ(l—yj) and Pr(Ikzl):ZJ:{,uihH(l—yjh)}

j#i
No claims

Claims policy i only
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The world of Poisson

*Both quanities simplify when the products are calculated and the powers of h
identified

Pr(, =0) = [ ] ) = @ ah)A- ph)d— g

= (1— h = 0+ g0 ) (L= p15h)
=1—mh—ph+ 41" — (= gh = p,h + Hot?)
=1-h—ph—p;h+o(h)

Pr(l, =1) = (ZJ:,uj)h+o(h)

*It follows that the portfolio number of claims N is Poisson distributed with
parameter

A=y +...+ ;)T =3ul, where g=(y+...+ 1)/ J

*When claim intensities vary over the portfolio, only their average counts
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When the intensity varies over time

Atime varying function 4 = ,u(t) handles the mathematics. The binary
variables l1,...Ik are now based on different intensities

Ly it Where p o =p(t ) for k=1..,K

*When I1,...Ik are added to the total count N, this is the same issue as if K
different policies apply on an interval of length h. In other words, N must still be
Poisson, now with parameter

K T
A=hY u > [ut)dt as h—0
k=1 0

where the limit is how integrals are defined. The Poisson parameter for N can
also be written

)
A=Txh where = % j u(t)dt,
0

And the introduction of a time-varying function  £(t) doesn’t change
things much. Atime average Ll takes over from a constant
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The Poisson distribution

«Claim numbers, N for policies and N for portfolios, are Poisson distributed with
parameters

A=ul and A=Jul

Policy level Portfolio level

The intensity ({ is an average over time and policies.

Poisson models have useful operational properties. Mean, standard deviation
and skewness are

E(N)=2, sd(N)=+4 and skevv(i)zﬁ

The sums of independent Poisson variables must remain Poisson, if N1,...,Nsare
independent and Poisson with parameters Zl,..., /1J then

N=N,+...+ N, ~ Poisson(4, +...+4,)

15



Policies and claims

Poisson
Some notions
Examples

Random intensities



Car insurance client

l

Car insurance policy

l

Insurable object
(risk), car

!

Insurance cover third party liability —

Policies and claims

Third part liability

Legal aid

Claim

S

Driver and passenger acident

Insurance cover partial hull

v

Fire
Theft from vehicle

Theft of vehicle

Rescue

Accessories mounted rigidly

Insurance cover hull

» Own vehicle damage

Rental car



Some notes on the different insurance covers on the previous slide:

<

Third part liability is a mandatory cover dictated by Norwegian law that covers damages
on third part vehicles, propterty and person. Some insurance companies
provide additional coverage, as legal aid and driver and passenger
accident insurance.

Partial Hull covers everything that the third part liability covers. In addition, partial hull covers damages on
own vehicle caused by fire, glass rupture, theft and vandalism in association with theft. Partial hull also
includes rescue. Partial hull does not cover damage on own vehicle caused by collision or landing in the
ditch. Therefore, partial hull is a more affordable cover than the Hull cover. Partial hull also cover salvage,
home transport and help associated with disruptions in production, accidents or disease.

Hull covers everything that partial hull covers. In addition, Hull covers damages on own vehicle in a
collision, overturn, landing in a ditch or other sudden and unforeseen damage as for example fire, glass
rupture, theft or vandalism. Hull may also be extended to cover rental car.

Some notes on some important concepts in insurance:

What is bonus?
Bonus is a reward for claim-free driving. For every claim-free year you obtain a reduction in the insurance
premium in relation to the basis premium. This continues until 75% reduction is obtained.

What is deductible?
The deductible is the amount the policy holder is responsible for when a claim occurs.

Does the deductible impact the insurance premium?
Yes, by selecting a higher deductible than the default deductible, the insurance premium may be
significantly reduced. The higher deductible selected, the lower the insurance premium.

How is the deductible taken into account when a claim is disbursed?

The insurance company calculates the total claim amount caused by a damage entitled to disbursement.
What you get from the insurance company is then the calculated total claim amount minus the selected
deductible.

18



Key ratios — claim frequency &= —

*The graph shows claim frequency for all covers for motor insurance
*Notice seasonal variations, due to changing weather condition throughout the years

Claim frequency all covers motor
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Key ratios — claim severity =

*The graph shows claim severity for all covers for motor insurance

Average cost all covers motor
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Key ratios — pure premium &=

*The graph shows pure premium for all covers for motor insurance

Pure premium all covers motor
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Key ratios — pure premium &=

*The graph shows loss ratio for all covers for motor insurance

Loss ratio all covers motor
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Key ratios — claim frequency TPL __

and hull

*The graph shows claim frequency for third part liability and hull for

motor insurance

Claim frequency hull motor

Claim frequency third party liability motor
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Key ratios — claim frequency and __

ty

Im severl

cla

*The graph shows claim severity for third part liability and hull

for motor insurance

Average cost hull motor

Average cost third part liability motor
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Random intensities (Chapter 8.3) -

—

How g varies over the portfolio can partially be described by observables such as age
or sex of the individual (treated in Chapter 8.4)

There are however factors that have impact on the risk which the company can’t know

much about
—  Driver ability, personal risk averseness,

This randomeness can be managed by making a stochastic variable

This extension may serve to capture uncertainty affectipg all policy holders jointly, as
well, such as altering weather conditions

The models are conditional ones of the form

N | 2~ Poisson(xT) and N|u~ Poisson(JuT)

Policy level Portfolio level

Let £=E(u) and o=sd(x) andrecall that E(N | z2) =var(N | x) = uT

which by double rules in Section 6.3 imply
E(N)=E(uT)=£.T  and Var(N):E(IuT)_|_Var(luT):é:T_|_62T2

Now E(N)<var(N) and N is no longer Poisson distributed

25



The rule of double variance

Let X and Y be arbitrary random variables for which

E(X)=E(Y|x) and o =var(Y|X)

Then we have the important identities

§=E(Y)=E{£(X)} and var(Y)=E{o"(X)}+var{s(X)}

Rule of double expectation Rule of double variance

Recall rule of double expectation

E(EQY 1) = [(ECY 1)) £ 09dx = [ [ yfy (vP)dly F, (X)dlx

all x all xally

= [ [¥heleyidy = [y [ £, y)dxdy = [yF, (y)dy = E(Y)

ally all x ally allx al.ly
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wikipedia tells us how the rule of
double variance can be proved

Law of total variance

From Wikipedia, the free encyclopedia

In probability theory, the law of total variance!'! or variance decomposition formula, states that if X and ¥ are random variables on the same probability space, and the variance of Yis finite, then

Var[Y]| = E(Var[Y | X]) + Var(E[Y | X]).

Proof [ edit source |
The law of total variance can be proved using the law of total expectation. ! First,
Var[Y] = E[Y?] — E[Y]?
from the definition of variance. Then we apply the law of total expectation to each term by conditioning on the random variable X
2 2
=Ex [E[Y* | X]] - Ex [E[Y' | X]]
Mow we rewrite the conditional second moment of Y in terms of its variance and first moment:
2 2
= Ex[Var]Y" | X] + E[Y | X]*] — Ex[E[Y" | X]]

Since the expectation of a sum is the sum of expectations, the terms can now be regrouped:
2
= Ex[Varly' | X]] + (Ex [B[Y | X]’ - Ex[E[Y | X]]")

Finally, we recognize the terms in parentheses as the variance of the conditional expectation E[Y]X]:

= Eyx [Var[Y | X]] + Varyx [E[Y | X]]



The rule of double variance

| Randomintensites

Var(Y) will now be proved from the rule of double expectation. Introduce
Y =£(x) andnotethat E(Y)=E(Y)

which is simply the rule of double expectation. Clearly

(Y= =((Y -Y)+(Y=E)" = (Y =Y)* +(Y=&)" +2(Y =Y )(Y-&).
Passing expectations over this equality yields
var(Y)=B,+ B, +2B,
where A A o
B, =E(Y-Y)*, B,=E(Y-¢)", By=E(Y-Y)(Y-¢),
which will be handled separately. First note thaAt
o (x) = E{(Y = &(x))* [ x}=E{(Y -Y)* [ x},
and by the rule of double expectation applied to (Y —Y)?
E{c*(\)}=E{(Y -Y)* =B.

The second term makes use of the fact that &= E(Y) by the
rule of double expectation so that
28



The rule of double variance

| Randomintensites

B, =var(Y) = var{&(x)}.
The final term Bs makes use of the rule of double expectation once again which yields
B, = E{c(X)}

where

c(X) = E{(Y ~Y)(Y=&) |} = E{(Y -Y) | \}(Y—&)
SE(Y 1) -Y)HY - &) =Y —Y)}(Y—&) =0

And B:=0. The second equality is true because the factor (Y —¢&) is

fixed by X. Collecting the expression for B1, B2 and B proves the double
variance formula

AN
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Random intensities -

Specific models for 4 are handled through the mixing relationship

Pr(N =n) = [Pr(N =n| £)g()dp ~ 3 Pr(N =n| 44) Priu = )
Gamma models are trgditional choices for g(,u) Iand detailed below

Estimatesof £ and o  can be obtained from historical data without
specifying g(4) . Let n.,...,Nn  be claims from n policy holders and T,,.», T their
exposure to risk. The intensity K if individual  is then estimated as  4; =N, /Tj :

Uncertainty is huge. One solution is

A n N T
g:ij p; Where w, =— (1.5)
j=1 T
and i=
A ij(ﬂj_é)z_c (n—l)%
ol=12 where ¢=-— (1.6)

1—iwj? DT,
j=1 i=1

Both estimates are unbiased. See Section 8.6 for details. 10.5 returns to this.
30



The negative binomial model

The most commonly applied model for muh is the Gamma — —
distribution. It is then assumed that

u=6 where G~ Gamma(x)

Here Gamma(«) is the standard Gamma distribution with mean one, and u
fluctuates around £  with uncertainty controlled by ¢ . Specifically

E(v)=¢ and sd(w)=¢/Va

Since sd(u) -0 as « —> oo, the pure Poisson model with fixed intensity
emerges in the limit.

The closed form of the density function of N is given by

Ln+a) p“(L—p)" where p=

PriN =n) = C'(n+D)IM'(x) a+cT

for n=0,1,.... This is the negative binomial distribution to be denoted nbin(&, ) .
Mean, standard deviation and skewness are

E(N)=£T, sd(N)=/ET(L+ET /a), skew(N)=

1+ 28T/
JET(L+ET a)

Where E(N) and sd(N) follow from (1.3) when o = f/\/; IS inserted.
Note that if N1,...,Ns are iid then Ni+...+Nsis nbin (convolution property).

(1.9)
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Fitting the negative binomial

<

Moment estimation using (1.5) and (1.6) is simplest technically. The estimate of £
is simply £ in (1.5), and for @ invoke (1.8) right which yields

) a:gf/\/; sothat a=¢&%/0°.
f o=0, interpret it as an infinite & or a pure Poisson model.

Likelihood estimation: the log likelihood function follows by inserting nj for n in (1.9)
and adding the logarithm for all j. This leads to the criterion

L(¢,a) = Zn: log(n; +a) —n{log(I'(«)) — a log( ) } +

>0, 100(&)~ (0, + ) loglar + T,)

where constant factors not dependingon & and & have been omitted.
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