Non-life insurance mathematics

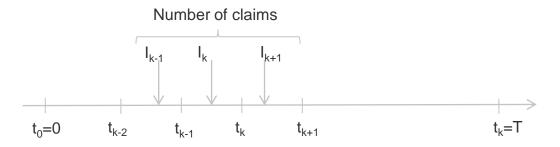
Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Insurance mathematics is fundamental in insurance economics

The result drivers of insurance economics:

Result elements:	Result drivers:
	Risk based pricing,
+ Insurance premium	reinsurance
	International economy for example interest rate level,
+ financial income	risk profile for example stocks/no stocks
	risk reducing measures (for example installing burglar alarm),
	risk selection (client behaviour),
	change in legislation,
	weather phenomenons,
	demographic factors,
- claims	reinsurance
	measures to increase operational efficiency,
	IT-systems,
- operational costs	wage development
= result to be distributed among the owners and the	Tax politics

The world of Poisson (Chapter 8.2)



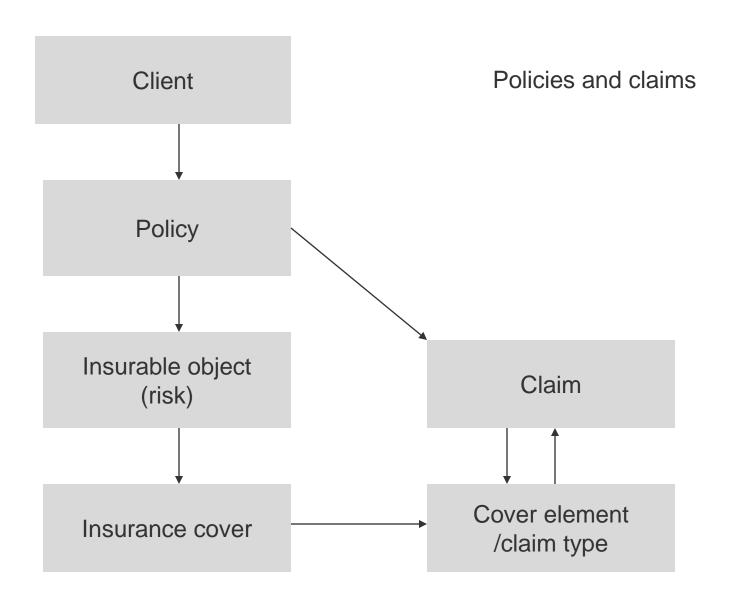
- •What is rare can be described mathematically by cutting a given time period T into K small pieces of equal length h=T/K
- •On short intervals the chance of more than one incident is remote
- Assuming no more than 1 event per interval the count for the entire period is

$$N=I_1+...+I_K$$
, where I_j is either 0 or 1 for $j=1,...,K$

•If p=Pr(I_k=1) is equal for all k and events are independent, this is an ordinary Bernoulli series

$$Pr(N = n) = \frac{K!}{n!(K-n)!} p^{n} (1-p)^{K-n}, \text{ for } n = 0,1,...,K$$

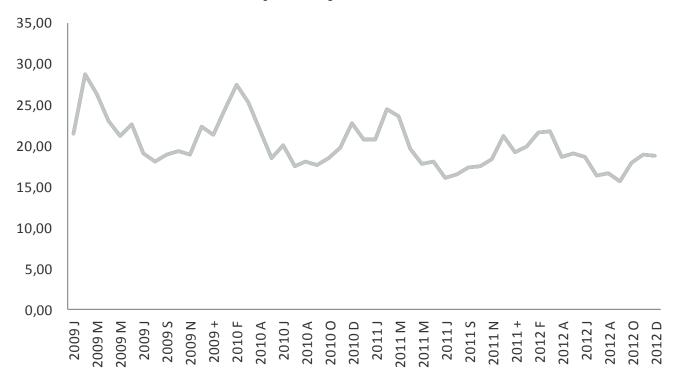
•Assume that p is proportional to h and set $p = \mu h$ where μ is an intensity which applies per time unit



Key ratios – claim frequency

- •The graph shows claim frequency for all covers for motor insurance
- •Notice seasonal variations, due to changing weather condition throughout the years

Claim frequency all covers motor



Random intensities (Chapter 8.3)

- How μ varies over the portfolio can partially be described by observables such as age or sex of the individual (treated in Chapter 8.4)
- There are however factors that have impact on the risk which the company can't know much about
 - Driver ability, personal risk averseness,
- This randomeness can be managed by making a stochastic variable
- This extension may serve to capture uncertainty affecting all policy holders jointly, as well, such as altering weather conditions
- The models are conditional ones of the form

$$N \mid \mu \sim Poisson(\mu T)$$
 and $N \mid \mu \sim Poisson(J\mu T)$

• Let $\xi = E(\mu)$ and $\sigma = \operatorname{sd}(\mu)$ and recall that $E(N \mid \mu) = \operatorname{var}(N \mid \mu) = \mu T$ which by double rules in Section 6.3 imply

$$E(N) = E(\mu T) = \xi T$$
 and $var(N) = E(\mu T) + var(\mu T) = \xi T + \sigma^2 T^2$

Now E(N)
 var(N) and N is no longer Poisson distributed

Overview

			Duration (in
Important issues	Models treated	Curriculum	lectures)
What is driving the result of a non-			
life insurance company?	insurance economics models	Lecture notes	0,5
	Poisson, Compound Poisson		
How is claim frequency modelled?	and Poisson regression	Section 8.2-4 EB	1,5
How can claims reserving be	Chain ladder, Bernhuetter		
modelled?	Ferguson, Cape Cod,	Note by Patrick Dahl	2
	Gamma distribution, log-		
How can claim size be modelled?	normal distribution	Chapter 9 EB	2
	Generalized Linear models,		
How are insurance policies	estimation, testing and		
priced?	modelling. CRM models.	Chapter 10 EB	2
Credibility theory	Buhlmann Straub	Chapter 10 EB	1
Reinsurance		Chapter 10 EB	1
Solvency		Chapter 10 EB	1
Repetition			1

Overview of this session

What is a fair price of insurance policy?

The model (Section 8.4 EB)

An example

Why is a regression model needed?

Repetition of important concepts in GLM

What is a fair price of an

insurance policy?

- Before "Fairness" was supervised by the authorities (Finanstilsynet)
 - To some extent common tariffs between companies
 - The market was controlled
- During 1990's: deregulation
- Now: free market competition supposed to give fairness
- According to economic theory there is no profit in a free market (in Norway general insurance is cyclical)
- Hence, the price equals the expected cost for insurer
- Note: cost of capital may be included here, but no additional profit
- Ethical dilemma:
 - Original insurance idea: One price for all
 - Today: the development is heading towards micropricing
 - These two represent extremes

The fair price

The model

An example

Why regression?

The fair price

The model

An example

Expected cost

- Main component is expected loss (claim cost)
- The average loss for a large portfolio will be close to the mathematical expectation (by the law of large numbers)
- So expected loss is the basis of the price
- Varies between insurance policies
- Hence the market price will vary too
- The add other income and costs, incl administrative cost and capital cost

The fair price

The model

An example

Why regression?

Repetition of GLM

Adverse selection

- Too high premium for some policies results in loss of good policies to competitors
- Too low premium for some policies gives inflow of unprofitable policies
- This will force the company to charge a fair premium

The fair price The model An example Why regression? Repetition of GLM

Rating factors

- How to find the expected loss of every insurance policy?
- We cannot price individual policies (why?)
 - Therefore policies are grouped by rating variables
- Rating variables (age) are transformed to rating factors (age classes)
- Rating factors are in most cases categorical

The fair price The model An example

The model (Section 8.4)

Repetition of GLM

•The idea is to attribute variation in μ to variations in a set of observable variables $x_1,...,x_v$. Poisson regressjon makes use of relationships of the form

$$\log(\mu) = b_0 + b_1 x_1 + \dots + b_{\nu} x_{\nu} \tag{1.12}$$

- •Why $\log(\mu)$ and not μ itself?
- •The expected number of claims is non-negative, where as the predictor on the right of (1.12) can be anything on the real line
- •It makes more sense to transform μ so that the left and right side of (1.12) are more in line with each other.
- ·Historical data are of the following form

covariates

Claims exposure

•The coefficients b₀,...,b_v are usually determined by likelihood estimation

The fair price

The model

An example

Why regression

Repetition of GLM

The model (Section 8.4)

•In likelihood estimation it is assumed that n_j is Poisson distributed $\lambda_j = \mu_j T_j$ where μ_j is tied to covariates x_{j1},...,x_{jv} as in (1.12). The density function of n_j is then

$$f(n_j) = \frac{(\mu_j T_j)^{n_j}}{n_j!} \exp(-\mu_j T_j)$$

or

$$\log(f(n_j)) = n_j \log(\mu_j) + n_j \log(T_j) - \log(n_j!) - \mu_j T_j$$

- •log($f(n_j)$) above is to be added over all j for the likehood function $L(b_0,...,b_v)$.
- •Skip the middle terms n_iT_i and log (n_i!) since they are constants in this context.
- Then the likelihood criterion becomes

$$L(b_0, ..., b_v) = \sum_{j=1}^{n} \{ n_j \log(\mu_j) - \mu_j T_j \} \text{ where } \log(\mu_j) = b_0 + b_1 x_{j1} + ... + b_j x_{jv}$$
 (1.13)

- •Numerical software is used to optimize (1.13).
- •McCullagh and Nelder (1989) proved that L(b₀,...,b_v) is a convex surface with a single maximum
- Therefore optimization is straight forward.

Poisson regression: an example, bus insurance

The fair price

The model

An example

Why regression?

Rating factor	class	class description
Bus age	0	0 years
	1	1-2 years
	2	3-4 years
	3	5-6 years
	4	> 6 years
		central and sem-central parts of
District	1	sweden's three largeest cities
	2	suburbs and middle-sized towns
	3	lesser towns, except those in 5 or 7
		small towns and countryside, except
	4	5-7
	5	northern towns
	6	northern countryside
	7	gotland

The model becomes

$$\log(\mu_i) = b_0 + b_{busage}(l) + b_{district}(s)$$

for l=1,...,5 and s=1,2,3,4,5,6,7.

•To avoid over-parameterization put bbus age(5)=bdistrict(4)=0 (the largest group is often used as reference)

Take a look at the data first

			Number of		Claims	Claims	Pure
Zone	Bus age	Duration	claims	Claims Cost	frequency	severity	premium
1	0	28	20	155 312	72,6 %	7 766	5 638
1	1	30	8	55 012	27,0 %		1 857
1	2	47	15	52 401	32,1 %	3 493	1 120
1	3	85	24	79 466	28,3 %	3 311	939
1	4	222	41	220 381	18,5 %	5 375	994
2	0	64	18	37 066	28,0 %	2 059	577
2	1	55	28	83 913	50,8 %	2 997	1 523
2	2	55	15	45 321	27,1 %	3 021	820
2	3	67	25	341 384	37,5 %	13 655	5 116
2	4	507	166	2 319 807	32,7 %	13 975	4 574
3	0	74	12	192 547	16,2 %	16 046	2 600
3	1	68	19	151 747	28,0 %	7 987	2 238
3	2	62	19	517 152	30,6 %	27 219	8 315
3	3	82	12	182 846	14,6 %	15 237	2 222
3	4	763	132	1 725 852	17,3 %	13 075	2 263
5	0	12	4	303 663	32,5 %	75 916	24 664
5	1	12	8	126 814	64,3 %	15 852	10 200
5	2	10	-		0,0 %	-	-
5	3	11	4	8 998	38,0 %	2 250	855
5	4	239	51	1 383 030	21,3 %	27 118	5 789
6	0	57	29	486 935	50,9 %	16 791	8 554
6	1	68	21	58 955	30,9 %	2 807	868
6	2	57	14	307 563	24,7 %	21 969	5 416
6	3	66	18	821 205	27,3 %	45 623	12 436
6	4	895	196	3 937 850	21,9 %	20 091	4 399
7	0	7	1	289 245	13,3 %	289 245	38 571
7	1	7	2	-	29,3 %	-	-
7	2	9	1	-	11,7 %	-	-
7	3	9	3	53 751	32,4 %	17 917	5 814
7	4	87	7	-	8,1 %	-	-
9	0	320	110	481 150	34,3 %	4 374	1 502
9	1	342	125	588 172	36,5 %	4 705	1 718
9	2	440	170	2 212 900	38,6 %	13 017	5 028
9	3	444	133	1 548 812	29,9 %	11 645	3 486
9	4	4 263	754	11 941 355	17,7 %	15 837	2 801

The mode

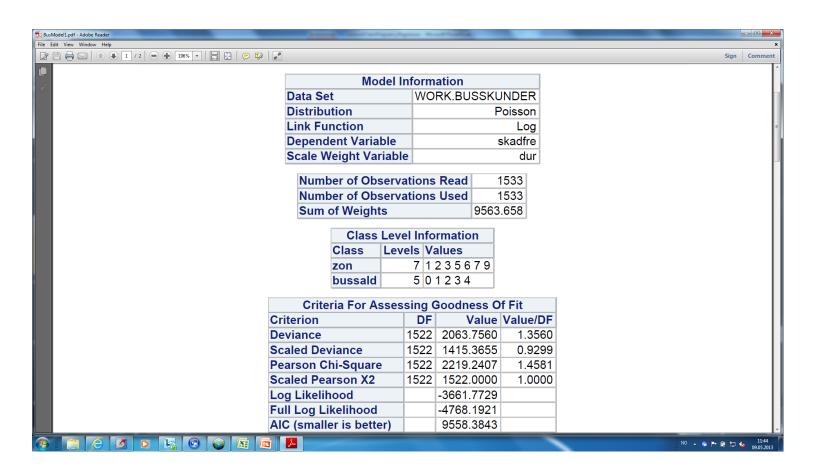
An example

Why regression

Repetition of GLM

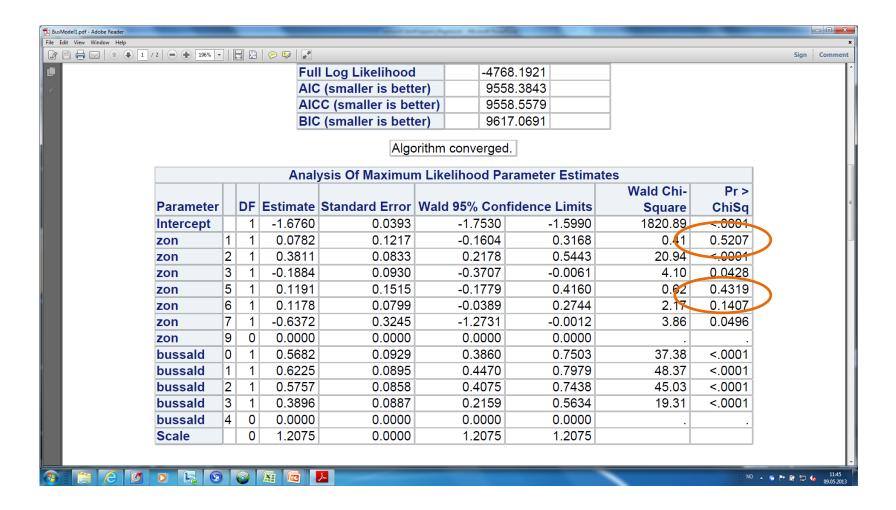
min pp	-
maxpp	38 571
median pp	2 263
min cf	0,0 %
maxcf	72,6 %
median cf	28,3 %

Then a model is fitted with some software (sas below)



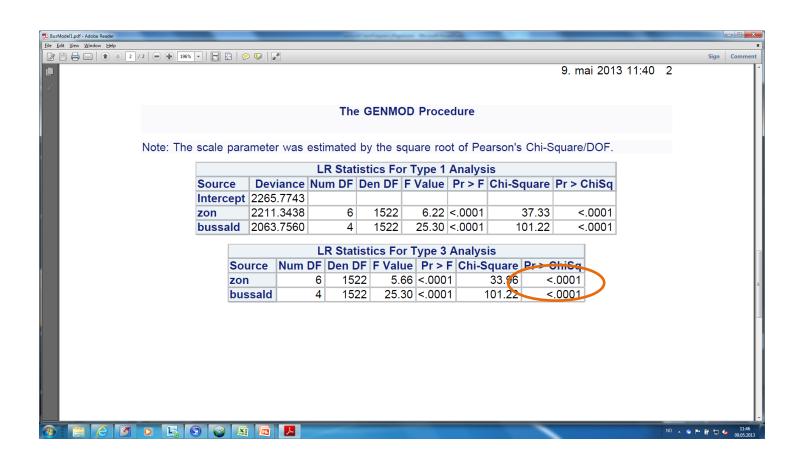
The fair price The model An example Why regression? Repetition of GLM

Zon needs some re-grouping



The fair price The model An example Why regression? Repetition of GLM

Zon and bus age are both significant



Model and actual frequencies are compared

The fair price

The mode

An example

Why regression

Repetition of GLM

- •In zon 4 (marked as 9 in the tables) the fit is ok
- •There is much more data in this zon than in the others
- •We may try to re-group zon, into 2,3,7 and other

parameter	level 1		estimate
	level i		
Intercept			0,19
zon		1	1,08
zon		2	1,46
zon		3	0,83
zon		5	1,13
zon		6	1,12
zon		7	0,53
zon		9	1,00
bussald		0	1,77
bussald		1	1,86
bussald		2	1,78
bussald		3	1,48
bussald		4	1,00
Scale			3,35

	model								
	zon		1	2	3	5	6	7	9
bus age		0	35,7 %	48,3 %	27,4 %	37,2 %	37,2 %	17,5 %	33,0 %
		1	37,7 %	51,0 %	28,9 %	39,3 %	39,2 %	18,4 %	34,9 %
		2	36,0 %	48,7 %	27,6 %	37,5 %	37,4 %	17,6 %	
		3	29,9 %	40,4 %	22,9 %	31,1 %	31,1 %	14,6 %	27,6 %
		4	20,2 %	27,4 %	15,5 %	21,1 %	21,1 %	9,9 %	18,7 %
	actual								
	zon		1	2	3	5	6	7	9
bus age		0	72,6 %	28,0 %	16,2 %	32,5 %	50,9 %	13,3 %	34,3 %
		1	27,0 %	50,8 %	28,0 %	64,3 %	30,9 %	29,3 %	
		2	32,1 %	27,1 %	30,6 %	0,0 %	24,7 %	11,7 %	38,6 %
		3	28,3 %	37,5 %	14,6 %	38,0 %	27,3 %	32,4 %	
		4	18,5 %	32,7 %	17,3 %	21,3 %	21,9 %	8,1 %	

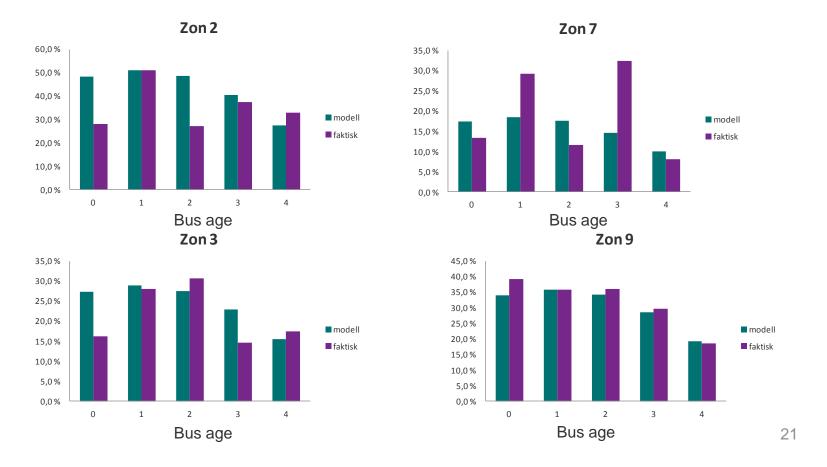
Model 2: zon regrouped

The model

An example

Repetition of GLM

- •Zon 9 (4,1,5,6) still has the best fit
- •The other are better but are they good enough?
- •We try to regroup bus age as well, into 0-1, 2-3 and 4.



Model 3: zon and bus age regrouped

The fall price

The model

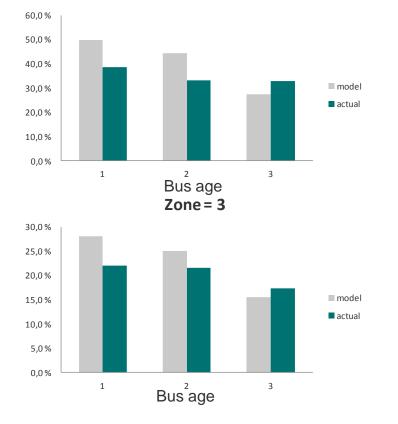
An example

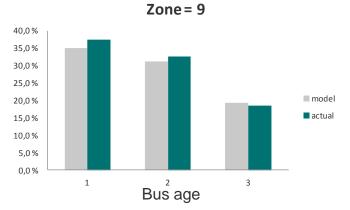
Deposition of CLM

- •Zon 9 (4,1,5,6) still has the best fit
- •The other are still better but are they good enough?
- •May be there is not enough information in this model
- May be additional information is needed

Zone = 2

•The final attempt for now is to skip zon and rely solely on bus age





Model 4: skip zon from the model (only bus age)

The fair price

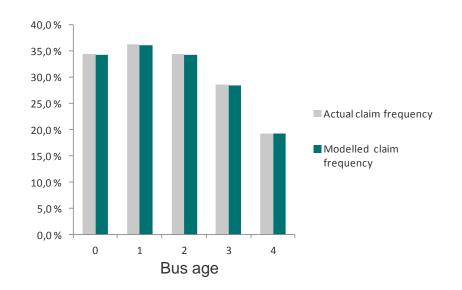
The model

An example

Why regression?

Repetition of GLM

- •From the graph it is seen that the fit is acceptable
- •Hypothesis 1: There does not seem to be enough information in the data set to provide reliable estimates for zon
- •Hypothesis 2: there is another source of information, possibly interacting with zon, that needs to be taken into account if zon is to be included in the model



Intercept		0,19
bussald	0	1,78
bussald	1	1,88
bussald	2	1,78
bussald	3	1,48
bussald	4	1,00

The fair price

The model

An example

Why regression?

Limitation of the multiplicative model

- The variables in the multiplicative model are assumed to work independent of one another
- This may not be the case
- Example:
 - Auto model, Poisson regression with age and gender as explanatory variables
 - Young males drive differently (worse) than young females
 - There is a dependency between age and gender
- This is an example of an interaction between two variables
- Technically the issue can be solved by forming a new rating factor called age/gender with values
 - Young males, young females, older males, older females etc

The fair price

The model

An example

Why regression?

Why is a regression model needed?

- There is not enough data to price policies individually
- What is actually happening in a regression model?
 - Regression coefficients measure the effect ceteris paribus, i.e. when all other variables are held constant
 - Hence, the effect of a variable can be quantified controlling for the other variables
- Why take the trouble of using a regression model?
- Why not price the policies one factor at a time?

Claim frequencies, lorry data from Länsförsäkringer (Swedish mutual)

The fair price

The model

An example

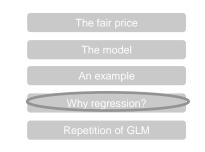
Why regression?

Repetition of GLM

	vehicle age		
annual milage	new	old	total
low	3,3 %	2,5 %	2,6 %
high	6,7 %	4,9 %	6,1 %
total	5,1 %	2,8 %	

- •"One factor at a time" gives 6.1%/2.6% = 2.3 as the mileage relativity
- •But for each Vehicle age, the effect is close to 2.0
- •"One factor at a time" obviously overestimates the relativity why?

Claim frequencies, lorry data from Länsförsäkringer (Swedish mutual)



	vehicle age	
annual milage	new	old
low	47 039	190 513
high	56 455	28 612

- •New vehicles have 45% of their duration in low mileage, while old vehicles have 87%
- •So, the old vehicles have lower claim frequencies partly due to less exposure to risk
- This is quantified in the regression model through the mileage factor
- Conclusion: 2.3 is right for High/Low mileage if it is the only factor
- •If you have both factors, 2.0 is the right relativity

Example: car insurance

Non parametric

Log-normal, Gamma

The Pareto

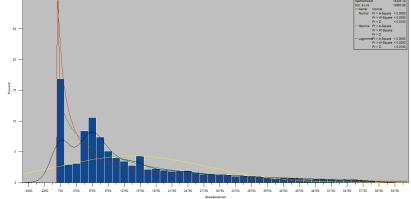
Extreme value

 Hull coverage (i.e., damages on own vehicle in a collision or other sudden and unforeseen damage)

Time period for parameter estimation: 2 years

- Covariates:
 - Driving length
 - Car age
 - Region of car owner
 - Tariff class
 - Bonus of insured vehicle

120 000 vehicles in the analysis



Non parametric

Log-normal, Gamma

The Pareto

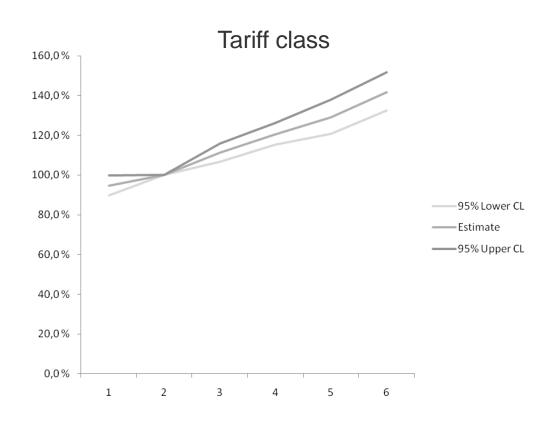
Searching

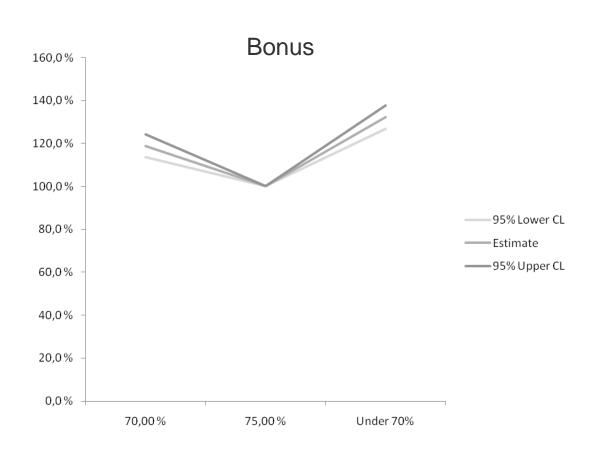
- Evaluation of model
- The model is evaluated with respect to fit, result, validation of model, type 3 analysis and QQ plot
- Fit: ordinary fit measures are evaluated
- Results: parameter estimates of the models are presented
- Validation of model: the data material is split in two, independent groups. The model is calibrated (i.e., estimated) on one half and validated on the other half
- Type 3 analysis of effects: Does the fit of the model improve significantly by including the specific variable?
- QQplot:

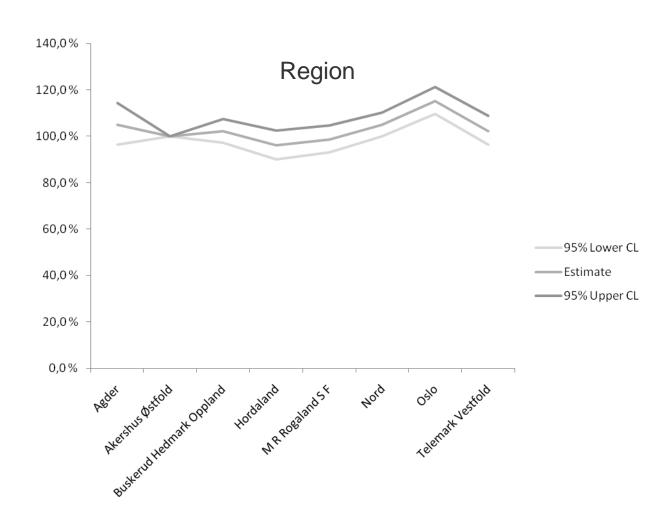
Fit interpretation

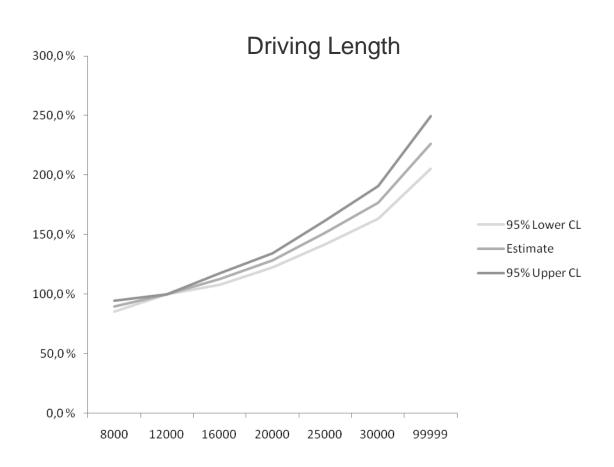
Criterion	Deg.fr.	Verdi	Value/DF
Deviance	2 365	2 337,1581	0,9882
Scaled Deviance	2 365	2 098,5720	0,8873
Pearson Chi-Square	2 365	2 633,8763	1,1137
Scaled Pearson X2	2 365	2 365,0000	1,0000
Log Likelihood	_	27 694,4040	_
Full Log Likelihood	_	- 5 078,4114	_
AIC (smaller is better)	_	10 204,8227	_
AICC (smaller is better)	_	10 205,3304	_
BIC (smaller is better)	_	10 343,5099	_

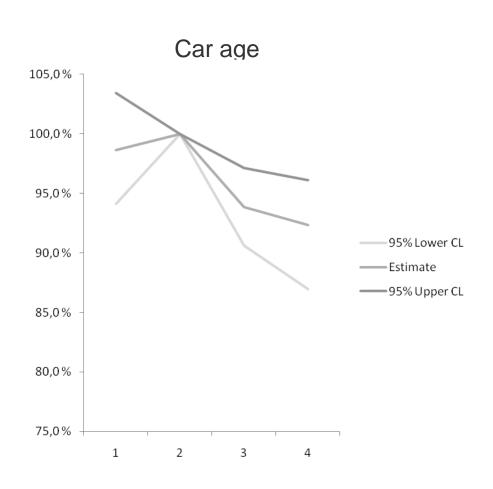
Variabler	Klasse	Estimat	Std. feil	Confidence	Confidence	Chi-square	Pr>Chi-sq
Intercept		- 2,0198	0,0266	- 2,0720	- 1,9676	5 757,82	<.0001
Tariff class	1	- 0,0553	0,0272	- 0,1086	- 0,0019	4,12	0,0423
Tariff class	2	0,0000	0,0000	0,0000	0,0000		
Tariff class	3	0,1060	0,0209	0,0651	0,1469	25,80	<.0001
Tariff class	4	0,1873	0,0234	0,1415	0,2331	64,14	<.0001
Tariff class	5	0,2547	0,0342	0,1877	0,3216	55,58	<.0001
Tariff class	6	0,3491	0,0349	0,2807	0,4174	100,23	<.0001
Bonus	70,00 %	0,1724	0,0223	0,1287	0,2162	59,77	<.0001
Bonus	75,00 %	0,0000	0,0000	0,0000	0,0000		
Bonus	Under 70%	0,2789	0,0210	0,2377	0,3201	176,04	<.0001
Region	Agder	0,0488	0,0432	- 0,0359	0,1334	1,27	0,2589
Region	Akershus Østfold	0,0000	0,0000	0,0000	0,0000		
Region	Buskerud Hedmark Opplan	0,0213	0,0254	- 0,0284	0,0711	0,71	0,4007
Region	Hordaland	- 0,0393	0,0327	- 0,1033	0,0247	1,45	0,2293
Region	M R Rogaland S F	- 0,0131	0,0302	- 0,0723	0,0461	0,19	0,6644
Region	Nord	0,0487	0,0251	- 0,0006	0,0979	3,74	0,053
Region	Oslo	0,1424	0,0259	0,0917	0,1931	30,33	<.0001
Region	Telemark Vestfold	0,0230	0,0312	- 0,0380	0,0841	0,55	0,4596
Driving Length	8000	- 0,1076	0,0252	- 0,1570	- 0,0583	18,27	<.0001
Driving Length	12000	0,0000	0,0000	0,0000	0,0000		
Driving Length	16000	0,1181	0,0214	0,0761	0,1601	30,41	<.0001
Driving Length	20000	0,2487	0,0237	0,2022	0,2951	110,08	<.0001
Driving Length	25000	0,4166	0,0336	0,3508	0,4824	153,86	<.0001
Driving Length	30000	0,5687	0,0398	0,4906	0,6467	204,04	<.0001
Driving Length	99999	0,8168	0,0500	0,7188	0,9149	266,54	<.0001
Car age	1	- 0,0136	0,0240	- 0,0607	0,0335	0,32	0,5715
Car age	2	0,0000	0,0000	0,0000	0,0000		
Car age	3	- 0,0638	0,0177	- 0,0986	- 0,0290	12,94	0,0003
Car age	4	- 0,0800	0,0386	- 0,1400	- 0,0400	9,38	0,0022











Validation

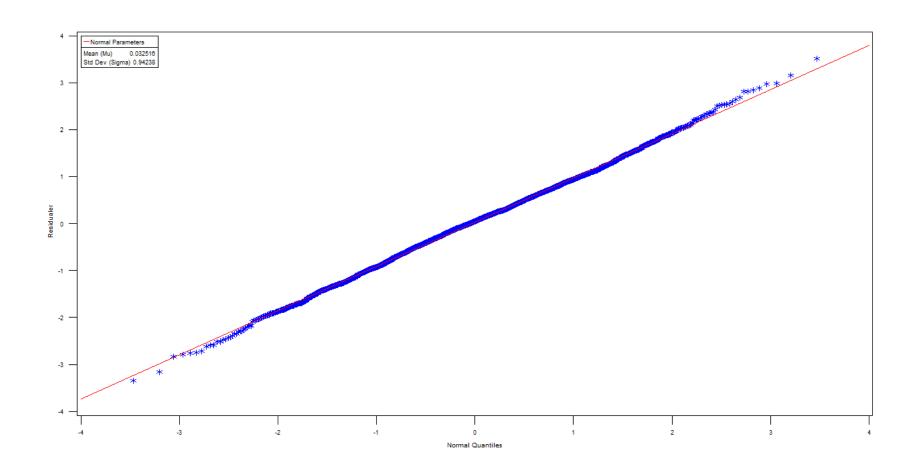
Variables	Class	Model	Portfolio	Diff.
Tariff class	Total	19 332	18 284	5,73
Tariff class	1	2 360	2 138	10,37
Tariff class	2	5 059	4 921	2,81
Tariff class	3	5 586	5 426	2,95
Tariff class	4	3 686	3 442	7,08
Tariff class	5	1 367	1 227	11,38
Tariff class	6	1 274	1 130	12,77
Bonus	Total	19 332	18 284	5,73
Bonus	70,00 %	3 103	2 851	8,83
Bonus	75,00 %	12 696	12 116	4,79
Bonus	Under 70%	3 533	3 317	6,53
Region	Total	19 332	18 284	5,73
Region	Agder	805	713	12,87
Region	Akershus Østfold	4 356	4 335	0,47
Region	Buskerud Hedmark Oppland	3 078	2 866	7,41
Region	Hordaland	1 497	1 432	4,53
Region	MR Rogaland SF	1 839	1 672	9,99
Region	Nord	3 163	2 920	8,33
Region	Oslo	2 917	2 773	5,21
Region	Telemark Vestfold	1 677	1 573	6,62
Driving Length	Total	19 332	18 284	5,73
Driving Length	8000	2 793	2 752	1,48
Driving Length	12000	5 496	5 350	2,73
Driving Length	16000	4 642	4 480	3,62
Driving Length	20000	3 427	3 247	5,54
Driving Length	25000	1 376	1 193	15,37
Driving Length	30000	995	813	22,37
Driving Length	99999	603	449	34,33
Car age	Total	19 332	18 284	5,73
Car age	<= 5 år	2 710	2 386	13,59
Car age	5-10år	9 255	9 052	2,24
Car age	10-15år	6 299	6 032	4,43
Car age	>15 år	1 068	814	31,17

Type 3 analysis

Type 3 analysis of effects: Does the fit of the model improve significantly by including the specific variable?

Source	Num DF	Den DF	F Value	Pr > F	Chi-square	Pr>Chi-sq	Method
Tariff class	5	2 365	38,43	<.0001	192,17	<.0001	LR
Bonus	2	2 365	97,09	<.0001	194,18	<.0001	LR
Region	7	2 365	6,35	<.0001	44,48	<.0001	LR
Driving Length	6	2 365	97,51	<.0001	585,08	<.0001	LR
Car age	3	2 365	9,23	<.0001	27,69	<.0001	LR

Type 3 analysis



Some repetition of generalized

Repetition of GLN

Exponential dispersion Models (EDMs)

•Frequency function f_{Yi} (either density or probability function)

linear models (GLMs)

$$f_{Y_i}(y_i; \theta_i, \varphi) = \exp\left\{\frac{y_i \theta_i - b(\theta_i)}{\varphi/w_i} + c(y_i, \varphi, w_i)\right\}$$

For yi in the support, else $f_{Yi}=0$.

- •c() is a function not depending on θ_i
- $\varphi > 0, w_i > 0 \text{ or } w_i \ge 0$
- $b(\theta_i)$ twice differentiable function
- b' has an inverse
- •The set of possible θ_i is assumed to be open

The mode

An examp

Why regression

Repetition of GLM

Claim frequency

- •Claim frequency Y_i=X_i/T_i where T_i is duration
- •Number of claims assumed Poisson with $E(X_i) = T_i \mu_i$

$$f_{Y_i}(y_i; \theta_i, \varphi) = P(Y_i = y_i) = P(X_i = T_i y_i) = e^{-T_i \mu_i} \frac{(T_i \mu_i)^{T_i y_i}}{(T_i y_i)!}$$

$$= \exp\{T_i[y_i \log(\mu_i) - \mu_i]\} + c\}$$

- •Let $\theta_i = \log(\mu_i)$
- Then

$$f_{Y_i}(y_i;\theta_i) = \exp\{T_i(y_i\theta_i - e^{\theta_i}) + c\}$$

•EDM with $\varphi = 1$, $b(\theta_i) = e^{\theta_i} - \infty < \theta_i < \infty$

The mode

An example

Repetition of GLM

Note that an EDM...

- ...is not a parametric family of distributions (like Normal, Poisson)
- ...is rather a class of different such families
- The function b() speficies which family we have
- The idea is to derive general results for all families within the class – and use for all

The fair price
The model
An example
Why regression?

Repetition of GLM

Expectation and variance

 By using cumulant/moment-generating functions, it can be shown (see McCullagh and Nelder (1989)) that for an EDM

$$\mu_i \equiv E(Y_i) = b'(\theta_i)$$
$$var(Y_i) = b''(\theta_i)\varphi/T_i$$

This is why b() is called the *cumulant* function

The mode

An example

Why regression

Repetition of GLM

The variance function

- Recall that $\theta_i = b^{i-1}(\mu_i)$ is assumed to exist
- Hence $b''(\theta_i) = b''(b^{-1}(\mu_i))$
- The variance function is defined by $v(\mu_i) = b''(b'^{-1}(\mu_i))$
- Hence $var(Y_i) = \varphi \frac{v(\mu_i)}{w_i}$

The mode

An example

Why regression?

Repetition of GLM

Common variance functions

Distribution Normal Poisson Gamma Binomial
$$v(\mu_i)$$
 1 μ μ^2 $\mu(1-\mu)$

Note: Gamma EDM has std deviation proportional to $\,\mu$, which is much more realistic than constant (Normal)

Theorem

The fair price
The model
An example
Why regression?
Repetition of GLM

Within the EDM class, a family of probability distributions is uniquely characterized by its variance function

Proof by professor Bent Jørgensen, Odense

The fair price

The model

An example

Why regression?

Scale invariance

- Let c>0
- If cY belongs to same distribution family as Y, then distribution is scale invariant
- Example: claim cost should follow the same distribution in NOK, SEK or EURO

The fair price
The model
An example
Why regression?

Tweedie Models

 If an EDM is scale invariant then it has variance function

$$v(\mu_i) = \mu^p$$

- This is also proved by Jørgensen
- This defines the Tweedie subclass of GLMs
- In pricing, such models can be useful

The mode

An example

Why regression

Repetition of GLM

Overview of Tweedie Models

	Туре	Name	Key ratio
p<0	Continuous	-	-
p=0	Continuous	Normal	-
0 <p<1< td=""><td>Non-existing</td><td>-</td><td>-</td></p<1<>	Non-existing	-	-
p=1	Discrete	Poisson	Claim frequency
1 <p<2< td=""><td>Mixed, non-negative</td><td>Compound Po</td><td>Pure premium</td></p<2<>	Mixed, non-negative	Compound Po	Pure premium
p=2	Continuous, positive	Gamma	Claim severity
2 <p<3< td=""><td>Continuous, positive</td><td>-</td><td>(claim severity)</td></p<3<>	Continuous, positive	-	(claim severity)
p=3	Continuous, positive	Inverse Norma	(claim severity)
p>3	Continuous, positive	-	(claim severity)

The model

An example

Why regression

Repetition of GLM

Link functions

A general link function g()

$$g(\mu_i) = \sum_{j=1}^r x_{ij} \beta_j, i = 1,...,n$$

- Linear regression: $g(\mu_i) = \mu_i$ identity link
- Multiplicative model: $g(\mu_i) = \log \mu_i$ log link
- Logistic regression: $g(\mu_i) = \log(\frac{\mu_i}{1-\mu_i})$ logit link

Summary

The fair price

The mode

An examp

Repetition of GLM

Generalized linear models:

- •Yi follows an EDM: $var(Y_i) = \varphi v(\mu_i) / w_i$
- •Mean satisfies $g(\mu_i) = \sum_j x_{ij} \beta_j$

Multiplicative Tweedie models:

- •Yi Tweedie EDM: $var(Y_i) = \varphi \mu_i^p / w_i, p \ge 1$
- •Mean satisfies $\log(\mu_i) = \sum_j x_{ij} \beta_j$