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Key ratios — claim frequency

*The graph shows claim frequency for all covers for motor insurance
*Notice seasonal variations, due to changing weather condition throughout the years

Claim frequency all covers motor
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The model (Section 8.4)

*The idea is to attribute variation in ({ to variations in a set of observable
variables xi,...,xv. Poisson regressjon makes use of relationships of the form

log( 1) =b, +bx, +...+b,X, (1.12)

‘Why  log(x) andnot u itself?

*The expected number of claims is non-negative, where as the predictor on the
right of (1.12) can be anything on the real line

It makes more sense to transform &  so that the left and right side of (1.12)
are more in line with each other.

Historical data are of the following form

‘nt T1 Xi11...X1x
‘n2 T2 X21...X2x
‘'n Tn Xnl...Xnv

Claims exposure covariates

*The coefficients bo,...,bv are usually determined by likelihood estimation



Introduction to reserving

Non-life insurance from a financial perspective:
for a premium an insurance company commits itself to pay a sum if an event has occured

Contract period

retrospective prospective

Policy holder
signs up for an . . .
SI9 b During the duration of the policy, some of
insurance A )

the premium is earned, some is unearned

. . ium i 2 Premium reserve, prospective

Policy holder How much premium is earned- prosp

* How much premium is unearned?

ays premium. . .
pays p * Is the unearned premium sufficient?

Insurance company
starts to earn

premium
During the duration of the policy, claims might or might not occur: Clai
* How do we measure the number and size of unknown claims? aims
* How do we know if the reserves on known claims are sufficient? reserve, .
retrospective
Accident Reporting Claims Claims close Claims Claims Claims close
date date payments reopening payments



Payment pattern

Imagine you want to build a

reserve risk model

There are three effects that influence the best estimat
and the uncertainty:

*RBNS movements

*Reporting pattern

Up to recently the industry has based model on

payment triangles:

Year
2008

Period +0
7 008 148

Period +1
25 877 313

Period + 2
31 723 256

Period + 3
32 718 766

Period + 4
33 019 648

2009

30 105 220

65 758 082

76 744 305

79 560 296

2010

89 181 138

171 787 015

201 380 709

2011

109 818 684

198 015 728

2012

97 250 541

What will the future payments amount to?

?



Overview

Duration (in
Importantissues Models treated Curriculum lectures)
Whatis driving the result of a non-
life insurance company? insurance economics models |Lecture notes 0,5
Poisson, Compound Poisson
How is claim frequency modelled? |and Poisson regression Section 8.2-4 EB 15
How can claims reserving be Chain ladder, Bernhuetter
modelled? Ferguson, Cape Cod, Note by Patrick Dahl 2
Gamma distribution, log-
How can claim size be modelled? |normal distribution Chapter 9 EB 2
Generalized Linear models,
How are insurance policies estimation, testing and
priced? modelling. CRM models. Chapter 10 EB 2
Credibility theory Buhlmann Straub Chapter 10 EB 1
Reinsurance Chapter 10 EB 1
Solvency Chapter 10 EB 1
Repetition 1




The ultimate goal for calculating
the pure premium Is pricing

Pure premium = Claim frequency x claim severity

: .. total claim amount . number of claims
Claim severity = - Claim frequency = -
number of claims number of policy years




Claim severity modelling is about
describing the variation in claim size

The graph below shows how claim size varies for fire claims for houses
The graph shows data up to the 88th percentile

How do we handle «typical claims» ? (claims that occur regurlarly)
How do we handle large claims? (claims that occur rarely)

Claim size fire
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Claim severity modelling Iis about
describing the variation in claim size

The graph below shows how claim size varies for water claims for houses
The graph shows data up to the 97th percentile

The shape of fire claims and water claims seem to be quite different
What does this suggest about the drivers of fire claims and water claims?
Any implications for pricing?

Claim size water
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The ultimate goal for calculating the
pure premium Is pricing

« Claim size modelling can be parametric through families of distributions such as
the Gamma, log-normal or Pareto with parameters tuned to historical data

« Claim size modelling can also be non-parametric where each claim zi of the
past is assigned a probability 1/n of re-appearing in the future

 Anew claim is then envisaged as a random variable Z for which

Pr(i:zi)zl, i=1,..,n
n

« This is an entirely proper probability distribution
« Itis known as the empirical distribution and will be useful in Section 9.5.

Size of claim

Client behavour can affect outcome Bad luck
* Burglar alarm  Electric failure
 Tidy ship (maintenance etc) « Catastrophes

Where do we draw :
» Garage for the car * House fires

the line?

Here we sample from the

. S Here we use special
empirical distribution

Techniques (section 9.5)
10



80 45 000
81 45 301
82 48 260
83 50 000
84 52 580
85 56 126
86 60 000
87 64 219
88 69 571
89 74 604
90 80 000
91 85 998
92 95 258
93 100 000
94 112 767
95 134 994
96 159 646
97 200 329
98 286 373
99 500 000
99,1 602 717
99,2 662 378
99,3 810 787
99,4 940 886
99,5 1 386 840
99,6 2133580
99,7 2999 062
99,8 3612031
99,9 4600 301
100 8 876 390

Example

120

100

80

60

40 -

20 -

(e}

Empirical
distribution

* The threshold may be set for example at the 99th

percentile, i.e., 500 000 NOK for this product

* The threshold is sometimes called the large
claims threshold

r

-1 000 000

T T T T 1

1000 000 2000 000 3000 000 4000 000 5000 000
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Scale families of distributions

All sensible parametric models for claim size are of the form
Z = pZ,, where >0 isa parameter

and Zo is a standardized random variable correspondingto S =1.

This proportionality os inherited by expectations, standard deviations and

percentiles; i.e. if &,,0, and q,, are expectation, standard devation and
g -percentile for Zo, then the same quantities for Z are

&= P&, o=poy,and q, = /q,,
The parameter £ can represent for example the exchange rate.
The effect of passing from one currency to another does not change the shape
of the density function (if the condition above is satisfied)
In statistics £ is known as a parameter of scale
Assume the log-normal model Z =exp(@+o¢e) where @ and o are
parameters and € ~ N(0,1). Then E(Z) =exp(8 + (1/2)c?) . Assume we
rephrase the model as

Z =&Z,, where Z, =exp(—(1/2)c’ + og)and & = exp(0 + (1/ 2)c?)
Then
EZ, = E{exp(~(1/2)c* + c&)} = E{exp(-(1/ 2)c* -0 + 0 + ce)}
=exp(—(1/2)o* — 0)E{exp(6 + oe)} =exp(-(1/ 2)o* -0+ 0+ (1/ 2)0°) =1,
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Fitting a scale family

Models for scale families satisfy
Pr(Z<z)=Pr(Z,<z/p) or F(z|p)=F,(2/p)

where F(z|f) and F,(z/f) are the distribution functions of Z and Zo.
Differentiating with respect to z yields the family of density functions

f(Zlﬂ)=%fo(é), z>0 where fo(ﬂﬂh%

The standard way of fitting such models is through likelihood estimation. If
z1,...,zn are the historical claims, the criterion becomes

(B, 1) =-nlog(5) + . log{f,(z,/ A),

which is to be maximized with respect to £ and other parameters.

A useful extension covers situations with censoring.

Perhaps the situation where the actual loss is only given as some lower bound

b is most frequent.

Example:

« travel insurance. Expenses by loss of tickets (travel documents) and

passport are covered up to 10 000 NOK if the loss is not covered by any
of the other clauses.

13



S Nonpaametic g

Fitting a scale family

« The chance of a claim Z exceeding b is 1-F,(b/ ), and for nb such events
with lower bounds b1,...,bnb the analogous joint probability becomes

{1_ I:0 (b1 /:B)}X---X{l_ |:0 (bnb /:B)}
Take the logarithm of this product and add it to the log likelihood of the fully
observed claims z1,...,zn. The criterion then becomes

(B 1) = -nlog(8) + 3 log{1y(2, | A+ Y. og{fu(2,/ A}

complete information censoring to the right

14



Shifted distributions

The distribution of a claim may start at some treshold b instead of the origin.
Obvious examples are deductibles and re-insurance contracts.

Models can be constructed by adding b to variables starting at the origin; i.e.
Z=b+pZ, where Zo is a standardized variable as before. Now

Z—b
Pr(Z<z)=Pr(b+pZ,<z)=Pr(Z,<—)
and differentiation with respect to z yields

f(zw):%fo(%b), 2>b

which is the density function of random variables with b as a lower limit.

15
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Skewness as simple description of shape

A major issue with claim size modelling is asymmetry and the right tail of the
distribution. A simple summary is the coefficient of skewness

3

c=skew(Z) = L where v® = E(Z - &)°
(o2

3

The numerator is the third order moment. Skewness should not depend on
currency and doesn’t since

_ £\3 _ 3 £33
SkeW(Z) — E(Z 35) — E(ﬂzo 153‘50) — E(ZO 3‘50) — SkeW(ZO)
o (Bo,) Oy
Skewness is often used as a simplified measure of%hape

The standard estimate of the skewness coefficient from observations
Z1,...,Z2n IS

oY

VvV
—— where V= —7
g s® g n— 3+2/nz( 2

16
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Non-parametric estimation

«  The random variable 7 that attaches probabilities 1/n to all claims zi of the
past is a possible model for future claims.
« Expectation, standard deviation, skewness and percentiles are all closely
related to the ordinary sample versions. For example
A n ~ n 1
E(Z)=)Pr(Z=2)z,=) ~z,=1.
i—1 i-1 N

e Furthermore,
n

var(Z)=E(Z —E(2))? = Z Pr(Z =z,)(z, - 7)* = Z%(zi —7)?

:sd(ﬁ)z,/nT_ls, s=Jﬁ_§nj(zi—7)2

* Third order moment and skewness becomes

A A_ln _ )3 7\ — ‘;3(2)
v3(Z)_n§(zI Z)° and skew(2) T

« Skewness tends to be small
* No simulated claim can be largeer than what has been observed in the past
« These drawbacks imply underestimation of risk 17
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Parcent

Non parametric

< Log-normal, Gamma 2
H l I I I The Pareto

Extreme value

-5Z50 -ZZE0 T80 3750 6750 5750 12750 15750 18750 21750 24750 2TTED 30750 33TE0 36TE0 39750 42750 45750 48TED S1T50

Skadekostnad

19



The log-normal family—

A convenient definition of the log- normal model in the present context is

as Z=&, Wwhere Z,=e 7 '#*" for £~N(0])
Mean, standard deviation and skewness are

E(Z)=¢, sdZ)=¢Ve ™, skew(Z)= (e +2)Ve

see section 2.4,
Parameter estimation is usually carried out by noting that logarithms are
Gaussian. Thus

=log(Z) = log(&) -1/ 20 + o¢

and when the original log-normal observations zi,...,zn are transformed to
Gaussian ones through yi=log(z1),...,yn=log(zn) with sample mean and
variance Y and S, , the estimates of & and o become

log(d)-1/262 =y, 6=s, or E=e"*Y G=s..

20



Log-normal sampling (Algoritm 2.5) ‘=

1. Input: £,o0
2. Draw U~ ~uniform and & « ®*(U")
3. Return 7 _ @é+os

Lognormal ksi = -0.05 and sigma =1
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The lognormal family =

Different choice of ksi and sigma
The shape depends heavily on sigma and is highly skewed when sigma is not
too close to zero

Lognormal ksi = 0.005 and sigma = 0.05
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1,14
1,15

Bin 29



The Gamma family

The Gamma family is an important family for which the density function is
/ a
F(a)

It was defined in Section2.5as Z =&G where G ~ Gamma(a) is the
standard Gamma with mean one and shape alpha. The density of the standard
Gamma simplifies to

o
(x) = T

Mean, standard deviation and skewness are

te~#/s x> 0,whereT(a) = Ix“ “le*dx

x“ e, x>0,wherel'(a) = _[ X* e~ dx

E(Z)=¢, sd(Z)=dVa, skew(Z)=2/Va

and there is a convolution property. Suppose Gi,...,Gn are independent with
G, ~ Gamma(g;). Then

G ~Gamma(a, +...+a,) if G= GASRERRAC

a +.+a,

23
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Example: car insurance

Hull coverage (i.e., damages on own vehicle In
a collision or other sudden and unforeseen
damage)

Time period for parameter estlmatlon 2 years

P> WeSquare <0009

Covariates:

Fr> Wesauare <0005
nnnnnnn

— Driving length

— Car age

— Region of car owner
— Tariff class
— Bonus of insured vehicle -

2 models are tested and compared — Gamma
and lognormal

25




. <
Comparisons of Gamma and lognormal

The models are compared with respect to fit,
results, validation of model, type 3 analysis and QQ
plots

Fit: ordinary fit measures are compared

Results: parameter estimates of the models are
compared

Validation of model: the data material is split in two,
Independent groups. The model is calibrated (i.e.,
estimated) on one half and validated on the other
half

Type 3 analysis of effects: Does the fit of the model
Improve significantly by including the specific
variable?

26



Comparison of Gamma and
lognormal - fit

Gamma fit Lognormal fit
Criterion Deg. fr. Verdi Value/DF Criterion Value/DF
Deviance 546| 12 926,1628 23,6743 Deviance 2814| 1195232128 42,4745
Scaled Scaled
Deviance 546 669,2070 1,2257 Deviance 2814 2 838,0000 1,0085
Pearson Chi- Pearson Chi-
Square 546 7 390,8283 13,5363 Square 2814]| 119523,2128 42,4745
Scaled Scaled
Pearson X2 546 382,6344 0,7008 Pearson X2 2814 2 838,0000 1,0085
Log Likelihood _| -5278,7043 _ Log Likelihood _| -7145,8679 _
Full Log Full Log
Likelihood _ - 5278,7043 _ Likelihood _| -7145,8679 _
AIC (smaller is AIC (smaller is
better) _ 10 595,4086 _ better) | 14 341,7357 _
AICC (smaller AICC (smaller
is better) _| 10596,8057 — is better) _| 14342,1980 _
BIC (smaller is BIC (smaller is
better) _ 10 677,7747 _ better) _| 14 490,5071 _

27



Comparison of Gamma < =
and lognormal — type 3

Gamma fit Lognormal fit

Chi-square Pr>Chi-sq Method Source . fr. Pr>Chi-sq Method
Tariff class 5 70,75 <.0001|LR Tariff class 5 51,75 <.0001(LR
Bonus 2 19,32 <.0001[LR Bonus 2 177,74 <.0001|LR
Region 7 20,15 0,0053|LR Region ’ 48,14 <.0001|LR
Car age 3 342,49 <.0001|LR Driving length 6 70,18 <.0001|LR
Car age 3 939,46 <.0001|LR




Residualer

ra

QQ plot Gamma model =

—MNormal Parameters

Mzan (Mu) 0.28208
Std Dev (Sigma)l.085355

3 2 P . ! : !

Normal Quantiles
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QQ plot log normal model =

4 —]
—MNormal Parameters
3l Paras s 4k *
Mean (Mu) 032 H#F
Std Dev {Sigmaj 635375 "
2
o —
5
=
E]
=1
3
o
-2 —
4 —
*
-4 K E -1 0 z 3 4

Normal Quantiles
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70000 -

60 000

50 000

40 000

30 000

20 000

10 000

Results tariff class

- 250,0 %

200,0 %

150,0 %

100,0 %

50,0 %

0,0%

Risk years

e Difference from reference,
gamma model

= Difference from reference,
lognormal model
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160 000 - - 120,0 %
Results bonus i
140 000 -
- 100,0 %
120000 -
- 80,0%
100 000 - Risk years
80000 - - 60,0% esmmDifference from reference,
gamma model
60000 - == Difference from reference,
- 40,0 % lognormal model
40000 -
- 20,0%
20000 -
0 T T 0,0 %

70,00 % 75,00 % Under 70%




60 000 - . - 140,0 %
Results regjon ’
50000 - - 120,0%
-~ 100,0 %
40 000 -
- 80,0%
30000 -
- 60,0 % Risk years
20000 -
- 400%  emmmmDifference from reference,
| gamma model
10 000 L 20,0%
= Difference from reference,
0 : : : . . . . 0,0 % lognormal model
bQ} Ko\b \ (\b \'b(\b 6(_)<< & Q"’\ \o\b
QTR O \
N ™S 'b&
Q}c’ 6(0% Q‘Q\ Q/{Q
= o8 N >
6\2\
Q}o
X




120000 -~

100 000

80 000

60 000

40 000

20000

Results car age

<=5years 5-10years 10-15
years

>15 years

- 120,0 %

100,0 %

80,0 %

60,0 %

40,0 %

20,0 %

0,0 %

Risk years

e Difference from reference,
gamma model

= Difference from reference,
lognormal model
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100,00 -

90,00
80,00
70,00
60,00
50,00
40,00
30,00
20,00
10,00

0,00

1

Validation car age

Total

<=5years

5-10years

10-15years

>15 years

70,00 +

60,00

50,00

40,00

30,00

20,00

10,00

0,00

Total

1

Validation tariff class

Difference Gamma

B Difference lognormal

36



S Log-normal, Gamma g

Conclusions so far

None of the models seem to be perfect

Lognormal behaves worst and can be
discarded

Can we do better?

We try Gamma once more, now exluding
the O claims (about 17% of the claims)

— Claims where the policy holder has no guilt
(other party Is to blame)

37



Comparison of Gamma

and lognormal - fit

Gamma without zero claims fit

Gamma fit
Criterion Deg. fr. Verdi Value/DF
Deviance 546 12 926,1628 23,6743
Scaled
Deviance 546 669,2070 1,2257
Pearson Chi-
Square 546 7 390,8283 13,5363
Scaled
Pearson X2 546 382,6344 0,7008
Log Likelihood _| -5278,7043 _
Full Log
Likelihood _| -5278,7043 _
AIC (smaller is
better) _ 10 595,4086 _
AICC (smaller
is better) _ 10 596,8057 _
BIC (smaller is
better) 10 677,7747

Criterion Deg. fr. Verdi Value/DF
Deviance 494 968,9122 1,9614
Scaled

Deviance 494 546,4377 1,1061
Pearson Chi-

Square 494 949,1305 1,9213
Scaled

Pearson X2 494 535,2814 1,0836
Log Likelihood | -5399,8298 _
Full Log

Likelihood | -5399,8298 _
AIC (smaller is

better) _ 10 837,6596 _
AICC (smaller

is better) _ 10 839,2043 _
BIC (smaller is

better) 10 918,1877
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Comparison of Gamma———
and lognormal — type 3

Gamma fit Gamma without zero claims fit

Chi-square Pr>Chi-sq Method Source Deg.fr. Chi-square Pr>Chi-sq Method
Tariff class 5 70,75 <.0001(LR BandCodel 5 101,22 <.0001(LR
Bonus 2 19,32 <.0001(LR CurrNCD_Cd 2 43,04 <.0001(LR
Region 7 20,15 0,0053|LR KundeFylkeNav
n 7 48,08 <.0001(LR
Car age 3 342,49 <.0001|LR
SidelVerdi6 3 70,76 <.0001|LR
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Residualer

ra

QQ plot Gamma

—MNormal Parameters

Mzan (Mu) 0.28208
Std Dev (Sigma)l.085355

-2 -z -1 ] 1 z 3

Normal Quantiles
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QQ plot Gamma model=

na g

without zero claims

41



70000 +

60 000

50 000

40000

30000

20000

10 000

Results tariff class

- 250,0%

200,0 %

150,0 %

100,0 %

50,0 %

0,0 %

[ Risk years

e Difference from reference,
gamma model

= Difference from reference,
Gamma model without zero
claims
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120000 -~
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70,007 Validation tariff class

60,00 -

50,00 -

40,00 -
Difference Gamma

30,00 - H Difference lognormal

20,00 A

10,00 -

0,00 -
12,00 + Total 1 2 3 4 5 6

Validation car age
40,00

10,00 - Validation tariff class
35,00

8,00 - 30,00 A

25,00 A

6,00 - Difference Gamma

20,00 A

- . i
4,00 15,00 - Dl.fference Gamma
without zeroes
10,00 -
2,00 A
5,00 -
0,00 T T T T

0,00 +
Total <=5 years 5-10years 10-15years >15 years Total 1 2 3 4 5 6
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