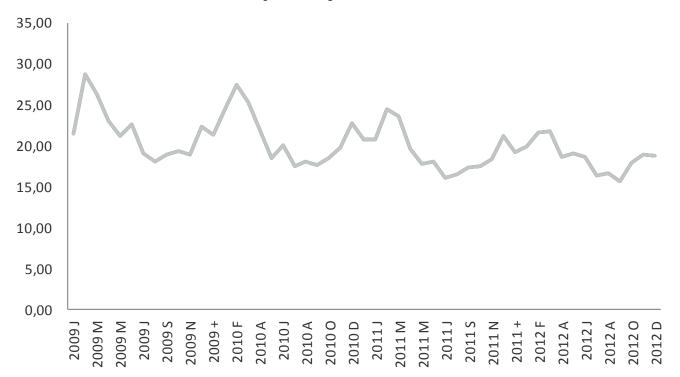
Non-life insurance mathematics

Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Key ratios – claim frequency

- •The graph shows claim frequency for all covers for motor insurance
- •Notice seasonal variations, due to changing weather condition throughout the years

Claim frequency all covers motor



The model (Section 8.4)

•The idea is to attribute variation in μ to variations in a set of observable variables $x_1,...,x_v$. Poisson regressjon makes use of relationships of the form

$$\log(\mu) = b_0 + b_1 x_1 + \dots + b_{\nu} x_{\nu} \tag{1.12}$$

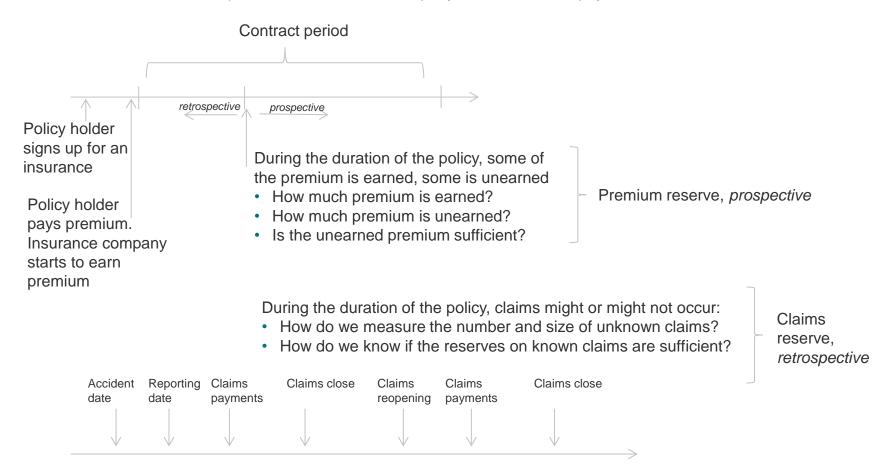
- •Why $\log(\mu)$ and not μ itself?
- •The expected number of claims is non-negative, where as the predictor on the right of (1.12) can be anything on the real line
- •It makes more sense to transform μ so that the left and right side of (1.12) are more in line with each other.
- Historical data are of the following form

•The coefficients b₀,...,b_v are usually determined by likelihood estimation

Introduction to reserving

Non-life insurance from a financial perspective:

for a premium an insurance company commits itself to pay a sum if an event has occured



Imagine you want to build a reserve risk model

There are three effects that influence the best estimat and the uncertainty:

- Payment pattern
- RBNS movements
- Reporting pattern

Up to recently the industry has based model on payment triangles:

Year	Period + 0	Period + 1	Period + 2	Period + 3	Period + 4
2008	7 008 148	25 877 313	31 723 256	32 718 766	33 019 648
2009	30 105 220	65 758 082	76 744 305	79 560 296	
2010	89 181 138	171 787 015	201 380 709		2
2011	109 818 684	198 015 728			•
2012	97 250 541				

What will the future payments amount to?

Overview

			Duration (in
Important issues	Models treated	Curriculum	lectures)
What is driving the result of a non-			
life insurance company?	insurance economics models	Lecture notes	0,5
	Poisson, Compound Poisson		
How is claim frequency modelled?	and Poisson regression	Section 8.2-4 EB	1,5
How can claims reserving be	Chain ladder, Bernhuetter		
modelled?	Ferguson, Cape Cod,	Note by Patrick Dahl	2
	Gamma distribution, log-		
How can claim size be modelled?	normal distribution	Chapter 9 EB	2
	Generalized Linear models,		
How are insurance policies	estimation, testing and		
priced?	modelling. CRM models.	Chapter 10 EB	2
Credibility theory	Buhlmann Straub	Chapter 10 EB	1
Reinsurance	_	Chapter 10 EB	1
Solvency		Chapter 10 EB	1
Repetition			1

The ultimate goal for calculating the pure premium is pricing

Pure premium = Claim frequency x claim severity

Claim severity =
$$\frac{total\ claim\ amount}{number\ of\ claims}$$

Claim frequency =
$$\frac{number\ of\ claims}{number\ of\ policy\ years}$$

Parametric and non parametric modelling (section 9.2 EB

The log-normal and Gamma families (section 9.3 EB)

The Pareto families (section 9.4 EB)

Extreme value methods (section 9.5 EB)

Searching for the model (section 9.6 EB)

Claim severity modelling is about describing the variation in claim size

Non parametric

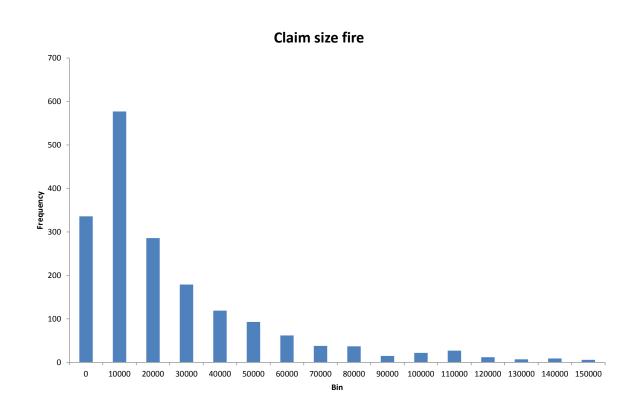
Log-normal, Gamma

The Pareto

Extreme value

Searching

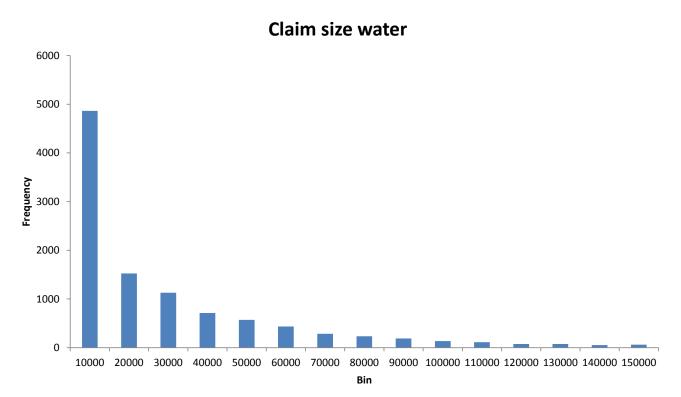
- The graph below shows how claim size varies for fire claims for houses
- The graph shows data up to the 88th percentile
- How do we handle «typical claims»? (claims that occur regurlarly)
- How do we handle large claims? (claims that occur rarely)



Claim severity modelling is about describing the variation in claim size

Non parametric
Log-normal, Gamma
The Pareto
Extreme value
Searching

- The graph below shows how claim size varies for water claims for houses
- The graph shows data up to the 97th percentile
- The shape of fire claims and water claims seem to be quite different
- What does this suggest about the drivers of fire claims and water claims?
- Any implications for pricing?



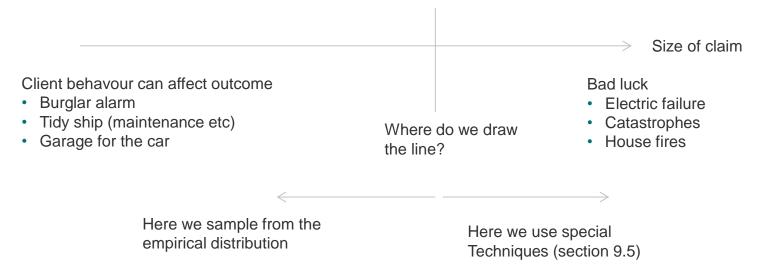
The ultimate goal for calculating the pure premium is pricing

Non parametric	?
Log-normal, Gamma	
The Pareto	
Extreme value	
Searching	

- Claim size modelling can be parametric through families of distributions such as the Gamma, log-normal or Pareto with parameters tuned to historical data
- Claim size modelling can also be non-parametric where each claim zi of the past is assigned a probability 1/n of re-appearing in the future
- A new claim is then envisaged as a random variable \hat{z} for which

$$Pr(\hat{Z} = z_i) = \frac{1}{n}, i = 1,...,n$$

- This is an entirely proper probability distribution
- It is known as the empirical distribution and will be useful in Section 9.5.



Example

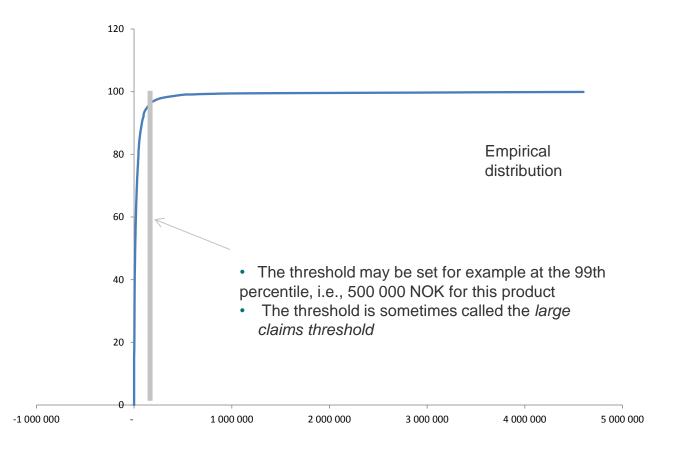
Non parametric

Log-normal, Gamma

The Pareto

Extreme value

80 81	45 000
81	
	45 301
82	48 260
83	50 000
84	52 580
85	56 126
86	60 000
87	64 219
88	69 571
89	74 604
90	80 000
91	85 998
92	95 258
93	100 000
94	112 767
95	134 994
96	159 646
97	200 329
98	286 373
99	500 000
99,1	602 717
99,2	662 378
99,3	810 787
99,4	940 886
99,5	1 386 840
99,6	2 133 580
99,7	2 999 062
99,8	3 612 031
99,9	4 600 301
100	8 876 390



Scale families of distributions

Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Socrabina

All sensible parametric models for claim size are of the form

$$Z = \beta Z_0$$
, where $\beta > 0$ is a parameter

- and Z_0 is a standardized random variable corresponding to $\beta = 1$.
- This proportionality os inherited by expectations, standard deviations and percentiles; i.e. if ξ_0 , σ_0 and $q_{0\varepsilon}$ are expectation, standard devation and ε -percentile for Z_0 , then the same quantities for Z are

$$\xi = \beta \xi_0$$
, $\sigma = \beta \sigma_0$ and $q_{\varepsilon} = \beta q_{0\varepsilon}$

- The parameter β can represent for example the exchange rate.
- The effect of passing from one currency to another does not change the shape of the density function (if the condition above is satisfied)
- In statistics β is known as a parameter of scale
- Assume the log-normal model $Z = \exp(\theta + \sigma \varepsilon)$ where θ and σ are parameters and $\varepsilon \sim N(0,1)$. Then $E(Z) = \exp(\theta + (1/2)\sigma^2)$. Assume we rephrase the model as

$$Z = \xi Z_0$$
, where $Z_0 = \exp(-(1/2)\sigma^2 + \sigma\varepsilon)$ and $\xi = \exp(\theta + (1/2)\sigma^2)$

Then

$$EZ_0 = E\{\exp(-(1/2)\sigma^2 + \sigma\varepsilon)\} = E\{\exp(-(1/2)\sigma^2 - \theta + \theta + \sigma\varepsilon)\}$$
$$= \exp(-(1/2)\sigma^2 - \theta)E\{\exp(\theta + \sigma\varepsilon)\} = \exp(-(1/2)\sigma^2 - \theta + \theta + (1/2)\sigma^2) = 1_{12}$$

Log-normal, Gamma

The Pareto

extreme value

Fitting a scale family

Models for scale families satisfy

$$\Pr(Z \le z) = \Pr(Z_0 \le z / \beta)$$
 or $F(z \mid \beta) = F_0(z/\beta)$

where $F(z \mid \beta)$ and $F_0(z/\beta)$ are the distribution functions of Z and Z_0 .

Differentiating with respect to z yields the family of density functions

$$f(z \mid \beta) = \frac{1}{\beta} f_0(\frac{z}{\beta}), \ z > 0 \text{ where } f_0(z \mid \beta) = \frac{dF_0(z)}{dz}$$

• The standard way of fitting such models is through likelihood estimation. If $z_1,...,z_n$ are the historical claims, the criterion becomes

$$L(\beta, f_0) = -n\log(\beta) + \sum_{i=1}^{n} \log\{f_0(z_i/\beta)\},\,$$

which is to be maximized with respect to β and other parameters.

- A useful extension covers situations with censoring.
- Perhaps the situation where the actual loss is only given as some lower bound b is most frequent.
- Example:
 - travel insurance. Expenses by loss of tickets (travel documents) and passport are covered up to 10 000 NOK if the loss is not covered by any of the other clauses.

Fitting a scale family

Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Searching

• The chance of a claim Z exceeding b is $1-F_0(b/\beta)$, and for nb such events with lower bounds b1,...,bnb the analogous joint probability becomes

$$\{1-F_0(b_1/\beta)\}x...x\{1-F_0(b_{n_b}/\beta)\}.$$

Take the logarithm of this product and add it to the log likelihood of the fully observed claims z₁,...,z_n. The criterion then becomes

$$L(\beta, f_0) = -n\log(\beta) + \sum_{i=1}^{n} \log\{f_0(z_i/\beta)\} + \sum_{i=1}^{n_b} \log\{f_0(z_i/\beta)\},$$

complete information

censoring to the right

Shifted distributions

Non parametric

Log-normal, Gamma

The Pareto

Searching

- The distribution of a claim may start at some treshold b instead of the origin.
- Obvious examples are deductibles and re-insurance contracts.
- Models can be constructed by adding b to variables starting at the origin; i.e. $Z = b + \beta Z_0$ where Z_0 is a standardized variable as before. Now

$$\Pr(Z \le z) = \Pr(b + \beta Z_0 \le z) = \Pr(Z_0 \le \frac{z - b}{\beta})$$

and differentiation with respect to z yields

$$f(z \mid \beta) = \frac{1}{\beta} f_0(\frac{z-b}{\beta}), \quad z > b$$

which is the density function of random variables with b as a lower limit.

Searching

 A major issue with claim size modelling is asymmetry and the right tail of the distribution. A simple summary is the coefficient of skewness

$$\zeta = skew(Z) = \frac{v^3}{\sigma^3}$$
 where $v^3 = E(Z - \xi)^3$

 The numerator is the third order moment. Skewness should not depend on currency and doesn't since

$$skew(Z) = \frac{E(Z - \xi)^3}{\sigma^3} = \frac{E(\beta Z_0 - \beta \xi_0)^3}{(\beta \sigma_0)^3} = \frac{E(Z_0 - \xi_0)^3}{\sigma_0^3} = skew(Z_0)$$

- Skewness is often used as a simplified measure of shape
- The standard estimate of the skewness coefficient from observations z₁,...,z_n is

z₁,...,z_n is
$$\hat{\zeta} = \frac{\hat{v}^3}{s^3}$$
 where $\hat{v}^3 = \frac{1}{n-3+2/n} \sum_{i=1}^n (z_i - \overline{z})^3$

Non-parametric estimation

- The random variable \hat{Z} that attaches probabilities 1/n to all claims z_i of the past is a possible model for *future* claims.
- Expectation, standard deviation, skewness and percentiles are all closely related to the ordinary sample versions. For example

$$E(\hat{Z}) = \sum_{i=1}^{n} \Pr(\hat{Z} = z_i) z_i = \sum_{i=1}^{n} \frac{1}{n} z_i = \bar{z}.$$

Furthermore,

$$\operatorname{var}(\hat{Z}) = E(\hat{Z} - E(\hat{Z}))^{2} = \sum_{i=1}^{n} \Pr(\hat{Z} = z_{i})(z_{i} - \bar{z})^{2} = \sum_{i=1}^{n} \frac{1}{n}(z_{i} - \bar{z})^{2}$$

$$\Rightarrow sd(\hat{Z}) = \sqrt{\frac{n-1}{n}}s, \quad s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(z_i - \overline{z})^2}$$

Third order moment and skewness becomes

$$\hat{v}_3(\hat{Z}) = \frac{1}{n} \sum_{i=1}^n (z_i - \bar{z})^3$$
 and skew $(\hat{Z}) = \frac{\hat{v}_3(\hat{Z})}{\{sd(\hat{Z})\}^3}$

- Skewness tends to be small
- No simulated claim can be largeer than what has been observed in the past
- These drawbacks imply underestimation of risk

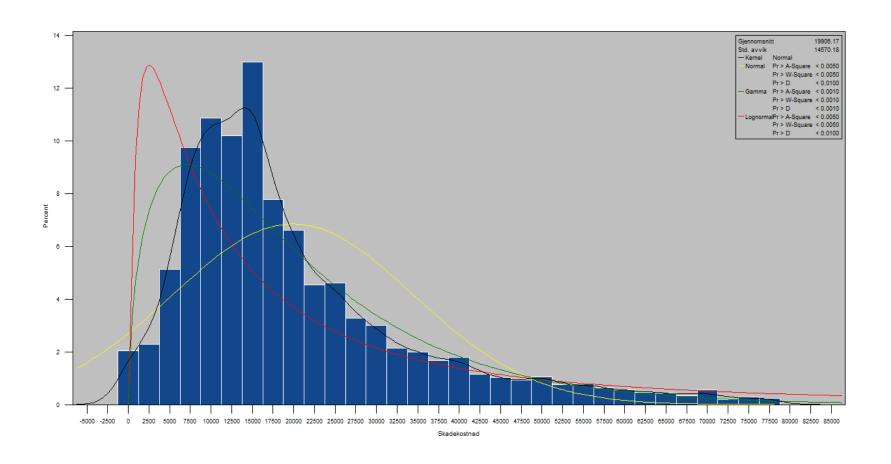
TPL

Non parametric

Log-normal, Gamma

The Pareto

Extreme valu



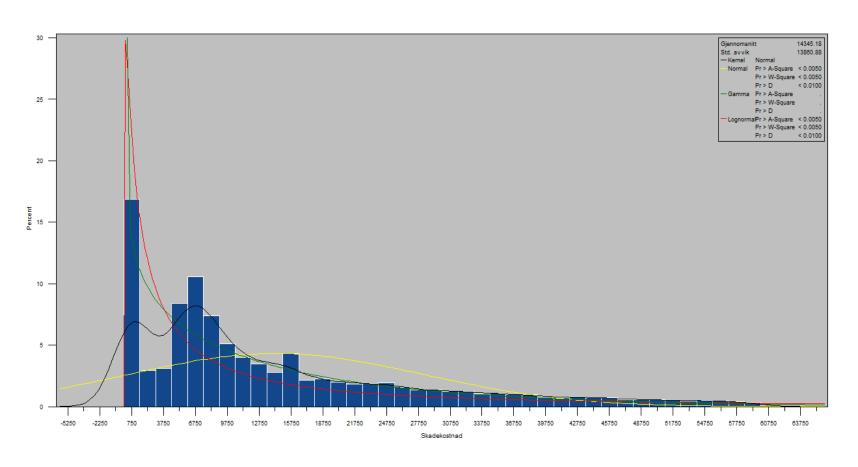
Hull

Non parametric

Log-normal, Gamma

The Pareto

Extreme valu



Log-normal Gamma

The Pareto

Extreme valu

Searching

The log-normal family

- A convenient definition of the log-normal model in the present context is as $Z = \xi Z_0$ where $Z_0 = e^{-\sigma^2/2 + \sigma \varepsilon}$ for $\varepsilon \sim N(0,1)$
- Mean, standard deviation and skewness are

$$E(Z) = \xi$$
, $sd(Z) = \xi \sqrt{e^{\sigma^2 - 1}}$, $skew(Z) = (e^{\sigma^2} + 2)\sqrt{e^{\sigma^2 - 1}}$

see section 2.4.

 Parameter estimation is usually carried out by noting that logarithms are Gaussian. Thus

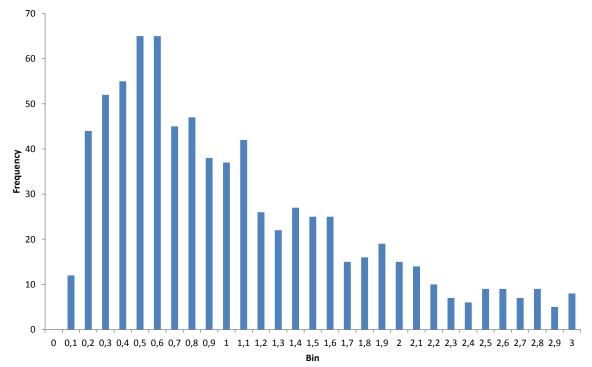
$$Y = \log(Z) = \log(\xi) - 1/2\sigma^2 + \sigma\varepsilon$$

and when the original log-normal observations $z_1,...,z_n$ are transformed to Gaussian ones through $y_1=\log(z_1),...,y_n=\log(z_n)$ with sample mean and variance \overline{y} and s_y , the estimates of ξ and σ become

$$\log(\hat{\xi}) - 1/2\hat{\sigma}^2 = \overline{y}, \quad \hat{\sigma} = s_y \quad \text{or} \quad \hat{\xi} = e^{s_y^2/2 + \overline{y}}, \hat{\sigma} = s_y.$$

- Log-normal sampling (Algoritm 2.5)
- 1. Input: ξ, σ 2. Draw $U^* \sim uniform$ and $\varepsilon^* \leftarrow \Phi^{-1}(U^*)$ 3. Return $Z \leftarrow e^{\xi + \sigma \varepsilon^*}$

Lognormal ksi = -0.05 and sigma = 1



The lognormal family

Non parametric

Log-normal, Gamma

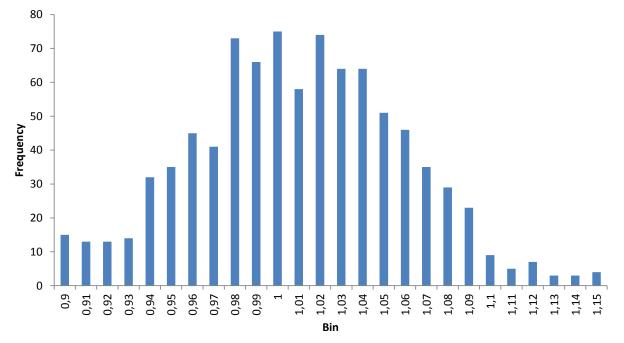
The Pareto

Extreme value

Searching

- Different choice of ksi and sigma
- The shape depends heavily on sigma and is highly skewed when sigma is not too close to zero

Lognormal ksi = 0.005 and sigma = 0.05



Log-normal Gamma

The Pareto

Extreme valu

Searching

The Gamma family

The Gamma family is an important family for which the density function is

$$f(x) = \frac{(\alpha/\xi)^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\alpha x/\xi}, \quad x > 0, \text{ where } \Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx$$

• It was defined in Section 2.5 as $Z = \xi G$ where $G \sim \text{Gamma}(\alpha)$ is the standard Gamma with mean one and shape alpha. The density of the standard Gamma simplifies to

$$f(x) = \frac{\alpha^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\alpha x}, \quad x > 0, \text{ where } \Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx$$

Mean, standard deviation and skewness are

$$E(Z) = \xi$$
, $sd(Z) = \xi/\sqrt{\alpha}$, $skew(Z) = 2/\sqrt{\alpha}$

and there is a convolution property. Suppose $G_1,...,G_n$ are independent with $G_i \sim Gamma(\alpha_i)$. Then

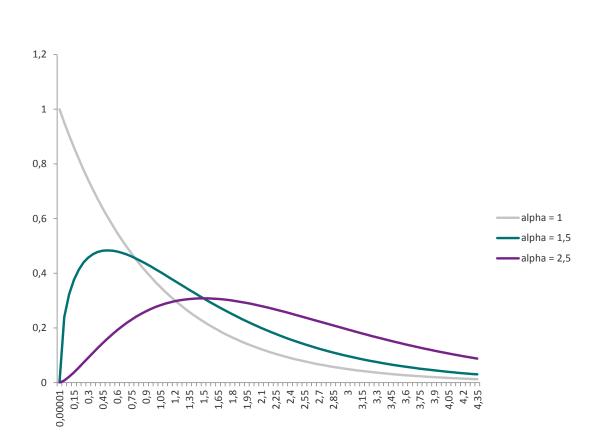
$$\overline{G} \sim Gamma(\alpha_1 + ... + \alpha_n)$$
 if $\overline{G} = \frac{\alpha_1 G_1 + ... + \alpha_n G_n}{\alpha_1 + ... + \alpha_n}$

Log-normal, Gamma

The Pareto

Extreme valu

Searching

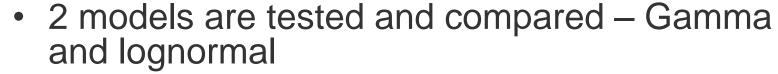


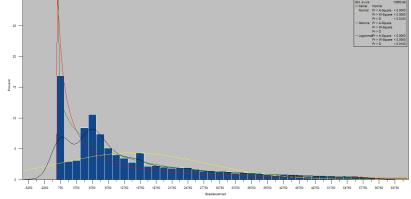
Example of Gamma distribution

Non parametric Log-normal, Gamma The Pareto Extreme value

Example: car insurance

- Hull coverage (i.e., damages on own vehicle in a collision or other sudden and unforeseen damage)
- Time period for parameter estimation: 2 years
- Covariates:
 - Driving length
 - Car age
 - Region of car owner
 - Tariff class
 - Bonus of insured vehicle





Comparisons of Gamma and lognormal

- The models are compared with respect to fit, results, validation of model, type 3 analysis and QQ plots
- Fit: ordinary fit measures are compared
- Results: parameter estimates of the models are compared
- Validation of model: the data material is split in two, independent groups. The model is calibrated (i.e., estimated) on one half and validated on the other half
- Type 3 analysis of effects: Does the fit of the model improve significantly by including the specific variable?

Comparison of Gamma and lognormal - fit

Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Searching

Gamma fit

Criterion Deg. fr. Value/DF Verdi 12 926,1628 Deviance 546 23,6743 Scaled 669,2070 Deviance 546 1,2257 Pearson Chi-13,5363 Square 546 7 390,8283 Scaled Pearson X2 546 382.6344 0,7008 Log Likelihood - 5 278,7043 Full Log Likelihood - 5 278,7043 AIC (smaller is better) 10 595,4086 AICC (smaller is better) 10 596,8057 BIC (smaller is better) 10 677,7747

Lognormal fit

Criterion	Deg.fr.	Verdi	Value/DF
Deviance	2 814	119 523,2128	42,4745
Scaled Deviance	2 814	2 838,0000	1,0085
Pearson Chi- Square	2 814	119 523,2128	42,4745
Scaled Pearson X2	2 814	2 838,0000	1,0085
Log Likelihood		- 7 145,8679	_
Full Log Likelihood	1	- 7 145,8679	_
AIC (smaller is better)		14 341,7357	_
AICC (smaller is better)		14 342,1980	_
BIC (smaller is better)		14 490,5071	_

Comparison of Gamma and lognormal – type 3

Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Searching

Gamma fit

Source	Deg.fr.	Chi-square	Pr>Chi-sq	Method
Tariff class	5	70,75	<.0001	LR
Bonus	2	19,32	<.0001	LR
Region	7	20,15	0,0053	LR
Car age	3	342,49	<.0001	LR

Lognormal fit

Source	Deg.fr.	Chi-square	Pr>Chi-sq	Method
Tariff class	5	51,75	<.0001	LR
Bonus	2	177,74	<.0001	LR
Region	7	48,14	<.0001	LR
Driving length	6	70,18	<.0001	LR
Car age	3	939,46	<.0001	LR

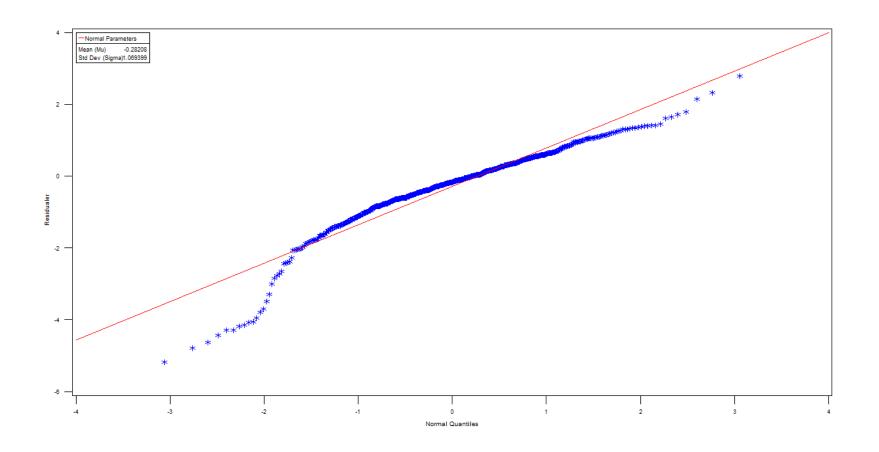
QQ plot Gamma model

Non parametric

Log-normal, Gamma

The Pareto

Extreme value



QQ plot log normal model

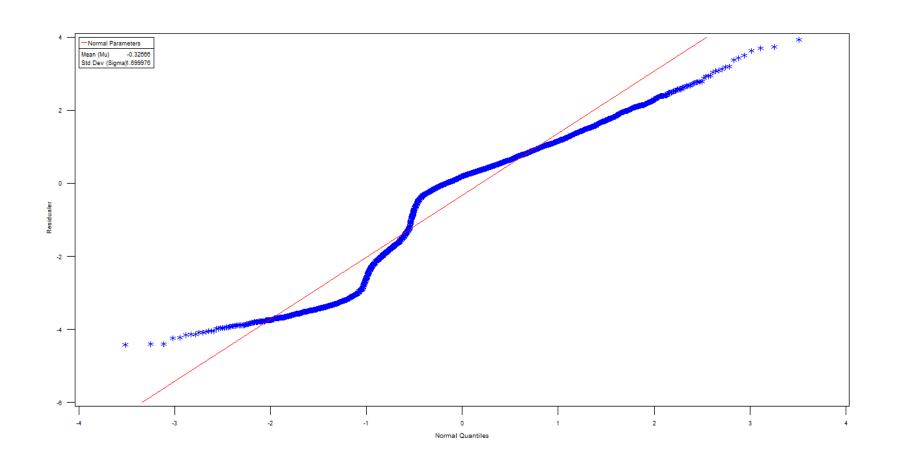
Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Searching



Log-normal, Gamma

The Pareto

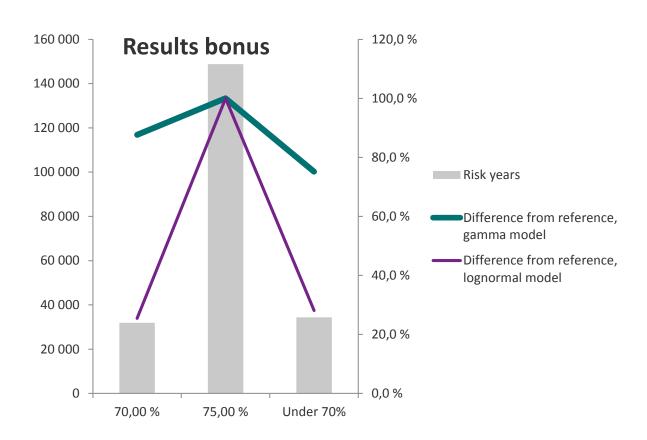
Extreme value



Log-normal, Gamma

The Pareto

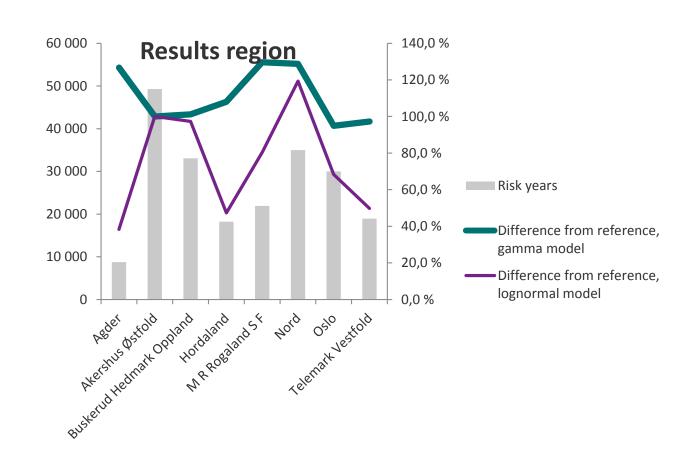
Extreme value



Log-normal, Gamma

The Pareto

Extreme value

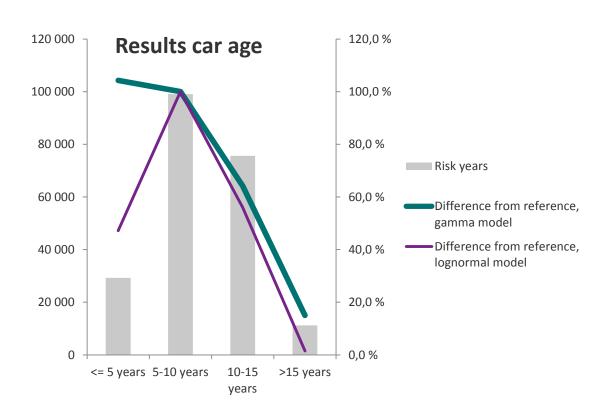


Log-normal, Gamma

The Pareto

Extreme value

Searchine

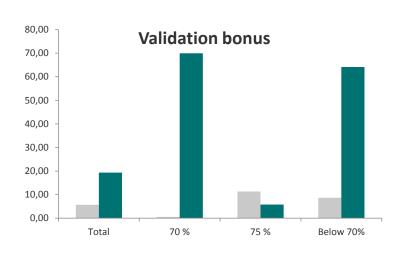


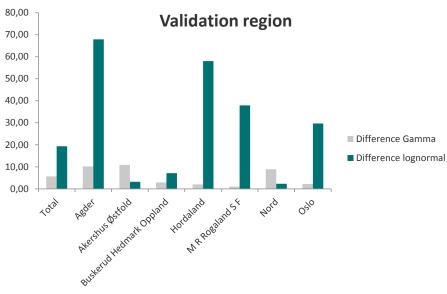
Log-normal, Gamma

The Pareto

Extreme value

Searchind



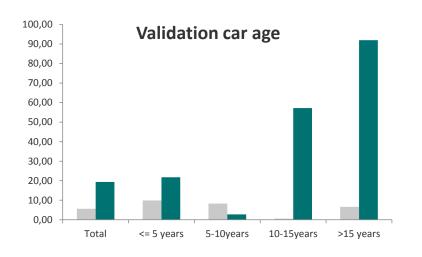


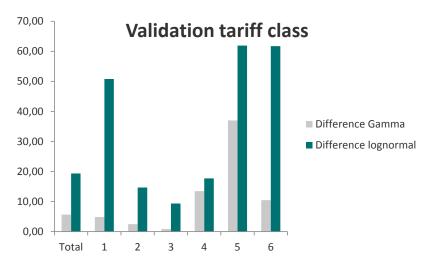
Non parametric

Log-normal, Gamma

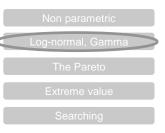
The Pareto

Extreme value





Conclusions so far



- None of the models seem to be perfect
- Lognormal behaves worst and can be discarded
- Can we do better?
- We try Gamma once more, now exluding the 0 claims (about 17% of the claims)
 - Claims where the policy holder has no guilt (other party is to blame)

Comparison of Gamma and lognormal - fit

Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Searching

Gamma fit

Criterion Deg. fr. Value/DF Verdi 12 926,1628 Deviance 546 23,6743 Scaled Deviance 546 669,2070 1,2257 Pearson Chi-Square 546 7 390,8283 13,5363 Scaled Pearson X2 546 382.6344 0,7008 Log Likelihood - 5 278,7043 Full Log Likelihood - 5 278,7043 AIC (smaller is 10 595,4086 better) AICC (smaller is better) 10 596,8057 BIC (smaller is better) 10 677,7747

Gamma without zero claims fit

Criterion	Deg.fr.	Verdi	Value/DF
Deviance	494	968,9122	1,9614
Scaled			
Deviance	494	546,4377	1,1061
Pearson Chi-			
Square	494	949,1305	1,9213
Scaled			
Pearson X2	494	535,2814	1,0836
Log Likelihood		- 5 399,8298	
Full Log			
Likelihood	_	- 5 399,8298	_
AIC (smaller is			
better)	_	10 837,6596	_
AICC (smaller			
is better)	_	10 839,2043	_
BIC (smaller is			
better)	_	10 918,1877	_

Comparison of Gamma and lognormal – type 3

Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Gamma fit

Source	Deg.fr.	Chi-square	Pr>Chi-sq	Method
Tariff class	5	70,75	<.0001	LR
Bonus	2	19,32	<.0001	LR
Region	7	20,15	0,0053	LR
Car age	3	342,49	<.0001	LR

Gamma without zero claims fit

Source	Deg. fr.	Chi-square	Pr>Chi-sq	Method
BandCode1	5	101,22	<.0001	LR
CurrNCD_Cd	2	43,04	<.0001	LR
KundeFylkeNav				
n	7	48,08	<.0001	LR
Side1Verdi6	3	70,76	<.0001	LR

QQ plot Gamma

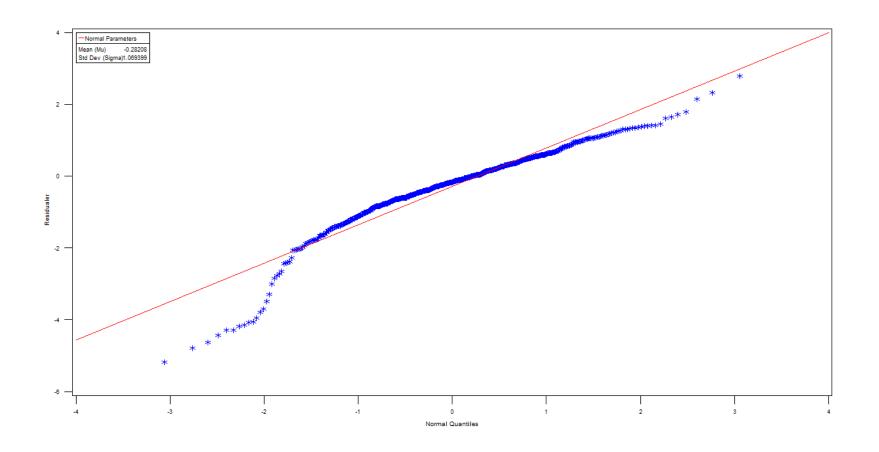
Non parametric

Log-normal, Gamma

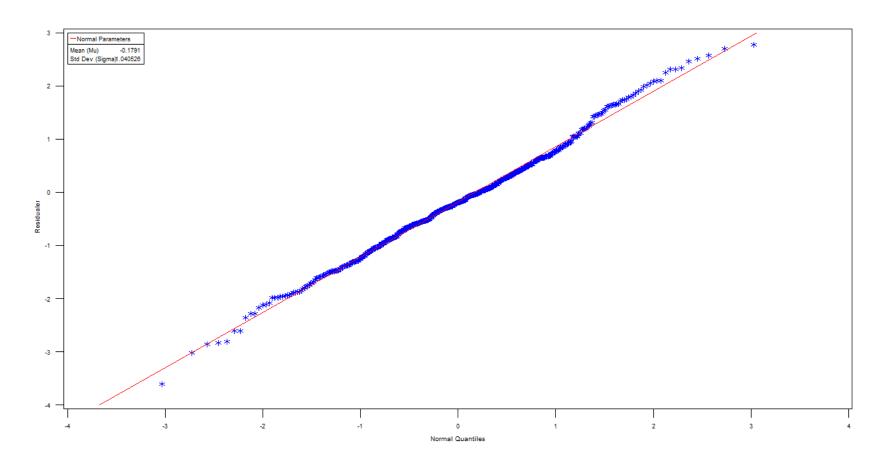
The Pareto

Extreme value

Searching



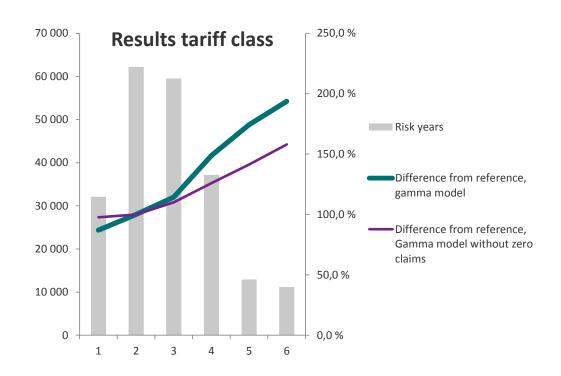
QQ plot Gamma model without zero claims



Log-normal, Gamma

The Paret

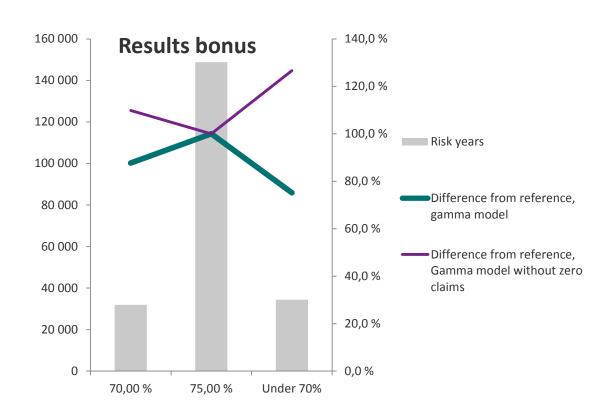
Extreme value



Log-normal, Gamma

The Pareto

Extreme valu

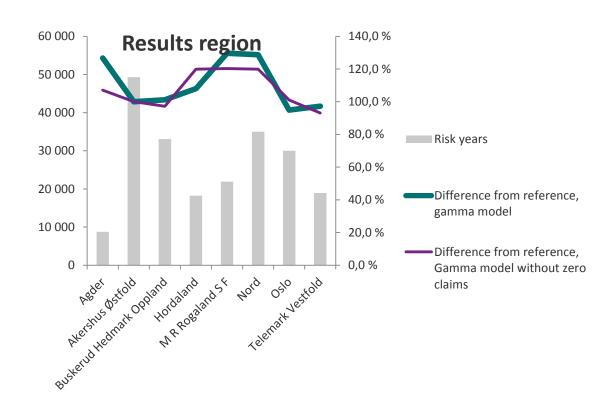


Log-normal, Gamma

The Paret

Extreme value

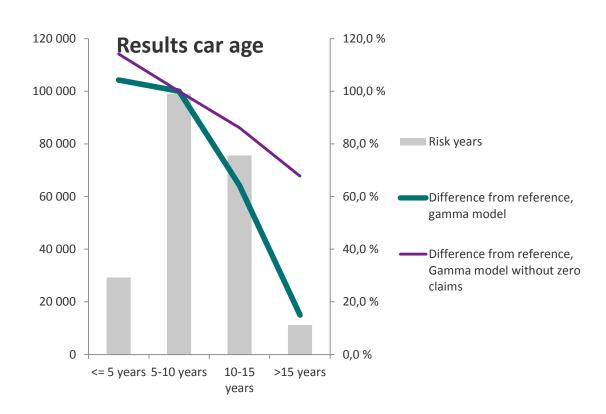
Searchind

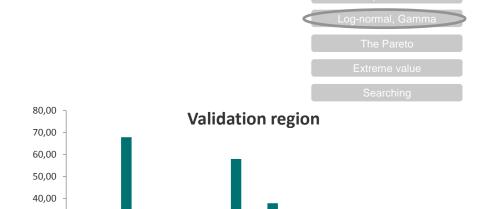


Log-normal, Gamma

The Pareto

Extreme value





Hordaland

Mold

05/0

■ Difference Gamma

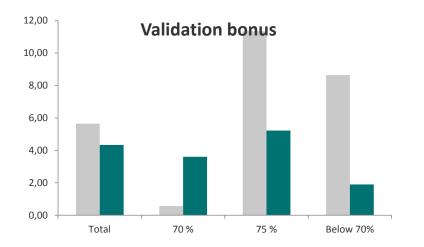
■ Difference lognormal

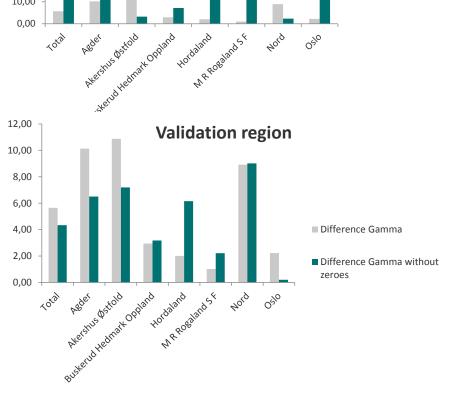
30,00

20,00

10,00

0,00





Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Searching

