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Claim severity modelling is about

describing the variation in claim size
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Claim size fire

• The graph below shows how claim size varies for fire claims for houses

• The graph shows data up to the 88th percentile

•How does claim size vary?

•How can this variation be modelled?

•Truncation is necessary (large claims are rare and disturb the picture)

•0-claims can occur (because of deductibles)

•Two approaches to claim size modelling – non-parametric and parametric

The concept



• Claim size modelling can be non-parametric where each claim zi of the past is 

assigned a probability 1/n of re-appearing in the future

• A new claim is then envisaged as a random variable     for which

• This is an entirely proper probability distribution

• It is known as the empirical distribution and will be useful in Section 9.5. 

Non-parametric modelling

can be useful
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• All sensible parametric models for claim size are of the form

• and Z0 is a standardized random variable corresponding to           .

• The large the scale parameter, the more spread out the distribution

Non-parametric modelling

can be useful

5

)3,3(~3

)2,2(~2

)1,1(~1

)1,1(~ , 00

NZ

NZ

NZ

NZZZ

















Ẑ

Scale families of distributions
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• Models for scale families satisfy

where are the distribution functions of Z and Z0.

• Differentiating with respect to z yields the family of density functions

• The standard way of fitting such models is through likelihood estimation. If 

z1,…,zn are the historical claims, the criterion becomes

which is to be maximized with respect to      and other parameters. 

• A useful extension covers situations with censoring. 

Fitting a scale family
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• The chance of a claim Z exceeding b is , and for nb such events

with lower bounds b1,…,bnb the analogous joint probability becomes

Take the logarithm of this product and add it to the log likelihood of the fully

observed claims z1,…,zn. The criterion then becomes

Fitting a scale family
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complete information

(for objects fully insured)

censoring to the right

(for first loss insured)

• Full value insurance:

• The insurance company is liable that the object at all times is insured at its

true value

• First loss insurance

• The object is insured up to a pre-specified sum.

• The insurance company will cover the claim if the claim size does not 

exceed the pre-specified sum

Fitting a scale family



• The distribution of a claim may start at some treshold b instead of the origin. 

• Obvious examples are deductibles and re-insurance contracts. 

• Models can be constructed by adding b to variables starting at the origin; i.e.  

where Z0 is a standardized variable as before. Now

• Example:

• Re-insurance company will pay if claim exceeds 1 000 000 NOK

Shifted distributions
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Shifted distributions

Total claim amount Currency rate for example NOK per EURO, 

for example 8 NOK per EURO

The payout of the insurance company



• A major issue with claim size modelling is asymmetry and the right tail of the

distribution. A simple summary is the coefficient of skewness

Skewness as simple description of shape
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Skewness

Negative skewness: the left tail is longer; the mass of the distribution

Is concentrated on the right of the figure. It has relatively few low values

Positive skewness: the right tail is longer; the mass of the distribution

Is concentrated on the left of the figure. It has relatively few high values

Negative skewness Positive skewness



• The random variable        that attaches probabilities 1/n to all claims zi of the

past is a possible model for future claims.

• Expectation, standard deviation, skewness and percentiles are all closely

related to the ordinary sample versions. For example

• Furthermore,

• Third order moment and skewness becomes
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Non-parametric estimation
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Non parametric estimation



• A convenient definition of the log-normal model in the present context is 

as where

• Mean, standard deviation and skewness are

see section 2.4.

• Parameter estimation is usually carried out by noting that logarithms are

Gaussian. Thus 

and when the original log-normal observations z1,…,zn are transformed to       

Gaussian ones through y1=log(z1),…,yn=log(zn) with sample mean and 

variance , the estimates of become

  22/1)log()log(ZY

The log-normal family
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Parametric estimation: the log normal family



• The Gamma family is an important family for which the density function is

• It was defined in Section 2.5 as is the

standard Gamma with mean one and shape alpha.  The density of the standard 

Gamma simplifies to

Mean, standard deviation and skewness are

and there is a convolution property. Suppose G1,…,Gn are independent with

. Then

The Gamma family
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• The Gamma family is an important family for which the density function is

• It was defined in Section 2.5 as is the

standard Gamma with mean one and shape alpha.  The density of the standard 

Gamma simplifies to

The Gamma family
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The Gamma family
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Parametric estimation: fitting the gamma
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Example: car insurance

• Hull coverage (i.e., damages on own
vehicle in a collision or other sudden and 
unforeseen damage)

• Time period for parameter estimation: 2 
years

• Covariates:
– Car age

– Region of car owner

– Tariff class

– Bonus of insured vehicle

• Gamma without zero claims the best model
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QQ plot Gamma model

without zero claims
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Overview
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Important issues Models treated Curriculum

Duration (in 

lectures)

What is driving the result of a non-

life insurance company? insurance economics models Lecture notes 0,5

How is claim frequency modelled? 

Poisson, Compound Poisson 

and Poisson regression Section 8.2-4 EB 1,5

How can claims reserving be 

modelled?

Chain ladder, Bernhuetter 

Ferguson, Cape Cod, Note by Patrick Dahl 2

How can claim size be modelled?

Gamma distribution, log-

normal distribution Chapter 9 EB 2

How are insurance policies 

priced?

Generalized Linear models, 

estimation, testing and 

modelling. CRM models. Chapter 10 EB 2

Credibility theory Buhlmann Straub Chapter 10 EB 1

Reinsurance Chapter 10 EB 1

Solvency Chapter 10 EB 1

Repetition 1



The ultimate goal for calculating

the pure premium is pricing
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claimsofnumber

amountclaimtotal
severityClaim

  

  
 

yearspolicyofnumber

claimsofnumber
frequencyClaim

   

  
 

Pure premium = Claim frequency x claim severity

Parametric and non parametric modelling (section 9.2 EB)

The log-normal and Gamma families (section 9.3 EB) 

The Pareto families (section 9.4 EB) 

Extreme value methods (section 9.5 EB) 

Searching for the model (section 9.6 EB) 



The Pareto distribution
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The Pareto distributions, introduced in Section 2.5, are among the most heavy-

tailed of all models in practical use and potentially a conservative choice when

evaluating risk. Density and distribution functions are

Simulation can be done using Algorithm 2.13:

1. Input alpha and beta

2. Generate U~Uniform

3. Return X = beta(U^^(-(1/alpha))-1)

Pareto models are so heavy-tailed that even the mean may fail to exist (that’s

why another parameter beta must be used to represent scale). Formulae for 

expectation, standard deviation and skewness are
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The Pareto distribution
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The median is given by 

• The exponential distribution appears in the limit when the ratio 

is kept fixed and . 

• There is in this sense overlap between the Pareto and the Gamma families.

• The exponential distribution is a heavy-tailed Gamma and the most light-

tailed Pareto and it is common to regard it as a member of both families

• The Pareto model was used as illustration in Section 7.3, and likelihood

estimation was developed there

• Censored information is now added. Suppose observations are in two

groups, either the ordinary, fully observed claims z1,..,zn or those only to 

known to have exceeded certain thresholds b1,..,bn but not by how much. 

• The log likelihood function for the first group is as in Section 7.3

,)1log()1()/log(
1





n

i

iz
n




)1/(  



Likelihood estimation

Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Searching



The Pareto distribution
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much the same as in Section 7.3.
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Over-threshold under Pareto
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One of the most important properties of the Pareto family is the behaviour at the

extreme right tail. The issue is defined by the over-threshold model which is 

the distribution of Zb=Z-b given Z>b. Its density function is

The over-threshold density becomes Pareto:
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Pareto density function

• The shape alpha is the same as before, but the parameter of scale has now

changed to

• Over-threshold distributions preserve the Pareto model and its shape.

• The mean is given by (alpha must exceed 1) 
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The extended Pareto family
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Add the numerator to the Pareto density function, and it reads

which defines the extended Pareto model.

• Shape is now defined by two parameters               ,  and this creates useful

flexibility.

• The density function is either decreasing over the positive real line ( if theta 

<= 1) or has a single maximum (if theta >1). Mean and standard deviation

are
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provided alpha > 3. These results verified in Section 9.7 reduce to those for the

ordinary Pareto distribution when theta=1. 
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Sampling the extended Pareto family
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An extended Pareto variable with parameters can be written

Here G1 and G2 are two independent Gamma variables with mean one. 

• The representation which is provided in Section 9.7 implies that 1/Z is 

extended Pareto distributed as well and leads to the following algorithm: 
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Algorithm 9.1 The extended Pareto sampler

1. Input and  

2. Draw G1 ~ Gamma(theta)

3. Draw G2 ~ Gamma(alpha)

4. Return Z <- etta G1/G2
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Extreme value methods
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Large claims play a special role because of their importance financially

• The share of large claims is the most important driver for profitability volatility

• «The larger claim the greater is the degree of randomness»

Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Searching

But experience is often limited

• How should such situations be tackled?

Theory

• Pareto distributions are preserved over thresholds

• If Z is continuous and unbounded and b is some threshold, then Z-b given 

Z>b  will be Pareto as b grows to infinity!!

…..Ok….

• How do we use this?

• How large does b has to be?



The limit is the tail distribution of the Pareto model which shows that

Zb becomes Both the shape alpha and the scale

parameter betab depend on the original model but only the latter varies with b. 

Extreme value methods
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Our target is Zb=Z-b given Z>b. Consider its tail distribution function

and let where is a scale parameter depending on b. We are

assuming that Z>b, and Yb is then positive with tail distribution

The general result says that there exists a parameter alpha (not depending on b 
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Extreme value methods
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• The decay rate can be determined from historical data

• One possibility is to select observations exceeding some threshold, impose

the Pareto distribution and use likelihood estimation as explained in Section

9.4. We will revert to this

• An alternative often referred to in the literature of extreme value is the Hill 

estimate

• Start by sorting the data in ascending order and take


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• Here p is some small, user-selected number.

• The method is non-parametric (no model is assumed)

• We may want to use as an estimate of in a Pareto distribution

imposed over the threshold and would then need an estimate of the

scale parameter

• A practical choice is then
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• Assume some large claim threshold b is selected

• Then there are many values in the small and medium range below and up to 

b and few above b

• How to select b?

• One way: choose some small probability p and let n1 = integer(n(1-p)) and let 

b=z(n1))

• Another way: study the percentiles

• Modelling may be divided into separate parts defined by the threshold b

• Modelling in the central region: non-parametric (empirical distribution) or 

some selected distribution (i.e., log-normal gamma etc)

• Modelling in the extreme right tail: 

• The result due to Pickands suggests a Pareto distribution, provided b is 

large enough

• But is b large enough??

• Other distributions may perform better, more about this in Section 9.6. 
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fire water other all

99,1 % 4 927 015     377 682         300 000         656 972         

99,2 % 5 021 824     406 859         307 666         726 909         

99,3 % 5 226 985     424 013         344 006         871 552         

99,4 % 5 332 034     464 769         354 972         1 044 598     

99,5 % 5 576 737     511 676         365 925         1 510 740     

99,6 % 6 348 393     576 899         409 618         2 330 786     

99,7 % 6 647 669     663 382         462 719         3 195 813     

99,8 % 7 060 421     740 187         724 682         3 832 486     

99,9 % 7 374 623     891 226         1 005 398     4 733 953     

100,0 % 9 099 312     2 490 558     4 100 000     9 099 312     
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Searching for the model
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• How is the final model for claim size selected?

• Traditional tools: QQ plots and criterion comparisons

• Transformations may also be used (see Erik Bølviken’s material)



 

Descriptive Statistics for Variable Skadeestimat 

Number of Observations 185 

Number of Observations Used for Estimation 185 

Minimum 331206.17 

Maximum 9099311.62 

Mean 2473661.54 

Standard Deviation 1892916.16 
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Model Selection Table 

Distribution Converged -2 Log Likelihood Selected 

Burr Yes 5808 No 

Logn Yes 5807 No 

Exp Yes 5817 No 

Gamma Yes 5799 No 

Igauss Yes 5804 No 

Pareto Yes 5874 No 

Weibull Yes 5799 Yes 
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All Fit Statistics Table 

Distribution -2 Log 

Likelihood 

AIC AICC BIC KS AD CvM 

Burr 5808   5814   5814   5823   1,41053   3,46793   0,56310   

Logn 5807   5811   5812   5818   1,72642   4,17004   0,69457   

Exp 5817   5819   5819   5822   1,71846   4,02524   0,54964   

Gamma 5799   5803   5803   5809   1,20219 * 2,81879   0,45146   

Igauss 5804   5808   5808   5814   2,05008   5,23274   0,94893   

Pareto 5874   5878   5878   5884   2,49278   11,82091   1,91891   

Weibull 5799 * 5803 * 5803 * 5809 * 1,28745   2,64769 * 0,41281 * 
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Descriptive Statistics for Variable Skadeestimat 

Number of Observations 115 

Number of Observations Used for Estimation 115 

Minimum 1323811.02 

Maximum 9099311.62 

Mean 3580234.13 

Standard Deviation 1573560.35 
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Model Selection Table 

Distribution Converged -2 Log Likelihood Selected 

Burr Yes 3590 No 

Logn Yes 3586 No 

Exp Yes 3701 No 

Gamma Yes 3587 No 

Igauss Yes 3586 Yes 

Pareto Yes 3763 No 

Weibull Yes 3598 No 
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All Fit Statistics Table 

Distribution -2 Log 

Likelihood 

AIC AICC BIC KS AD CvM 

Burr 3590   3596   3596   3604   0,60832   0,46934   0,05441   

Logn 3586   3590   3591   3596   0,78669   0,59087   0,08734   

Exp 3701   3703   3703   3706   3,41643   17,71328   3,44525   

Gamma 3587   3591   3591   3597   0,51905 * 0,41652 * 0,04250 * 

Igauss 3586 * 3590 * 3590 * 3595 * 0,82086   0,61707   0,09611   

Pareto 3763   3767   3767   3773   4,11264   25,12499   5,09728   

Weibull 3598   3602   3602   3607   0,88778   1,12241   0,10294   
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Searching for the model
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• Can we do better?

• Does it exist a more generic class of distribution with these distributions as 

special cases?

• Does this generic class of distributions outperform the selected model in the

two examples (fire above 90th percentile and fire above 95th percentile)?


