Non-life insurance mathematics

Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Risk premium expresses cost per policy and is important in pricing

•Up to now we have been busy trying to answer the question:
•What is our prediction of the risk premium into the near future, say the next 12 months?

•Risk premium is defined as P(Event)*Consequence of Event

- Risk premium =P(event)*Consequence of event
- = Claim frequency * Claim severity
- _____Number of claims ______* Total claim amount
 - Number of risk years Number of claims

Total claim amount

Number of risk years

•From above we see that risk premium expresses cost per policy

The world of Poisson (Chapter 8)

•Divide a given time period T into K small pieces of equal length h=T/K

$$\Rightarrow \Pr(N=n) \underset{K \to \infty}{\longrightarrow} \frac{(\mu T)^n}{n!} e^{-\mu T}$$

•Muh above is the claim intensity per time unit

•There are two ways of modelling variation in muh:

•Assume muh stochastic then N is no longer Poisson

•Assume log muh can be expressed as a linear predictor of covariates and covariate effects

Repetition claim size

The concept

Non parametric modelling

Scale families of distributions

Fitting a scale family

Shifted distributions

Skewness

Non parametric estimation

Parametric estimation: the log normal family

Parametric estimation: the gamma family

Parametric estimation: fitting the gamma

The ultimate goal for calculating the pure premium is pricing

Pure premium = Claim frequency x claim severity

$Claim \ severity = \frac{total \ claim}{number \ optimizer}$	n amount of claims	Claim frequency = $\frac{number of claims}{number of policy years}$

Parametric and non parametric modelling (section 9.2 EB)

The log-normal and Gamma families (section 9.3 EB)

The Pareto families (section 9.4 EB)

Extreme value methods (section 9.5 EB)

Searching for the model (section 9.6 EB)

Overview

			Duration (in
Important issues	Models treated	Curriculum	lectures)
What is driving the result of a non-			
life insurance company?	insurance economics models	Lecture notes	0,5
	Poisson, Compound Poisson		
How is claim frequency modelled?	and Poisson regression	Section 8.2-4 EB	1,5
How can claims reserving be	Chain ladder, Bernhuetter		
modelled?	Ferguson, Cape Cod,	Note by Patrick Dahl	2
	Gamma distribution, log-		
How can claim size be modelled?	normal distribution	Chapter 9 EB	2
	Generalized Linear models,		
How are insurance policies	estimation, testing and		
priced?	modelling. CRM models.	Chapter 10 EB	2
Credibility theory	Buhlmann Straub	Chapter 10 EB	1
Reinsurance		Chapter 10 EB	1
Solvency		Chapter 10 EB	1
Repetition			1

Overview of this session

Introduction to reserving

The chain ladder model (Patrick Dahl note)

An example

The naive loss ratio method (Patrick Dahl note)

How can loss ratio be predicted?

Introduction to reserving

Non-life insurance from a financial perspective:

for a premium an insurance company commits itself to pay a sum if an event has occured

Issues that need to be solved:

- How much premium is earned?
- How much premium is unearned?
- · How do we measure the number and size of unknown claims?
- · How do we know if the reserves on known claims are sufficient?

Premium reserves

The premium reserve is split in two parts:

- Provision for unearned premiums
- Provisions for unexpired risks

Earned and unearned premium:

- · Written premium is earned evenly/uniformly over the cover period
- The share of the premium that has been earned is the past time's proportion of the total period
- · If a larger premium has been received the difference is the unearned premium

Example:

An insurance policy starts on September 1 2012 and is valid until August 31 2013.

The premium for the entire period is 2400.

At 31 December we have received two quarterly premiums or 1200.

We have then earned $(4/12)^{*}2400 = 800$.

Unearned is 1200-800=400

Unexpired risk reserve

- Regard entire period covered by the insurance
- From a point in time, say 31/12-2012, we look forward to all the claims and expenses that could occur after this point. Call them FC₃₁₁₂
- If FC₃₁₁₂>Future premiums yet not due (FP)+unearned premium reserve (UP) the difference is accounted as unexpired risk reserve
- In example assume FC₃₁₁₂ = 1800>FP+UP=1200+400=1600, so unexpired risk reserve is 200

Claims reserves

Claims reserving issues:

- How do we measure the number and size of unknown claims? (IBNR reserve, i.e., Incurred Bot Not Reported)
- How do we know if the reserves on known claims are sufficient? (RBNS reserve, i.e., Reserved But Not Settled)

Claims reserves

Claims occuring:

- A *claim event* is an event that gives rise to a claim against an insurer by a policy holder
- *Gross claim loss*: the ultimate cost to the insurer of a claim event, including benefit payments and claims handling expenses
- Net claim loss: deduction of reinsurance recoveries
- Example: settlement delays are considered (RBNS). The process for estimating future reported claim amounts (IBNR) is similar.
- Step 1: Group the claims loss settlement amounts by the year in which the associated claims events occured

Claims occurence year	Claims losses	_
2005	3963	
2006	4975	
2007	5873	
2008	6401	
2009	6563	
2010	6358	
2011	6918	
2012	3072	

Claim payments plus claims handling expenses

The development of claims losses settled

• Claims losses settled for each claims occurence year are often not paid on one date but rather over a number of years

Incremental claims loss settlement data presented as a run-off triangle

Incrementa	al claims loss	Development year							
settl	ements	0	1	2	3	4	5	6	7
	2005	1232	946	520	722	316	165	48	14
e	2006	1469	1201	708	845	461	235	56	
enc	2007	1652	1416	959	954	605	287		
nı	2008	1831	1634	1124	1087	725			
000	2009	2074	1919	1330	1240				
JS (2010	2434	2263	1661					
ain	2011	2810	4108						
ye Ve	2012	- 3072							

Comments:

- The development year for a claims settlement amount reflects how long after the claims occurrence year the amount was settled.
 - An amount settled during the claims occurence year was settled in development year 0
- In the example the largest development year for any claims occurence years is 7
- The data shown represents the incremental claims losses settled in the development year
- For any cell in the table, the value shown represents the incremental claims loss amount that was settled in calendar year
- Each diagonal set of data represents the amounts settled in a single calendar year
- Green cells represent observed data all red represent time periods in the future for which we wish to estimate the expected claims settlements amounts

Introduction Chain ladder An example The naive loss ratio Loss ratio prediction

The development of claims losses settled

• Claims losses settled for each claims occurence year are not paid on one date but rather over a number of years

Incremental claims loss settlement data presented as a run-off triangle

Cumulativ	e claims loss				Developn	nent year			
settl	ements	0 1 2 3 4 5 6						7	
	2005	1232	2178	2698	3420	3736	3901	3949	3963
e	2006	1469	2670	3378	4223	4684	4919	4975	
enc	2007	1652	3068	4027	4981	5586	5873		
Sur	2008	1831	3465	4589	5676	6401			
000	2009	2074	3993	5323	6563				
IS (2010	2434	4697	6358					
ain	2011	2810	6918						
CI	2012	3072							

Comments:

- The data can be presented as cumulative losses settled
- For each claims occurrence year the incremental claims loss settled for a particular development year is the amount settled in that development year
- The cumulative claims losses settled is the total amount settled up to that development year, i.e., the sum of the incremental claims losses settled up to that date.

Assumptions underlying the CLM

- Patterns of claims loss settlement observed in the past will continue in the future
- The development of claims loss settlement over the development years follows an identical pattern for every claims occurrence year
- But the observed claims loss settlement patterns may change over time:
 - Changes in product design and conditions
 - Changes in the claims reporting, assessment and settlement processes (example: different owners)
 - Change in the legal environment
 - Abnormally large or small claim settlement amounts
 - Changes in portfolio so that the history is not representative for predicting the future (example: strong growth)

Development patterns and development factors

Introduction
Chain ladder
An example
The naive loss ratio
Loss ratio prediction

- The insurer may tend towards using any of the following patterns for estimation purposes:
- The proportion of the ultimate cumulative claims losses that is settled in a particular development year (development pattern for incremental claims losses settled)
- The proportion of the ultimate cumulative claims losses that is settled by a particular development year (development pattern for cumulative claims losses settled)
- The ratio of the cumulative losses settled by a particular year to the cumulative claims losses settled by the previous development year (cumulative loss factor)
- The three patterns are equivalent
- CLM relies on the last pattern above holds for all claims occurrence years. For any development year the quotient
 - Expected cumulative claims losses settled up to and including the development year/Expected cumulative claims losses settled up to and including the previous development year

is called the *cumulative claims loss settlement factor* for that development year

• Example: the cumulative claims settlement factor for development year 4 is derived from the cumulative settlement amounts for development years 3 and 4.

Estimating future claims settlement amounts

- Underlying assumption (CLM):
 - the cumulative claims loss settlement factor for a specific development year is assumed to be the same for all claims occurence years
- The CLM estimator for each of the factors is based on the cumulative settlement data for as many claims occurence years as possible

Determining the CLM estimator for the cumulative claims loss settlement fa	actor
--	-------

Cumulative	claims loss	Development year							
settler	nents	0 1 2 3 4 5 6					7		
	2005	1232	2178	2698	3420	3736	3901	3949	3963
e	2006	1469	2670	3378	4223	4684	4919	4975	
enc	2007	1652	3068	4027	4981	5586	5072	3736+4684	+5586+6401
anc	2008	1831	3465	4589	567	6401		=20407	
000	2009	2074	3993	5323	6563			3736±4684	±5586±6/01
JS	2010	2434	4697	6358				=20407	-3300+0 + 01
ain	2011	2810	6918						
CI	2012	3072						20407/1830	0=1,1151
CLM estimate	or for claims	laims							
loss settlen	nent factor		1,9989	1,3140	1,2422	1,1151	1,0491	1,0118	1,0035

Comments:

- These CLM estimators for the cumulative claims loss settlement factors are used to estimate the cumulative claims loss settlement amount in the future
- For each claims occurrence year the last historical observation is used together with the appropriate CLM estimator for the development factor to estimate the cumulative settlement amount in the next development year
- This value is, in turn, multiplied by the estimator for the development factor for the next development year and so on.

Determining the estimated cumulative claims loss settlements in future periods

Cumulative	claims loss	Development year							
settler	nents	0	1	2	3	4	5	6	7
	2005	1232	2178	2698	3420	3736	3901	3949	3963
	2006	1469	2670	3378	4223	4684	4919	4975	4993
ear	2007	1652	3068	4027	4981	5586	5873	5942	5963
urence y	2008	1831	3465	4589	5676	6401	6401 *1,0491	6715 *1,0119 = 6794	6794 *1,0035 = 6818
occi	2009	2074	3993	5323	6563	7319	7678	7768	7796
IS (2010	2434	4697	6358	7898	8807	9239	9348	9381
aim	2011	2810	4918	6462	8027	8952	9391	9502	9535
C	2012	3072	5686	7471	9280	10349	10857	10985	11024
CLM estimate	or for claims		1,8508	1,3140	1,2422	1,1151	1,0491	1,0118	1,0035

Comments:

- The values shown in the red cells are the estimators for future cumulative claims settled
- These estimates are always based on the latest available cumulative claims settlement amounts for the relevant claims occurrence year, i.e., the estimated future cumulative claims settlements are always based on the last green diagonal of data
- It is now simple to derive the estimated incremental claims settlement amounts for the future periods
- An incremental settlement amount is the difference between tow consecutive cumulative settlement amounts

Determining the estimated incremental settlement amounts from the estimated cumulative amounts

Incremental	claims loss				Developme	nt year			
settler	ments	0	1	2	3	4	5	6	7
	2005	1232	946	520	722	316	165	48	14
	2006	1469	1201	708	845	461	235	56	18
ear	2007	1652	1416	959	954	605	287	69	21
urence y	2008	1831	1634	1124	1087	725	6715- 6401 = 314	6794- 6715 = 79	6818- 6794 = 24
ö	2009	2074	1919	1330	1240	756	359	91	28
JS 0	2010	2434	2263	1661	1540	909	432	109	33
ain	2011	2810	4108	1544	1565	924	439	111	34
Ū	2012	3072	2614	1785	1810	1069	508	128	39

Determining the estimated incremental settlement amounts from the estimated cumulative amounts

Comments:

- Group the estimated incremental claims loss settlement amounts by the year in which they will be settled
- These cash flows can then be discounted to determine the technical provisions
- Norwegian State Treasury Bonds (Statsobligasjoner in Norwegian) may be used as discount factor
 - Example: a cash flow due in 2017 is discounted with a 4 year old Norwegian State Treasury Bond etc. Why do we hope that the development year does not exceed 10 ??

Claims reserves

Introduction Chain ladder An example The naive loss ratio Loss ratio prediction

- Claims reserving is not only about statistical models:
- What is the purpose of the reserving?
- Know your data:
 - Is the history consistant? (relevant when a company has had several owners)
 - Is the history representative when future predictions are to be made? (relevant during strong growth)
 - Has there been significant events that affect settlement practice? (relevant for agencies)
- Should the reserves be calculated gross or net?
- Adjust for inflation
- Know your claims department:
 - How are provisions set?
 - When do they set the provision?
 - How will the lead time be affected by the size of the claims?
 - Are there any backlogs?
 - When do they change the reserves?

Notation

Reporting year										
Accident										
year	1	2	3							
1998	C ₁₁	C ₁₂	C ₁₃							
1999	C ₂₁	C ₂₂								
2000	C ₃₁									

- Cij Cumulative claims from accident year i, reported through the end of period j
- Dij = Cij- Cij-1 Incremental claims from accident year i, reported in period j
- Cim Ultimate claims for accident year i, where
- m is the last development period that is known and
- $R_i = E[C_{im}] C_{ij}$ is the reserve for accident year i
- fi one period loss development factor. Also called age-to-age factor or link ratio
- Fij Development factor from accident year i, period j, to ultimate
- Li Claims relative to an exposure for accident year i
- Pi A measure of exposure for accident year i
- Ak Experience up to development period k

Chain ladder builds on that cumulative claims in a period are proportional to the claims in the preceding period. The proportionality factor depends on the number of periods since outset, but is expected to be the same for all periods. It is assumed that:

(CL1)
$$E[C_{ij+1} | C_{i1}, C_{i2}, ..., C_{ij}] = C_{ij} * f_j$$

Observe that fj does not depend on accident year.

(CL2) The vectors
$$\{C_{i1}, C_{i2}, ..., C_{im}\}$$

and $\{C_{k1}, C_{k2}, ..., C_{km}\}$ are independent if $i \neq k$

CL1 just brings us one step ahead, whereas we want to get to the end. To get there we are going to utilize the rule of double expectation:

(Lemma 6.1) If E[Z] is finite, then E[E[Z | X]]

Using this lemma and CL1, we find

$$E[C_{ij+k} | C_{i1}, C_{i2}, ..., C_{ij}] =$$

$$= E[E[C_{ij+k} | C_{i1}, C_{i2}, ..., C_{ij+k-1}] | C_{i1}, C_{i2}, ..., C_{ij}] =$$

$$= E[C_{ij+k-1} * f_{j+k-1} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[E[C_{ij+k-1} | C_{i1}, C_{i2}, ..., C_{ij+k-2}] | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} * f_{j+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

$$= E[C_{ij+k-2} | C_{i1}, C_{i2}, ..., C_{ij}] * f_{j+k-1} =$$

We could rewrite CL1 on the following form:

(CL1')
$$E[C_{ij+1} / C_{ij} | C_{i1}, C_{i2}, ..., C_{ij}] = f_{ij}$$

Thus, we could use observed ratios C_{ij+1}/C_{ij} as unbiased estimators of f_j . Before combining estimates of the same f_j we make a further assumption,

(CL3)
$$Var[C_{ij+1} | C_{i1}, C_{i2}, ..., C_{ij}] = C_{ij} * \sigma_j^2$$

Observe that the last factor in the variance is no depending on accident year. We also need the following Lemma

(*Lemma* 6.2) Suppose X_i are uncorrelated random variables with the same mean, but with variances σ_i^2 . Then the best linear unbiased estimator of the mean is given by

$$\sum_{i=1}^{n} w_i X_i \text{ where } w_i = \frac{C_{ij}}{\sum_{k=1}^{m-j} C_{kj}} \text{ and } \sum_{i=1}^{n} w_i = 1$$

From Lemma 6.2 it turns out that

$$\hat{f}_{j} = \frac{\sum_{i=1}^{m-j} C_{ij+1}}{\sum_{i=1}^{m-j} C_{ij}}$$

Introduction Chain ladder An example The naive loss ratio

Solve the system

$$\begin{cases} \frac{\partial}{\partial w_k} L(w_1, \dots, w_n, \lambda) = 0, \quad k = 1, \dots, n \\ \frac{\partial}{\partial \lambda} L(w_1, \dots, w_n, \lambda) = 0 \end{cases}$$
⁽¹⁾

Proof: Starting with (1) yields

$$\frac{\partial}{\partial w_k} L(w_1, \dots, w_k, \lambda) = 2w_k \sigma_k^2 - \lambda = 0$$

$$\Leftrightarrow \lambda = 2w_k \sigma_k^2 \Leftrightarrow w_k = \frac{\lambda}{2\sigma_k^2}$$

Continuing with (2) yields

$$\frac{\partial}{\partial \lambda} L(w_1, \dots, w_k, \lambda) = 1 - \sum_{i=1}^n w_i = 0$$

$$\Leftrightarrow \sum_{i=1}^n w_i = 1 \stackrel{(3)}{\Leftrightarrow} \sum_{i=1}^n \frac{\lambda}{2\sigma_i^2} = 1 \Leftrightarrow \lambda = 2 \frac{1}{\sum_{i=1}^n \sigma_i^{-2}} \qquad (4)$$

Combining (3) and (4) yields

$$w_{k} = \frac{2\frac{1}{\sum_{i=1}^{n} \sigma_{i}^{-2}}}{2\sigma_{i}^{2}} = \frac{\sigma_{i}^{-2}}{\sum_{i=1}^{n} \sigma_{i}^{-2}}$$
(5)

Rewriting CL3 gives

(CL3')
$$Var[C_{ij+1}/C_{ij} | C_{i1}, C_{i2}, ..., C_{ij}] = \frac{1}{C_{ij}^{2}} C_{ij} * \sigma_{j}^{2} = \frac{\sigma_{j}^{2}}{C_{ij}}$$

and the weights are thus by (5)

$$w_{i} = (\sigma_{j}^{2} / C_{ij})^{-1} / \sum_{k=1}^{m-j} (\sigma_{j}^{2} / C_{kj})^{-1} = C_{ij} / \sum_{k=1}^{m-j} C_{kj}$$

and

To be able to use the algorithm suggested by formula (6.2) with the estimators from (6) above we need to prove that estimates are uncorrelated. Define the set of experience up to development period k by

$$A_k = \{C_{ij} \mid j \le k, i \le m\}$$

Then we have

Chain ladder An example The naive loss ratio

$$= E[f_{j}]^{*}f_{k} = E[f_{j}]^{*}E[f_{k}]$$

Thus we have shown that the estimates of f_j and f_k are uncorrelated. If we combine this with (6.2) it shows that the following ultimate estimator is unbiased,

$$E[C_{im} | C_{ij}] = C_{ij} * \hat{f}_{j} * \dots * \hat{f}_{m-1}$$

Chain ladder - example

- Example: one fire/combined product (fire/combined in Norway includes home, contents and cabin)
- The triangle shows the payments for the different years
- How do we fill out the blanks?

	1	2	3	4	5
2008	7 008 148	25 877 313	31 723 256	32 718 766	33 019 648
2009	30 105 220	65 758 082	76 744 305	79 560 296	
2010	89 181 138	171 787 015	201 380 709		
2011	109 818 684	198 015 728			
2012	97 250 541				

• We start by estimating f1, f2, f3, f4

$$\hat{f}_{1} = \frac{\sum_{i=1}^{5-1} C_{i1+1}}{\sum_{i=1}^{5-1} C_{i1}} = \frac{C_{12} + C_{22} + C_{32} + C_{42}}{C_{11} + C_{21} + C_{31} + C_{41}} =$$
$$= \frac{25.9 + 65.8 + 171.8 + 198.0}{7.0 + 30.1 + 89.2 + 109.8} = 1.954$$

f_1_hat	1,954
f_2_hat	1,176
f_3_hat	1,035
f_4_hat	1,009

Chain ladder - example

Introduction	
Chain ladder	
An example	>
The naive loss ratio	
Loss ratio prediction	

• Then we use the formula $E[C_{im} | C_{ij}] = C_{ij} * \hat{f}_j * ... * \hat{f}_{m-1}$ to fill out the blanks

X 🔒	ExempelChainLadder - Microsoft Excel								
Fil	FII Hjem Sett inn Sideoppsett Formler Data Se gjennom Visning Tillegg						a 🕜 🗖 🗃 🛙		
fx Sett inr funksjo	fx E iso iso<								
	B4 ▼ (<i>f</i> _x	2010				1			×
	A	В	С	D	E	F	G	Н	Â
1	lidsperioden	lidsperioden	Periode + 0	Periode + 1	Periode + 2	Periode + 3	Periode + 4	(Tidsperioden) Utb
2	0	2008	7008147,76	25877312,92	31723256,17	32718766,17	33019648,17		. 0
3	1	2009	30105219,65	65758082,38	76744304,57	79560296,33	80291933,365	731637,03533	0,91960
4	4 2 2010 89181137,64 171787014,81		171787014,81	201380708,65	208457137,03	210374110,31	8993401,6569	4,46587	
5	3	2011	109818684,47	198015727,55	232914240,17	241098742,8	243315888,5	45300160,954	22,8770
6	4	2012	97250541,11	190057610,37	223553575,54	231409148,58	233537188,71	136286647,6	140,139
9				,				=G4-E4	=F3*D
10			f_1_hat	=SUMMER(D2:D5)/SUMMER(C2:C5)				=G5-D5	=E4*D
11			f_2_hat	=SUMMER(E2:E4)/SUMMER(D2:D4)				=G6-C6	=D5*E
12			f_3_hat	=SUMMER(F2:F3)/SUMMER(E2:E3)					
13			f 4 hat	=G2/F2					
24									
25		1	2	3	4	5	skadereserver		
26	2008	7008147,76	25877312,92	31723256,17	32718766,17	33019648,17	=0		
27	2009	30105219,65	65758082,38	76744304,57	79560296,33	=D13*E27	=F27-E27		
28	2010	89181137,64	171787014,81	201380708,65	=D28*D12	=E28*D13	=F28-D28		
29	2011	109818684,47	198015727,55	=D5*D11	=D29*D12	=E29*D13	=F29-C29		
30	2012	97250541,11	=B30*D10	=C30*D11 =D30*D12 =E30*D13 =F30-B30		=F30-B30			
31	1 totale reserver =SUMMER(G26:								
32									
33									
34									-
H + → Klar	ChainLadder / Ark1 / BonhuetterFerguson / 🖅 /								
									15:10

Introduction
Chain ladder
An example
The naive loss ratio
Loss ratio prediction

The naive loss ratio method

- This method assumes that we a priori know the ultimate losses share of the premium, Pi. This is
- usually referred to as the ultimate loss ratio, *Li*.
- Li could come from
 - the pricing calculations or from
 - "guesstimates" by e.g. account executives or
 - fire engineers according to their experience (the infamous "underwriting judgment"),

 $\hat{E[C_{im}]} = L_i P_i$

Thus, the necessary IBNR reserve will be the difference between the ultimate losses and the reported claims

$$R_{ij} = L_i P_i - C_{ij}$$

- This method does not presuppose anything about the claims location in time, nor does it differentiate between actual claims or expected claims, it simply sees them as communicating vessels.
- This method is simplistic and have its most proponents among the "practical men".
- It has limited value outside the case in the early life of an accident year when just a few and small claims are known.

How can loss ratio be predicted?

- Example: One fire/combined product
- Individual losses adjusted for
 - inflation with appropriate index (FNO's index for home and cabin, CPI for contents)
 - portfolio development measured with indexed
 Earned Premium adjusted for rate changes

One fire/combined product

Portfolio development overview

 Portfolio development measured with indexed EPI adjusted for rate increases

		Rate	inflation	
Year	Original	changes	2013	trend
2004	50,3	65,4	98,1	4,1
2005	67,2	87,4	126,7	3,2
2006	84,3	109,6	153,4	2,6
2007	106,7	138,7	187,3	2,1
2008	127,2	165,4	215,0	1,9
2009	225,3	292,9	366,1	1,1
2010	254,1	330,3	396,4	1,0
2011	296,7	311,5	358,3	1,1
2012		347,0	364,4	1,1
2013			400,8	1,0

Loss Ratios

Average adj. Core L/R = 54%, CV = 9.5% (increased to 12.5%)

Loss Ratios

Average adj. Core L/R = 54%, CV = 9.5% (increased to 12.5%)

Fire/combined summary

	Frequency	Severity	Loss ratio
Core	1	. 220	55,0 %
Large	13,1	. 5,1	16,7 %
			71,7 %

Introduction to reserving

for a premium an insurance company commits itself to pay a sum if an event has occured

