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Risk premium expresses cost per 

policy and is important in pricing
•Up to now we have been busy trying to answer the question:

•What is our prediction of the risk premium into the near future, 

say the next 12 months?

•Risk premium is defined as P(Event)*Consequence of Event
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•From above we see that risk premium expresses cost per policy



The world of Poisson (Chapter 8)
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Number of claims

tk-2 tk-1 tk tk+1

Ik-1 Ik Ik+1

•Divide a given time period T into K small pieces of equal length h=T/K

•Muh above is the claim intensity per time unit

•There are two ways of modelling variation in muh:

•Assume muh stochastic then N is no longer Poisson

•Assume log muh can be expressed as a linear predictor of covariates and 

covariate effects
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Repetition claim size
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Skewness

Parametric estimation: the log normal family

Parametric estimation: the gamma family

Shifted distributions

Fitting a scale family

Scale families of distributions

Non parametric modelling

The concept

Non parametric estimation

Parametric estimation: fitting the gamma



The ultimate goal for calculating

the pure premium is pricing
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Pure premium = Claim frequency x claim severity

Parametric and non parametric modelling (section 9.2 EB)

The log-normal and Gamma families (section 9.3 EB) 

The Pareto families (section 9.4 EB) 

Extreme value methods (section 9.5 EB) 

Searching for the model (section 9.6 EB) 



Overview
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Important issues Models treated Curriculum

Duration (in 

lectures)

What is driving the result of a non-

life insurance company? insurance economics models Lecture notes 0,5

How is claim frequency modelled? 

Poisson, Compound Poisson 

and Poisson regression Section 8.2-4 EB 1,5

How can claims reserving be 

modelled?

Chain ladder, Bernhuetter 

Ferguson, Cape Cod, Note by Patrick Dahl 2

How can claim size be modelled?

Gamma distribution, log-

normal distribution Chapter 9 EB 2

How are insurance policies 

priced?

Generalized Linear models, 

estimation, testing and 

modelling. CRM models. Chapter 10 EB 2

Credibility theory Buhlmann Straub Chapter 10 EB 1

Reinsurance Chapter 10 EB 1

Solvency Chapter 10 EB 1

Repetition 1



Overview of this session

7

The chain ladder model (Patrick Dahl note)

An example

The naive loss ratio method (Patrick Dahl note)

How can loss ratio be predicted?

Introduction to reserving



Non-life insurance from a financial perspective:

for a premium an insurance company commits itself to pay a sum if an event has occured

Introduction to reserving
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Contract period, in which

• premium is earned

• claims might occur

• Incurred claims will be reported and settled

Policy holder 

signs up for an

insurance

Policy holder 

pays premium.

Issues that need to be solved:

• How much premium is earned?

• How much premium is unearned?

• How do we measure the number and size of unknown claims?

• How do we know if the reserves on known claims are sufficient?

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



Premium reserves
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The premium reserve is split in two parts:

• Provision for unearned premiums

• Provisions for unexpired risks

Earned and unearned premium:

• Written premium is earned evenly/uniformly over the cover period

• The share of the premium that has been earned is the past time’s proportion of the total period

• If a larger premium has been received the difference is the unearned premium

Example:

An insurance policy starts on September 1 2012 and is valid until August 31 2013.

The premium for the entire period is 2400.

At 31 December we have received two quarterly premiums or 1200.

We have then earned (4/12)*2400 = 800.

Unearned is 1200-800=400

Unexpired risk reserve

• Regard entire period covered by the insurance

• From a point in time, say 31/12-2012, we look forward to all the claims and expenses that could occur

after this point. Call them FC3112

• If FC3112>Future premiums yet not due (FP)+unearned premium reserve (UP) the difference is 

accounted as unexpired risk reserve

• In example assume FC3112 = 1800>FP+UP=1200+400=1600, so unexpired risk reserve is 200

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction

1/9-2012 31/8-201331/12-2012



Claims reserves
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Claims reserving issues:

• How do we measure the number and size of unknown claims? 

(IBNR reserve, i.e., Incurred Bot Not Reported)

• How do we know if the reserves on known claims are sufficient? 

(RBNS reserve, i.e., Reserved But Not Settled)

Accident

date

Reporting

date

Claims

payments

Claims close Claims

reopening

Claims

payments

Claims close

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



Claims reserves
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Claims occuring:

• A claim event is an event that gives rise to a claim against an 

insurer by a policy holder

• Gross claim loss: the ultimate cost to the insurer of a claim event, 

including benefit payments and claims handling expenses

• Net claim loss: deduction of reinsurance recoveries

• Example: settlement delays are considered (RBNS). The process

for estimating future reported claim amounts (IBNR) is similar.

• Step 1: Group the claims loss settlement amounts by the year in 

which the associated claims events occured

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction

Claims 

occurence year

Claims losses 

settled

2005 3963

2006 4975

2007 5873

2008 6401

2009 6563

2010 6358

2011 6918

2012 3072

Claim payments plus

claims handling expenses



The development of claims losses settled

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction

Incremental claims loss settlement data presented as a run-off triangle

• Claims losses settled for each claims occurence year are

often not paid on one date but rather over a number of years

Comments:

• The development year for a claims settlement amount reflects how long after the claims

occurence year the amount was settled.

• An amount settled during the claims occurence year was settled in development year 0

• In the example the largest development year for any claims occurence years is 7

• The data shown represents the incremental claims losses settled in the development year

• For any cell in the table, the value shown represents the incremental claims loss amount that

was settled in calendar year

• Each diagonal set of data represents the amounts settled in a single calendar year

• Green cells represent observed data – all red represent time periods in the future for which we

wish to estimate the expected claims settlements amounts

0 1 2 3 4 5 6 7

2005 1232 946 520 722 316 165 48 14

2006 1469 1201 708 845 461 235 56

2007 1652 1416 959 954 605 287

2008 1831 1634 1124 1087 725

2009 2074 1919 1330 1240

2010 2434 2263 1661

2011 2810 4108

2012 3072C
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The development of claims losses settled

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction

Incremental claims loss settlement data presented as a run-off triangle

• Claims losses settled for each claims occurence year are not 

paid on one date but rather over a number of years

Comments:

• The data can be presented as cumulative losses settled

• For each claims occurence year the incremental claims loss settled for a particular

development year is the amount settled in that development year

• The cumulative claims losses settled is the total amount settled up to that development year, 

i.e., the sum of the incremental claims losses settled up to that date. 

0 1 2 3 4 5 6 7

2005 1232 2178 2698 3420 3736 3901 3949 3963

2006 1469 2670 3378 4223 4684 4919 4975

2007 1652 3068 4027 4981 5586 5873

2008 1831 3465 4589 5676 6401

2009 2074 3993 5323 6563

2010 2434 4697 6358

2011 2810 6918

2012 3072C
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Cumulative claims loss 

settlements

Development year



Assumptions underlying the CLM

• Patterns of claims loss settlement observed in the past will
continue in the future

• The development of claims loss settlement over the
development years follows an identical pattern for every
claims occurence year

• But the observed claims loss settlement patterns may change
over time:
– Changes in product design and conditions

– Changes in the claims reporting, assessment and settlement 
processes (example: different owners)

– Change in the legal environment

– Abnormally large or small claim settlement amounts

– Changes in portfolio so that the history is not representative for 
predicting the future (example: strong growth)

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



Development patterns

and development factors

• The insurer may tend towards using any of the following patterns for estimation
purposes:

• The proportion of the ultimate cumulative claims losses that is settled in a particular
development year (development pattern for incremental claims losses settled)

• The proportion of the ultimate cumulative claims losses that is settled by a particular
development year (development pattern for cumulative claims losses settled)

• The ratio of the cumulative losses settled by a particular year to the cumulative claims
losses settled by the previous development year (cumulative loss factor)

• The three patterns are equivalent

• CLM relies on the last pattern above holds for all claims occurence years. For any
development year the quotient

– Expected cumulative claims losses settled up to and including the development
year/Expected cumulative claims losses settled up to and including the previous
development year

is called the cumulative claims loss settlement factor for that development year

• Example: the cumulative claims settlement factor for development year 4 is derived
from the cumulative settlement amounts for development years 3 and 4. 

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



Estimating future claims

settlement amounts

• Underlying assumption (CLM): 
– the cumulative claims loss settlement 

factor for a specific development year is 
assumed to be the same for all claims
occurence years

• The CLM estimator for each of the
factors is based on the cumulative
settlement data for as many claims
occurence years as possible

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



CLM in practice

0 1 2 3 4 5 6 7

2005 1232 2178 2698 3420 3736 3901 3949 3963

2006 1469 2670 3378 4223 4684 4919 4975

2007 1652 3068 4027 4981 5586 5873

2008 1831 3465 4589 5676 6401

2009 2074 3993 5323 6563

2010 2434 4697 6358

2011 2810 6918

2012 3072

1,9989      1,3140      1,2422      1,1151      1,0491      1,0118      1,0035      
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CLM estimator for claims 

loss settlement factor

Cumulative claims loss 

settlements

Development year

3736+4684+5586+6401

=20407

3736+4684+5586+6401

=20407

20407/18300=1,1151

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction

Determining the CLM estimator for the cumulative claims loss settlement factor

Comments:

• These CLM estimators for the cumulative claims loss settlement factors are used to estimate

the cumulative claims loss settlement amount in the future

• For each claims occurence year the last historical observation is used together with the

appropriate CLM estimator for the development factor to estimate the cumulative settlement 

amount in the next development year

• This value is, in turn, multiplied by the estimator for the development factor for the next

development year and so on.  



0 1 2 3 4 5 6 7

2005 1232 2178 2698 3420 3736 3901 3949 3963

2006 1469 2670 3378 4223 4684 4919 4975 4993

2007 1652 3068 4027 4981 5586 5873 5942 5963

2008 1831 3465 4589 5676 6401 6715 6794 6818

2009 2074 3993 5323 6563 7319 7678 7768 7796

2010 2434 4697 6358 7898 8807 9239 9348 9381

2011 2810 4918 6462 8027 8952 9391 9502 9535

2012 3072 5686 7471 9280 10349 10857 10985 11024

1,8508         1,3140         1,2422      1,1151      1,0491      1,0118      1,0035      CLM estimator for claims 

Cumulative claims loss 

settlements

Development year
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Determining the estimated cumulative claims loss settlements in future periods

6401

*1,0491

=

6715

*1,0118

=

6794

*1,0035

=

CLM in practice
Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction

Comments:

• The values shown in the red cells are the estimators for future cumulative claims settled

• These estimates are always based on the latest available cumulative claims settlement 

amounts for the relevant claims occurence year, i.e., the estimated future cumulative claims

settlements are always based on the last green diagonal of data

• It is now simple to derive the estimated incremental claims settlement amounts for the future

periods

• An incremental settlement amount is the difference between tow consecutive cumulative

settlement amounts



0 1 2 3 4 5 6 7

2005 1232 946 520 722 316 165 48 14

2006 1469 1201 708 845 461 235 56 18

2007 1652 1416 959 954 605 287 69 21

2008 1831 1634 1124 1087 725 314 79 24

2009 2074 1919 1330 1240 756 359 91 28

2010 2434 2263 1661 1540 909 432 109 33

2011 2810 4108 1544 1565 924 439 111 34

2012 3072 2614 1785 1810 1069 508 128 39C
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Development yearIncremental claims loss 

settlements

Determining the estimated incremental settlement amounts from the

estimated cumulative amounts

6715-

6401

=

CLM in practice
Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction

6794-

6715

=

6818-

6794

=



Determining the estimated incremental settlement amounts from the

estimated cumulative amounts

CLM in practice
Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction

0 1 2 3 4 5 6 7

2005

2006 18

2007 69 21

2008 314 79 24

2009 756 359 91 28

2010 1540 909 432 109 33

2011 1544 1565 924 439 111 34

2012 2614 1785 1810 1069 508 128 39

Incremental claims loss 

settlements

Development year
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Calendar year

Estimated claims loss 

settlement amounts

2013 6855

2014 4718

2015 2181

2016 1069+439+109+28=1645

2017 652

2018 162

2019 39

Comments:

• Group the estimated incremental claims loss settlement amounts by the year in which they will

be settled

• These cash flows can then be discounted to determine the technical provisions

• Norwegian State Treasury Bonds (Statsobligasjoner in Norwegian) may be used as discount

factor

• Example: a cash flow due in 2017 is discounted with a 4 year old Norwegian State 

Treasury Bond etc. Why do we hope that the development year does not exceed 10 ??



Claims reserves

• Claims reserving is not only about statistical models:

• What is the purpose of the reserving?

• Know your data:

– Is the history consistant? (relevant when a company has had several owners)

– Is the history representative when future predictions are to be made? 

(relevant during strong growth)

– Has there been significant events that affect settlement practice? (relevant 

for agencies)

• Should the reserves be calculated gross or net?

• Adjust for inflation

• Know your claims department:
– How are provisions set?

– When do they set the provision?

– How will the lead time be affected by the size of the claims?

– Are there any backlogs?

– When do they change the reserves?

21

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



Notation
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Cij Cumulative claims from accident year i, reported through the end of period j

Dij = Cij- Cij-1 Incremental claims from accident year i, reported in period j

Cim Ultimate claims for accident year i, where

m     is the last development period that is known and

Ri = E[Cim] – Cij is the reserve for accident year i

fi one period loss development factor. Also called age-to-age factor or link ratio

Fij Development factor from accident year i, period j, to ultimate 

Li Claims relative to an exposure for accident year i

Pi A measure of exposure for accident year i

Ak Experience up to development period k

 Reporting year

Accident 

year 1 2 3

1998 C11 C12 C13

1999 C21 C22

2000 C31

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



Chain ladder
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Chain ladder builds on that cumulative claims in a period are proportional to the

claims in the preceding period. The proportionality factor depends on the number

of periods since outset, but is expected to be the same for all periods. It is 

assumed that:

jijijiiij fCCCCCECL *],...,,|[  )1( 211 

Observe that fj does not depend on accident year.
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CL1 just brings us one step ahead, whereas we want to get to the end. To get

there we are going to utilize the rule of double expectation:

X]]|E[E[Z then finite, is E[Z] If  )6.1 (Lemma

Using this lemma and CL1, we find

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



Chain ladder
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Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



Chain ladder

25

We could rewrite CL1 on the following form:

ijijiiijij fCCCCCECL  ],...,,|/[  )'1( 211

Thus, we could use observed ratios Cij+1/Cij as unbiased estimators of fj. Before

combining estimates of the same fj we make a further assumption, 

2
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Observe that the last factor in the variance is no depending on accident year. We

also need the following Lemma

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



Chain ladder
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Chain ladder
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Solve the system

Var , which we want to minimize


n

i

ii Xw
1

Constraint






















0),,...,(

n1,...,k   ,0),,...,(

1

1






n

n

k

wwL

wwL
w

(1)

(2)

Chain ladder

An example

The naive loss ratio

Loss ratio prediction

Introduction



Chain ladder
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Continuing with (2) yields

(4)

Chain ladder

An example

The naive loss ratio

Loss ratio prediction
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Chain ladder
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Rewriting CL3 gives
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Chain ladder
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and

To be able to use the algorithm suggested by formula (6.2) with the estimators 

from (6) above we need to prove that estimates are uncorrelated. Define the set of

experience up to development period k by 
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Chain ladder
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Chain ladder
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Thus we have shown that the estimates of fj and fk are uncorrelated. If we combine

this with (6.2) it shows that the following ultimate estimator is unbiased,
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Chain ladder
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Chain ladder - example
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• Example: one fire/combined product (fire/combined in 

Norway includes home, contents and cabin)

• The triangle shows the payments for the different years

• How do we fill out the blanks?

954.1
8.1092.891.300.7

0.1988.1718.659.25
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42322212
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• We start by estimating f1, f2, f3, f4

 1  2  3  4  5

2008  7 008 148  25 877 313  31 723 256  32 718 766  33 019 648

2009  30 105 220  65 758 082  76 744 305  79 560 296  

2010  89 181 138  171 787 015  201 380 709   

2011  109 818 684  198 015 728    

2012  97 250 541     

f_1_hat 1,954

f_2_hat 1,176

f_3_hat 1,035

f_4_hat 1,009
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Chain ladder - example
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• Then we use the formula to fill out the blanks
^

1

^

*...**]|[  mjijijim ffCCCE
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• This method assumes that we a priori know the ultimate losses share of the premium, Pi . This is

• usually referred to as the ultimate loss ratio, Li . 

• Li could come from 

– the pricing calculations or from 

– “guesstimates” by e.g. account executives or 

– fire engineers according to their experience (the infamous “underwriting judgment”),

The naive loss ratio method

35

iiim PLCE 
^

][

• Thus, the necessary IBNR reserve will be the difference between the ultimate losses and the reported

claims

ijiiij CPLR 

• This method does not presupppose anything about the claims location in time, nor does it differentiate 

between actual claims or expected claims, it simply sees them as communicating vessels. 

• This method is simplistic and have its most proponents among the “practical men”. 

• It has limited value outside the case in the early life of an accident year when just a few and small claims are

known.
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How can loss ratio be predicted?

• Example: One fire/combined product

• Individual losses adjusted for 

– inflation with appropriate index (FNO’s index 

for home and cabin, CPI for contents)

– portfolio development measured with indexed 

Earned Premium adjusted for rate changes
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One fire/combined product

Portfolio development overview
• Portfolio development measured with indexed EPI 

adjusted for rate increases

37 26 September 2013

Year Original

Rate 

changes

inflation 

2013 trend

2004 50,3 65,4 98,1 4,1

2005 67,2 87,4 126,7 3,2

2006 84,3 109,6 153,4 2,6

2007 106,7 138,7 187,3 2,1

2008 127,2 165,4 215,0 1,9

2009 225,3 292,9 366,1 1,1

2010 254,1 330,3 396,4 1,0

2011 296,7 311,5 358,3 1,1

2012  347,0 364,4 1,1

2013 400,8 1,0
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Loss Ratios

38 26 September 2013

Average adj. Core L/R = 54%, CV = 9.5% (increased to 12.5%)
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Loss Ratios

39 26 September 2013

Average adj. Core L/R = 54%, CV = 9.5% (increased to 12.5%)
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Individual losses between NOK 1 M 

and NOK 10 M Frequency and Severity fit

40 26 September 2013

Poisson with mean 13.1

Log Normal with conditional mean 5.1 M
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Fire/combined summary

41 26 September 2013

Frequency Severity Loss ratio

Core 1 220 55,0 %

Large 13,1 5,1 16,7 %

71,7 %
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Non-life insurance from a financial perspective:

for a premium an insurance company commits itself to pay a sum if an event has occured

Introduction to reserving

42

Contract period

Policy holder 

signs up for an

insurance

Policy holder 

pays premium.

Insurance company

starts to earn

premium

During the duration of the policy, claims might or might not occur:

• How do we measure the number and size of unknown claims?

• How do we know if the reserves on known claims are sufficient?

During the duration of the policy, some of

the premium is earned, some is unearned

• How much premium is earned?

• How much premium is unearned?

• Is the unearned premium sufficient?

Accident

date

Reporting

date

Claims

payments

Claims close Claims

reopening

Claims

payments

Claims close

Premium reserve, prospective

Claims

reserve, 

retrospective

prospectiveretrospective
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