Non-life insurance mathematics

Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Introduction to reserving

Non-life insurance from a financial perspective:

for a premium an insurance company commits itself to pay a sum if an event has occured

Issues that need to be solved:

- How much premium is earned?
- How much premium is unearned?
- · How do we measure the number and size of unknown claims?
- · How do we know if the reserves on known claims are sufficient?

Premium reserves

The premium reserve is split in two parts:

- Provision for unearned premiums
- Provisions for unexpired risks

Earned and unearned premium:

- · Written premium is earned evenly/uniformly over the cover period
- The share of the premium that has been earned is the past time's proportion of the total period
- · If a larger premium has been received the difference is the unearned premium

Example:

An insurance policy starts on September 1 2012 and is valid until August 31 2013.

The premium for the entire period is 2400.

At 31 December we have received two quarterly premiums or 1200.

We have then earned $(4/12)^{*}2400 = 800$.

Unearned is 1200-800=400

Unexpired risk reserve

- · Regard entire period covered by the insurance
- From a point in time, say 31/12-2012, we look forward to all the claims and expenses that could occur after this point. Call them FC₃₁₁₂
- If FC₃₁₁₂>Future premiums yet not due (FP)+unearned premium reserve (UP) the difference is accounted as unexpired risk reserve
- In example assume FC₃₁₁₂ = 1800>FP+UP=1200+400=1600, so unexpired risk reserve is 200

Claims reserves

Chain ladder An example

The naive loss ratio

oss ratio prediction

Claims reserving issues:

- How do we measure the number and size of unknown claims? (IBNR reserve, i.e., Incurred Bot Not Reported)
- How do we know if the reserves on known claims are sufficient? (RBNS reserve, i.e., Reserved But Not Settled)

Claims	Claims losses	_
occurence year	settled	
2005	3963	
2006	4975	
2007	5873	
2008	6401	
2009	6563	
2010	6358	
2011	6918	
2012	3072	

Claim payments plus claims handling expenses

The development of claims losses settled

• Claims losses settled for each claims occurence year are often not paid on one date but rather over a number of years

Incremental claims loss settlement data presented as a run-off triangle

Incrementa	al claims loss	Development year									
settl	ements	0	1	2	3	4	5	6	7		
	2005	1232	946	520	722	316	165	48	14		
e	2006	1469	1201	708	845	461	235	56			
enc	2007	1652	1416	959	954	605	287				
nı	2008	1831	1634	1124	1087	725					
000	2009	2074	1919	1330	1240						
JS (2010	2434	2263	1661							
ain	2011	2810	4108								
ye Ve	2012	- 3072									

Comments:

- The development year for a claims settlement amount reflects how long after the claims occurrence year the amount was settled.
 - An amount settled during the claims occurence year was settled in development year 0
- In the example the largest development year for any claims occurence years is 7
- The data shown represents the incremental claims losses settled in the development year
- For any cell in the table, the value shown represents the incremental claims loss amount that was settled in calendar year
- Each diagonal set of data represents the amounts settled in a single calendar year
- Green cells represent observed data all red represent time periods in the future for which we wish to estimate the expected claims settlements amounts

Assumptions underlying the CLM

- Patterns of claims loss settlement observed in the past will continue in the future
- The development of claims loss settlement over the development years follows an identical pattern for every claims occurrence year
- But the observed claims loss settlement patterns may change over time:
 - Changes in product design and conditions
 - Changes in the claims reporting, assessment and settlement processes (example: different owners)
 - Change in the legal environment
 - Abnormally large or small claim settlement amounts
 - Changes in portfolio so that the history is not representative for predicting the future (example: strong growth)

Determining the CLM estimator for the cumulative claims loss settlement fa	actor
--	-------

Cumulative	claims loss	Development year								
settler	nents	0 1 2 3 4 5 6					7			
	2005	1232	2178	2698	3420	3736	3901	3949	3963	
e	2006	1469	2670	3378	4223	4684	4919	4975		
enc	2007	1652	3068	4027	4981	5586	5072	3736+4684	+5586+6401	
anc	2008	1831	3465	4589	567	6401		=20407		
000	2009	2074	3993	5323	6563			3736±4684	±5586±6/01	
JS	2010	2434	4697	6358				=20407	-3300+0 + 01	
ain ar	2011	2810	6918							
CI	2012	3072						20407/1830	0=1,1151	
CLM estimate	or for claims					K				
loss settlen	nent factor		1,9989	1,3140	1,2422	1,1151	1,0491	1,0118	1,0035	

Comments:

- These CLM estimators for the cumulative claims loss settlement factors are used to estimate the cumulative claims loss settlement amount in the future
- For each claims occurrence year the last historical observation is used together with the appropriate CLM estimator for the development factor to estimate the cumulative settlement amount in the next development year
- This value is, in turn, multiplied by the estimator for the development factor for the next development year and so on.

Determining the estimated cumulative claims loss settlements in future periods

Cumulative	claims loss	Development year								
settler	nents	0	1	2	3	4	5	6	7	
	2005	1232	2178	2698	3420	3736	3901	3949	3963	
	2006	1469	2670	3378	4223	4684	4919	4975	4993	
ear	2007	1652	3068	4027	4981	5586	5873	5942	5963	
urence y	2008	1831	3465	4589	5676	6401	6401 *1,0491	6715 *1,0119 = 6794	6794 *1,0035 = 6818	
occi	2009	2074	3993	5323	6563	7319	7678	7768	7796	
IS (2010	2434	4697	6358	7898	8807	9239	9348	9381	
aim	2011	2810	4918	6462	8027	8952	9391	9502	9535	
C	2012	3072	5686	7471	9280	10349	10857	10985	11024	
CLM estimate	or for claims		1,8508	1,3140	1,2422	1,1151	1,0491	1,0118	1,0035	

Comments:

- The values shown in the red cells are the estimators for future cumulative claims settled
- These estimates are always based on the latest available cumulative claims settlement amounts for the relevant claims occurrence year, i.e., the estimated future cumulative claims settlements are always based on the last green diagonal of data
- It is now simple to derive the estimated incremental claims settlement amounts for the future periods
- An incremental settlement amount is the difference between tow consecutive cumulative settlement amounts

Determining the estimated incremental settlement amounts from the estimated cumulative amounts

Incremental	claims loss	Development year										
settler	ments	0	1	2	3	4	5	6	7			
	2005	1232	946	520	722	316	165	48	14			
	2006	1469	1201	708	845	461	235	56	18			
ear	2007	1652	1416	959	954	605	287	69	21			
urence y	2008	1831	1634	1124	1087	725	6715- 6401 = 314	6794- 6715 = 79	6818- 6794 = 24			
ö	2009	2074	1919	1330	1240	756	359	91	28			
JS 0	2010	2434	2263	1661	1540	909	432	109	33			
ain	2011	2810	4108	1544	1565	924	439	111	34			
Ū	2012	3072	2614	1785	1810	1069	508	128	39			

Determining the estimated incremental settlement amounts from the estimated cumulative amounts

Comments:

- Group the estimated incremental claims loss settlement amounts by the year in which they will be settled
- These cash flows can then be discounted to determine the technical provisions
- Norwegian State Treasury Bonds (Statsobligasjoner in Norwegian) may be used as discount factor
 - Example: a cash flow due in 2017 is discounted with a 4 year old Norwegian State Treasury Bond etc. Why do we hope that the development year does not exceed 10 ??

It can be useful to be able to predict loss ratio

Overview

			Duration (in
Important issues	Models treated	Curriculum	lectures)
What is driving the result of a non-			
life insurance company?	insurance economics models	Lecture notes	0,5
	Poisson, Compound Poisson		
How is claim frequency modelled?	and Poisson regression	Section 8.2-4 EB	1,5
How can claims reserving be	Chain ladder, Bernhuetter		
modelled?	Ferguson, Cape Cod,	Note by Patrick Dahl	2
	Gamma distribution, log-		
How can claim size be modelled?	normal distribution	Chapter 9 EB	2
	Generalized Linear models,		
How are insurance policies	estimation, testing and		
priced?	modelling. CRM models.	Chapter 10 EB	2
Credibility theory	Buhlmann Straub	Chapter 10 EB	1
Reinsurance		Chapter 10 EB	1
Solvency		Chapter 10 EB	1
Repetition			1

Overview of this session

The Bornhuetter Ferguson model

An example

Stochastic claims reserving in non-life insurance

n example

The Bornhuetter-Ferguson method

- The Bornhuetter-Ferguson method is more sophisticated than the Naive loss method
- It looks on where in time claims will be reported or paid
- It is very similar to an ordinary budgeting model used by businesses
- You budget for future claims by period
- The sum of these future budgeted claims is the IBNR reserve

Bornhuetter Ferguso

The Bornhuetter-Ferguson method

• More formally, the following principles apply: (*BF*1) Expected claims are considered known, i.e. we have a

> predictor of final claims identical to the mean $C_{im}^N = E[C_{im}]$ (*BF* 2) Unemerged claims are independent of emerged claims, or C_{ij} is independent of $C_{im} - C_{ij}$ (*BF* 3) The F_{ij} are known, in the meaning that

we know
$$F_{ij} = \frac{E[C_{im}]}{E[C_{ij}]}$$

- F_{ij} in (BF3) is the factor that would develop losses from development period *j* to the end for accident year *i*.
- Fij could have been determined by the Chain Ladder technique

• The unbiased Bonrhuetter-Ferguson predictor is given by

Λ

$$C_{im}^{BF} = C_{ij} + (1 - \frac{1}{F_{ij}}) * \hat{C}_{im}$$
⁽¹⁾

• This predictor takes emerged claims into account as it swaps past expected emergegence with real emergence (i.e. it is better than the Naive Loss Ratio)

٨

• (1) can be re-written

$$C_{im}^{BF} = \frac{1}{F_{ij}} C_{ij} F_{ij} + (1 - \frac{1}{F_{ij}}) * \hat{C}_{im}^{N} =$$

$$= W_{ij} C_{ij} F_{ij} + (1 - W_{ij}) \hat{C}_{im}^{N} \text{ with } W_{ij} = \frac{1}{F_{ij}}$$
(2)

Chain ladder type estimate

«Known» expected claims

• We make a further assumption

$$(BF4) \text{ var}[C_{ij} * F_{ij}] = F_{ij} * \text{var}[C_{im}]$$

(Theorem) The weights implicitly defined in (2) produces the best

combination of the two predictors $C_{im}^{CL} = C_{ij} * F_{ij}$ and C_{im}^{N} (in the meaning minizing quadratic loss)

• Proof: we ultimately want to weight between chain ladder and the naive loss ratio method.

 $\mathcal{E}_{\rm NL}$

Introduce the two random variables

$$\varepsilon_{\rm CL} = C_{im} - C_{ij}F_{ij}$$
$$\hat{\varepsilon}_{\rm NL} = C_{im} - C_{im}^{N}$$

Error from Chain Ladder estimate

Error from naive loss method

• How should $\varepsilon_{\rm CL}$ and error?

be weighted to minimize total

• Note that

The Bornhuetter-Ferguson
method

$$\varepsilon_{\text{Total}} = W_{ij}\varepsilon_{\text{CL}} + (1 - W_{ij})\varepsilon_{\text{NL}} =$$

 $= W_{ij}(C_{im} - C_{ij}F_{ij}) + (1 - W_{ij})(C_{im} - C_{im})$
 $= W_{ij}C_{im} - W_{ij}C_{ij}F_{ij} + C_{im} - C_{im} - W_{ij}C_{im} + W_{ij}C_{im}$
(3)
 $= C_{im} - C_{im}^{NBF}$

- We want to find the best combination of the two predictors (CL + NL) so that the error in (3) is minimized
- Thus, we need to solve the problem

$$\min_{W_{ij}} \{ E\{\varepsilon_{Total}\}^2\} = \min_{W_{ij}} \{ E(C_{im} - C_{im}^{BF})^2\} \}$$
(4)

n example

tochastic claims reserving

(5)

• In general for an estimator W of a parameter theta:

Mean square error of estimator W is $E(W - \theta)^2$: $E(W - \theta)^2 = E(W^2 - 2W\theta + \theta^2) = EW^2 - 2EW\theta + \theta^2$

 $= EW^{2} - (EW)^{2} - 2EW\theta + \theta^{2} + (EW)^{2}$

 $= \operatorname{var} W + (EW - \theta)^2 = \operatorname{var} W$ if $EW = \theta$

- From (4) and (5) we see that we want to minize the variance of C_{im}^{BF}
- The strategy is now to use Lemma 6.2 on the two variables ε_{CL} and ε_{NL}
- We can see that ε_{CL} and ε_{NL} have the same mean, 0.
- We also need to prove that ε_{CL} and ε_{NL} are uncorrelated
- To show the uncorrelatedness of the components we need the auxillary result,

$$Cov[-C_{ij}F_{ij}, C_{im}] = -F_{ij}Cov[C_{ij}, C_{im}] =$$

= $-F_{ij}Cov[C_{ij}, (C_{im} - C_{ij}) + C_{ij}] = -F_{ij}Cov[C_{ij}, (C_{im} - C_{ij})]$
- $F_{ij}Cov[C_{ij}, C_{ij}] = -F_{ij}0 - F_{ij}var[C_{ij}] = -F_{ij}var[C_{ij}]/F_{ij}$
= $-var[C_{ij}] = -v^{2}$

Bornhuetter Ferguson An example

ochastic claims reserving

 Using the calculation rules for covariances and remembering that covariances between a random variable and a constant vanishes, we get that

$$Cov[\varepsilon_{CL}, \varepsilon_{NL}] = Cov[C_{im} - C_{ij}F_{ij}, C_{im} - C_{im}^{N}] =$$

= $Cov[C_{im}, C_{im}] + Cov[-C_{ij}F_{ij}, C_{im}] = v^{2} - v^{2} = 0$ (6)

• (6) proves uncorrelatedness.

We also need to calculate the variance of
$$\varepsilon_{CL}$$
 and ε_{NL}
 $\operatorname{var}[\varepsilon_{NL}] = \operatorname{var}[C_{im} - C_{im}^{N}] = v^{2},$
 $\operatorname{var}[\varepsilon_{CL}] = \operatorname{var}[C_{im} - C_{ij}F_{ij}] =$
 $\operatorname{var}[C_{im}] + F_{ij}^{2} \operatorname{var}[C_{ij}] + 2Cov[C_{im}, -C_{ij}F_{ij}]$
 $= v^{2} + F_{ij}^{2}v^{2} / F_{ij} - 2v^{2} = v^{2}(F_{ij} - 1)$

• Using Lemma 6.2 we find that the optimal weights are

$$W_{ij} = \frac{\frac{1}{\nu^2 (F_{ij} - 1)}}{\frac{1}{\nu^2 (F_{ij} - 1)} + \frac{1}{\nu^2}} = \frac{1}{F_{ij}}$$

Bornhuetter Fergusor

An example

Bornhuetter-Ferguson example

							Skadereserver
Tidsperioden	Tidsperioden	Periode + 0	Periode + 1	Periode + 2	Periode + 3	Periode + 4	(Tidsperioden)
0	2008	7 008 148	25 877 313	31 723 256	32 718 766	33 019 648	0
1	2009	30 105 220	65 758 082	76 744 305	79 560 296		724 970
2	2010	89 181 138	171 787 015	201 380 709			8 532 036
3	2011	109 818 684	198 015 728				40 795 737
4	2012	97 250 541					144 079 246
methode	Dato + 0	Dato + 1	Dato + 2	Dato+3	Tidsperioden	Tidsperioden	Skadeprosent
					-	-	•
Standard							
Standard triangel	1,9543	1,1762	1,0351	1,0092			
Standard triangel År-vektet	1,9543	1,1762	1,0351	1,0092			
Standard triangel År-vektet triangel Sisteverdivektet	1,9543 2,1052	1,1762	1,0351	1,0092			
Standard triangel År-vektet triangel Sisteverdivektet triangel	1,9543 2,1052 1,8031	1,1762 1,1825 1,1723	1,0351 1,0344 1,0367	1,0092 1,0092 1,0092			
Standard triangel År-vektet triangel Sisteverdivektet triangel Gjennomsnittsv ektet triangel	1,9543 2,1052 1,8031 2,4015	1,1762 1,1825 1,1723 1,1884	1,0351 1,0344 1,0367 1,0340	1,0092 1,0092 1,0092 1,0092			· · · · · · · · · · · · · · · · · · ·
Standard triangel År-vektet triangel Sisteverdivektet triangel Gjennomsnittsv ektet triangel K last-w eighted Chain Ladder	1,9543 2,1052 1,8031 2,4015 1,9712	1,1762 1,1825 1,1723 1,1884 1,1884	1,0351 1,0344 1,0367 1,0340 1,0340	1,0092 1,0092 1,0092 1,0092 1,0092			· · · · · · · · · · · · · · · · · · ·
Standard triangel År-vektet triangel Sisteverdivektet triangel Gjennomsnittsv ektet triangel K last-w eighted Chain Ladder Uten de	1,9543 2,1052 1,8031 2,4015 1,9712	1,1762 1,1825 1,1723 1,1884 1,1884	1,0351 1,0344 1,0367 1,0340 1,0340	1,0092 1,0092 1,0092 1,0092 1,0092			· · · · · · · · · · · · · · · · · · ·
Standard triangel År-vektet triangel Sisteverdivektet triangel Gjennomsnittsv ektet triangel K last-w eighted Chain Ladder Chain Ladder uten de ekstreme utviklings	1,9543 2,1052 1,8031 2,4015 1,9712 2,0553	1,1762 1,1825 1,1723 1,1884 1,1884 1,1884	1,0351 1,0344 1,0367 1,0340 1,0340	1,0092 1,0092 1,0092 1,0092 1,0092			· · · · · · · · · · · · · · · · · · ·

Bornhuetter Fergusor

An example

Bornhuetter-Ferguson example

X 🖌	≝) • (≅ • =	_		_	_	_	EksempelChainLad	der - Microsoft Excel	_		_		_ 0 <u>_ X</u>
Fil	Hjem Sett inn	Sideoppsett Fo	rmler Data Se ç	gjennom Visning	Tillegg								∝ 🕜 🗆 🗗 🔀
fx Sett ir funksj	Autosummer Nylig brukt	Økonomisk Logisk Te	kst Dato og Opps klokkeslett * refer	anse + trigonometri + fur	Flere sksjoner v behandling	Definer navn * 5 Bruk i formel * 4 Opprett fra utvalg	는 Spor et overordnet nivå 끊 Spor et underordnet niv 옷 Fjern piler ~	xå ∜ Feilkontroll ▼	vervåkingsvindu Bereg altern	📕 📑 Beregn nå nings- 📑 Beregn ark titver -			
	H6 *	Funksjo	nsbibliotek		Def	inerte navn		Formelrevisjon		Beregning			~
	Λ	B	C	D	F	F	G	н	1		к	1	M
1	Tidsperioden	Tidsperioden	Periode +	0 Periode + 1	Periode + 2	Periode + 3	Periode + 4	Skadereserver (Tidsperioden)	opptjent	periode+4 beregne	skadereserve beregnet		skaderesei chain lac
2	0	2008	7008147,76	25877312,92	31723256,17	32718766,17	33019648,17	0	34689213				0
3	1	2009	30105219,65	65758082,38	76744304,57	79560296,33		724970,20432	99392051	=F3+(1-1/E19)*H21/100*l3	=J3-F3		731637,035332
4	2	2010	89181137,64	171787014,81	201380708,65			8532036,1183	178213379	=E4+(1-1/(D19*E19))*H22/100*l4	=J4-E4		8993401,65690
5	3	2011	109818684,47	198015727,55				40795736,602	277531254	=D5+(1-1/(C19*D19*E19))*H23/100*I5	=J5-D5		45300160,9535
7	4	2012	97250541,11				-	144079245,64	331404506	=C6+(1-1/(B19^C19^D19^E19))^H24/100^l6	=36-C6		101211047
/													191311847
0													
10													
11													=
11													
12	methode	Dato + 0	Dato +	1 Dato + 2	Dato + 3	Tidsperioden	Tidsperioden	Skadeprosent					
13	Standard triangel	1,9543090269	1,176241115	1,0351395545	1,0091960069								
14	År-vektet triangel	2,1052283894	1,1824566176	1,0344165591	1,0091960069								
15	Sisteverdivektet triangel	1,8031150938	1,1722696787	1,0366931693	1,0091960069								
16	Gjennomsnittsvekt et triangel	2,4015305087	1,1884166511	1,034037124	1,0091960069								
17	K last-weighted Chain Ladder	1,9712203148	1,1884166511	1,034037124	1,0091960069								
18	Chain Ladder uten de ekstreme utviklings	2,0552729253	1,1722696787	1,034037124	1,0091960069								
19	Oppdater	2,0484460431	1,180011732	1,0347267758	1,0091960069								
20				-		2008	0	95,187078193					•
Klar	• ▶ ChainLadder ∠	Ark1 BonhuetterFer	guson / 🞾 /							81		III I 145 % (-)	→ [
•		0 💽				-						N0 🔺 🏴 🛱 🔁	15:16 24.05.2013

Bornhuetter-Ferguson example Stochastic claims reserving

Time period	Year	Period + 0	Period + 1	Period + 2	Period + 3	Period + 4	Claims reserves (The time period)	earned premium	periode+4 calculated	claim s reserve calculated
0	2008	7 008 148	25 877 313	31 723 256	32 718 766	33 019 648	0	34 689 213		
1	2009	30 105 220	65 758 082	76 744 305	79 560 296		724 970	99 392 051	80 285 267	724 970
2	2010	89 181 138	171 787 015	201 380 709			8 532 036	178 213 379	209 912 745	8 532 036
3	2011	109 818 684	198 015 728				40 795 737	277 531 254	238 811 464	40 795 737
4	2012	97 250 541					144 079 246	331 404 506	241 329 787	144 079 246

	claims reserves chain ladder (left axis)	claims reserves Bornhuetter Ferguson (left axis)	predicted loss ratio (right axis)
2008	0	0	95,19
2009	731 637	724 970	80,05
2010	8 993 402	8 532 036	113,00
2011	45 300 161	40 795 737	78,00
2012	136 286 648	144 079 246	72,00

Bornhuetter Ferguson

Comparison Bornhuetter-Ferguson and chain-ladder

Stochastic claims reserving

How good is our model?

- Up to now we have (only) given an estimate for the mean/expected ultimate claim
- We would also like to know how good this estimate predicts the outcome of random variables
- How accurate are our reserves estimates?
- Imagine a non-life insurance company with a total claims reserve of 6 047 061 NOK and a profit-loss statement given below
- The earnings statement is slightly positive (+60 000)
- If the claims reserves are reduced by 1% this doubles the income before taxes
- Only a slight change of the claims reserves may have an enormous impact on the earning statement
- Therefore it is very important to know the uncertainties in the estimates

	Earning statement at 31
	December
a) Premium earned	4 020 000
b) Claims incurred current	
accident year	-3 340 000
c) Loss experience prior years	-40 000
d) Underwriting and other exper	-1 090 000
e) Investment income	510 000
Income before taxes	60 000

The mean square error of prediction measures the quality of the estimated claims reserves

Stochastic claims reservir

- Assume that we have a random variable $\, heta \,$ and that W estimates $\, heta \,$

• Then the mean square error of W for θ is given by $E(W-\theta)^2$. We also have that

 $E(W-\theta)^{2} = E(W^{2} - 2W\theta + \theta^{2}) = EW^{2} - 2EW\theta + \theta^{2}$

 $= EW^{2} - (EW)^{2} - 2EW\theta + \theta^{2} + (EW)^{2}$

 $= \operatorname{var} W + (EW - \theta)^2 = \operatorname{var} W$ if $EW = \theta$

- Normally we measure the quality of the estimators and the predictors for the ultimate claims by means of second moments such as the mean square error of prediction defined above
- We really want to derive the whole predictive distribution of stochastic claims reserving.
- Most often it is not feasible to calculate this distribution analytically
- Therefore we have to rely on numerical algorithms such as Bootstrapping methods and Monte Carlo Simulation methods to produce a simulated predictive distribution for the claims reserves

The previous example revisited Stochastic claims reserving

						Claims	Claims reserve/	Standard	Relative standard
Year	Period + 0	Period + 1	Period + 2	Period + 3	Period + 4	(time period)	Payments(%)	error	error (%)
2008	7 008 148	25 877 313	31 723 256	32 718 766	33 019 648		0,00		
2009	30 105 220	65 758 082	76 744 305	79 560 296	80 331 442	771 145	0,97	255 413	33,1
2010	89 181 138	171 787 015	201 380 709		210 358 696	8 977 988	4,46	2 201 288	24,5
2011	109 818 684	198 015 728			246 995 944	48 980 216	24,74	12 094 890	24,7
2012	97 250 541				271 859 031	174 608 490	179,55	55 673 299	31,9

		claims		
		claim s	reserve	
	claims	reserves	stochastic	
	reserves	Bornhuetter	method with	
	chain ladder	Ferguson	Bootstrap	
2008	0	0		
2009	731 637	724 970	771 145	
2010	8 993 402	8 532 036	8 977 988	
2011	45 300 161	40 795 737	48 980 216	
2012	136 286 648	144 079 246	174 608 490	

Imagine you want to build a reserve risk model

There are three effects that influence the best estimat and the uncertainty:

•Payment pattern

- RBNS movements
- •Reporting pattern

Up to recently the industry has based model on payment triangles:

Year	Period + 0	Period + 1	Period + 2	Period + 3	Period + 4
2008	7 008 148	25 877 313	31 723 256	32 718 766	33 019 648
2009	30 105 220	65 758 082	76 744 305	79 560 296	
2010	89 181 138	171 787 015	201 380 709		2
2011	109 818 684	198 015 728			:
2012	97 250 541				

What will the future payments amount to?

Payment pattern, reporting pattern and RBNS movement

RBNS movement year 1

Stochastic claims reserv

Bornhuetter Fergusor

An example

Stochastic claims reserving

Reserve risk distribution

						Relative standard
Year	Period + 0	Period + 1	Period + 2	Period + 3	Period + 4	error (%)
2008	7 008 148	25 877 313	31 723 256	32 718 766	33 019 648	
2009	30 105 220	65 758 082	76 744 305	79 560 296	80 291 933	33,1
2010	89 181 138	171 787 015	201 380 709	208 457 137	210 374 110	24,5
2011	109 818 684	198 015 728	232 914 240	241 098 743	243 315 889	24,7
2012	97 250 541	190 057 610	223 553 576	231 409 149	233 537 189	31,9

One possible stochastic models for the chain-ladder technique:

• the logarithm of the cumulative claims amounts Y_{ij} =log (C_{ij}) and the log-Normal class of models $Y_{ij} = m_{ij} + \varepsilon_{ij}$ with ε_{ij} as independent normal random errors

Worst case for reserve risk

31