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Solvency

• Financial control of liabilities under nearly
worst-case scenarios

• Target: the reserve
– which is the upper percentile of the portfolio

liability

• Modelling has been covered (Risk premium
calculations)

• The issue now is computation
– Monte Carlo is the general tool

– Some problems can be handled by simpler, 
Gaussian approximations



10.2 Portfolio liabilities by simple 

approximation
•The portfolio loss for independent risks become Gaussian as J tends to infinity.

•Assume that policy risks X1,…,XJ are stochastically independent

•Mean and variance for the portfolio total are then
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•Note that risk is underestimated for small portfolios and in 

branches with large claims



Normal approximations
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The rule of double variance
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Let X and Y be arbitrary random variables for which
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Then we have the important identities
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Some notions

Examples

Random intensities

Poisson



The rule of double variance
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Some notions

Examples

Random intensities

Poisson

slide  previous  on  the  formulas in the      xand     Let  Y

Portfolio risk in general insurance
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The rule of double variance
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This leads to the true percentile qepsilon being approximated by
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Where phi epsilon is the upper epsilon percentile of the standard normal distribution

Some notions

Examples

Random intensities

Poisson



Fire data from DNB
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Normal approximations in R

z=scan("C:/Users/wenche_adm/Desktop/Nils/uio/Exercises/Branntest.txt");

# removes negatives

nyz=ifelse(z>1,z,1.001);

mu=0.0065;

T=1;

ksiZ=mean(nyz);

sigmaZ=sd(nyz);

a0 = mu*T*ksiZ;

a1 = sqrt(mu*T)*sqrt(sigmaZ^2+ksiZ^2);

J=5000;

qepsNO95=a0*J+a1*qnorm(.95)*sqrt(J);

qepsNO99=a0*J+a1*qnorm(.99)*sqrt(J);

qepsNO9997=a0*J+a1*qnorm(.9997)*sqrt(J);

c(qepsNO95,qepsNO99,qepsNO9997);



The normal power approximation
ny3hat  = 0;

n=length(nyz);

for (i in 1:n)

{

ny3hat = ny3hat + (nyz[i]-mean(nyz))**3

}

ny3hat = ny3hat/n;

LargeKsihat=ny3hat/(sigmaZ**3);

a2 = (LargeKsihat*sigmaZ**3+3*ksiZ*sigmaZ**2+ksiZ**3)/(sigmaZ^2+ksiZ^2);

qepsNP95=a0*J+a1*qnorm(.95)*sqrt(J)+a2*(qnorm(.95)**2-1)/6;

qepsNP99=a0*J+a1*qnorm(.99)*sqrt(J)+a2*(qnorm(.99)**2-1)/6;

qepsNP9997=a0*J+a1*qnorm(.9997)*sqrt(J)+a2*(qnorm(.9997)**2-1)/6;

c(qepsNP95,qepsNP99,qepsNP9997);

Percentile 95 % 99 % 99.97%

Normal 

approximations 19 025 039 22 962 238 29 347 696

Normal power 

approximations 20 408 130 26 540 012 38 086 350



Portfolio liabilities by simulation

• Monte Carlo simulation

• Advantages

– More general (no restriction on use)

– More versatile (easy to adapt to changing
circumstances)

– Better suited for longer time horizons

• Disadvantages

– Slow computationally?

– Depending on claim size distribution?



An algorithm for liabilities

simulation
•Assume claim intensities for J policies are stored on file

•Assume J different claim size distributions and payment functions

H1(z),…,HJ(z) are stored

•The program can be organised as follows (Algorithm 10.1)
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Searching for the model
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Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Searching
• How is the final model for claim size selected?

• Traditional tools: QQ plots and criterion comparisons

• Transformations may also be used (see Erik Bølviken’s material)



 

Descriptive Statistics for Variable Skadeestimat 

Number of Observations 185 

Number of Observations Used for Estimation 185 

Minimum 331206.17 

Maximum 9099311.62 

Mean 2473661.54 

Standard Deviation 1892916.16 

 

Non parametric
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The Pareto

Extreme value

Searching



Results from top 12% 

modelling

 

Model Selection Table 

Distribution Converged -2 Log Likelihood Selected 

Burr Yes 5808 No 

Logn Yes 5807 No 

Exp Yes 5817 No 

Gamma Yes 5799 No 

Igauss Yes 5804 No 

Pareto Yes 5874 No 

Weibull Yes 5799 Yes 

 

Non parametric

Log-normal, Gamma

The Pareto

Extreme value

Searching

Weibull is best  in top 12% modelling



Experiments in R
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7. Mixed distribution 2

5. Mixed distribution 1

4. Weibull

3. Pareto

2. Gamma on log scale

1. Log normal distribution

6. Monte Carlo algorithm for  portfolio liabilities



Check out bimodal distributions on

wikipedia



Comparison of results

Percentile 95 % 99 % 99.97%

Normal approximations 19 025 039 22 962 238 29 347 696

Normal power 

approximations 20 408 130 26 540 012 38 086 350

Monte Carlo algorithm log 

normal claims 12 650 847 24 915 297 102 100 605

Monte Carlo algorithm 

gamma model for log claims 88 445 252 401 270 401 6 327 665 905

Monte Carlo algorithm 

mixed empirical and Weibull 20 238 159 24 017 747 30 940 560

Monte Carlo algorithm 

empirical distribution 19 233 569 24 364 595 32 387 938



Or…check out mixture distributions

on wikipedia



Solvency – day 2



Solvency

• Financial control of liabilities under nearly
worst-case scenarios

• Target: the reserve
– which is the upper percentile of the portfolio

liability

• Modelling has been covered (Risk premium
calculations)

• The issue now is computation
– Monte Carlo is the general tool

– Some problems can be handled by simpler, 
Gaussian approximations



Structure

• Normal approximation

• Monte Carlo Theory

• Monte Carlo Practice – an example with

fire data from DNB



Normal approximations
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Normal approximations
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This leads to the true percentile qepsilon being approximated by
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Where phi epsilon is the upper epsilon percentile of the standard normal distribution

Some notions

Examples

Random intensities

Poisson



Monte Carlo theory
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Suppose X1, X2,… are independent and exponentially distributed with mean 1.

It can then be proved

for all n >= 0 and all lambda > 0. 

•From (1) we see that the exponential distribution is the distribution that

describes time between events in a Poisson process.

•In Section 9.3 we learnt that the distribution of X1+…+Xn is gamma 

distributed with mean n and shape n 

•The Poisson process is a process in which events occur continuously and 

independently at a constant average rate

•The Poisson probabilities on the right define the density function

which is the central model for claim numbers in property insurance. 

Mean and standard deviation are E(N)=lambda and sd(N)=sqrt(lambda)
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Monte Carlo theory

It is then utilized that Xj=-log(Uj) is exponential if Uj is uniform, and the sum 

X1+X2+… is monitored until it exceeds lambda, in other words
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Monte Carlo theory
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An algorithm for liabilities

simulation
•Assume claim intensities for J policies are stored on file

•Assume J different claim size distributions and payment functions

H1(z),…,HJ(z) are stored

•The program can be organised as follows (Algorithm 10.1)
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Experiments in R

32

7. Mixed distribution 2

5. Mixed distribution 1

4. Weibull

3. Pareto

2. Gamma on log scale

1. Log normal distribution

6. Monte Carlo algorithm for  portfolio liabilities



Comparison of results

Percentile 95 % 99 % 99.97%

Normal approximations 19 025 039 22 962 238 29 347 696

Normal power 

approximations 20 408 130 26 540 012 38 086 350

Monte Carlo algorithm log 

normal claims 12 650 847 24 915 297 102 100 605

Monte Carlo algorithm 

gamma model for log claims 88 445 252 401 270 401 6 327 665 905

Monte Carlo algorithm 

mixed empirical and Weibull 20 238 159 24 017 747 30 940 560

Monte Carlo algorithm 

empirical distribution 19 233 569 24 364 595 32 387 938


