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Solvency

Financial control of liabilities under nearly

Worst-case scenarios

Target: the reserve

— which is the upper percentile of the portfolio
liability

Modelling has been covered (Risk premium

calculations)

The issue now Is computation

— Monte Carlo is the general tool

— Some problems can be handled by simpler,
Gaussian approximations



10.2 Portfolio liabilities by simple
approximation

*The portfolio loss for independent risks become Gaussian as J tends to infinity.
*Assume that policy risks Xi,...,Xs are stochastically independent
*Mean and variance for the portfolio total are then

E(y)=m+..+7, and var(y)=o0,+...+0,

and 7; =E(X;) and o; =sd(X,).Introduce

ﬁz%(ﬂ1+...+ﬂj) and &° =%(Gl+...+o3)

which is average expectation and variance. Then
1 a -,
3 Z X. >N(7,07)
i=1

as J tends to infinfity
*Note that risk is underestimated for small portfolios and in
branches with large claims



Normal approximations

Let 1 be claim intensity and £,and o, mean and standard deviation
of theindividual losses. If they are the same for all policy holders,
the mean and standard deviation of X over a periodof length T
become

E(X)=a,J, sd(X)=a,vJ
where

a, = uTE, and a, =/uT \Jo? +&




The rule of double variance

<

Let X and Y be arbitrary random variables for which

E(X)=E(Y|x) and o =var(Y|X)

Then we have the important identities

§=E(Y)=E{£(X)} and var(Y)=E{o"(X)}+var{s(X)}

Rule of double expectation Rule of double variance



The rule of double variance

Portfolio risk in general insurance
y=2+7Z,+..+7Z, where N,Z, Z,,.. arestochastically independent.

Let E(Z,) =&, wherevar(y|N)=No?

Elementary rules for random sums imply
E(y|N=N)=N¢& andvar(y|[N=N)=No?’

LetY =y and Xx=Nintheformulas on the previous slide

var(y) =var{E(y |[N=N)}+E{sd(y |N=N)}’
=var(N¢é,)+ E(No?)

= £2var(N) + o ”E(N)

= JuT (&, +0,)



The rule of double variance

< >

This leads to the true percentile gepsilon being approximated by

qic\lo :a'O'J _I_a1¢€\/j

Where phi epsilon is the upper epsilon percentile of the standard normal distribution
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density.default(x = log(nyz))

N=1751 Bandwidth=0.3166



Normal approximations in R

z=scan("C:/Users/wenche_adm/Desktop/Nils/uio/Exercises/Branntest.txt");
# removes negatives
nyz=ifelse(z>1,z,1.001);

mu=0.0065;

T=1;

ksiZ=mean(nyz);

sigmaZ=sd(nyz);

a0 = mu*T*ksiZ;

al = sqrt(mu*T)*sqrt(sigmazZz”2+ksiZ"2);
J=5000;
gepsNO95=a0*J+al*gnorm(.95)*sqrt(J);
gepsNO99=a0*J+al*gnorm(.99)*sqrt(J);
gepsN09997=a0*J+al*gnorm(.9997)*sqrt(J);
c(gepsNO95,qepsN099,gepsN0O9997);



The normal power approximation

ny3hat = 0;
n=length(nyz);
for (iin 1:n)

{

}

ny3hat = ny3hat/n;

LargeKsihat=ny3hat/(sigmaZ**3);

a2 = (LargeKsihat*sigmazZ**3+3*ksiZ*sigmaZ**2+ksiZ**3)/(sigmaZ”2+ksiZ"2);
gepsNP95=a0*J+al*qnorm(.95)*sqrt(J)+a2*(gnorm(.95)**2-1)/6;
gepsNP99=a0*J+al*qnorm(.99)*sqrt(J)+a2*(gnorm(.99)**2-1)/6;
gepsNP9997=a0*J+al*gnorm(.9997)*sqrt(J)+a2*(qnorm(.9997)**2-1)/6;
c(gepsNP95,qepsNP99,qepsNP9997);

ny3hat = ny3hat + (nyz[i]-mean(nyz))**3

Percentile 95 % 99 % 99.97%
Normal
approximations |[19025039| 22962 238|29 347 696
Normal power
approximations |20408 130| 26 540012 38 086 350




Portfolio liabilities by simulation

e Monte Carlo simulation

* Advantages
— More general (no restriction on use)

— More versatile (easy to adapt to changing
circumstances)

— Better suited for longer time horizons

* Disadvantages

— Slow computationally?
— Depending on claim size distribution?



An algorithm for liabllities
simulation

*sAssume claim intensities ,Ltl,..., ,uJ for J policies are stored on file
*Assume J different claim size distributions and payment functions
Hi(z),...,Hi(z) are stored

*The program can be organised as follows (Algorithm 10.1)

0 Input:4, =x,T()=1.,J), claimsizemodels, H,(z),...,H,(2)
1 X «0

2 Forj=1..J do

3 Draw U™ ~Uniform and S~ « —log(U")

4 Repeat while S™ < 4,

5 Draw claim size Z*

6 X «X +H,(2)

7 Draw U™ ~Uniform and S™ « S —log(U")
8 Return X



Non parametric
Log-normal, Gamma
The Pareto

< Extremevalue >

Searching

Fire up to 88 percentile
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Non parametric
Log-normal, Gamma
The Pareto
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Non parametric

Log-normal, Gamma

The Pareto

< Extreme value

Searching

Fire above 95th percentile
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Non parametric
Log-normal, Gamma

Searching for the model

Extreme value

< Searching >

« How is the final model for claim size selected?
« Traditional tools: QQ plots and criterion comparisons
« Transformations may also be used (see Erik Balviken’s material)
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Descriptive Statistics for Variable Skadeestimat

Number of Observations 185
Number of Observations Used for Estimation 185
Minimum 331206.17
Maximum 9099311.62
Mean 2473661.54

Standard Deviation 1892916.16

Non parametric
Log-normal, Gamma
The Pareto
Extreme value

Searching



Results from top 12%
modelling

Weibull is best in top 12% modelling

Model Selection Table

Distribution Converged -2 Log Likelihood

Burr
Logn
Exp
Gamma
lgauss
Pareto
Weibull

Yes
Yes
Yes
Yes
Yes
Yes
Yes

5808
5807
5817
5799
5804
5874
5799

Selected
No

No

No

No

No

No

Yes

Non parametric
Log-normal, Gamma
The Pareto

Extreme value

< Searching >




Experiments in R

1. Log normal distribution
2. Gamma on log scale
3. Pareto
4. Weibull

5. Mixed distribution 1

6. Monte Carlo algorithm for portfolio liabilities

7. Mixed distribution 2
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Check out bimodal distributions on

wikipedia
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Read Edit View history |Search Q
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Bimodal distribution

From Wikipedia, the free encyclopedia

"Bimodal” redirects here. For the musical concept, see Bimodality.
In statistics, a bimodal distribution is a continuous probability distribution with two different modes. These appear as distinct peaks (local maxima) in the
probability density function, as shown in Figure 1.

More generally, 2 multimodal distribution is a continuous probability distribution with two or more modes, as illustrated in Figure 3.

Contents [hide]

1 Terminology
2 Gatlung's classification
3 Examples
4 0riging
5 Properties
5.1 Moments of midures
6 Summary statistics
6.1 Ashman's D
6.2 Bimodality index
6.3 Bimodality coefficient
7 Statistical tests
7.1 Unimodal vs. bimodal distribution
7.2 Antimode
7.3 General tests
2 Seealso
9 References

Terminology [edit]

When the two modes are unequal the larger mode is known as the major mode and the other as the minor mode. The least frequent value between the modes is

[ @ Clalail:di-)

“ 3 2 a4 8 1z 3 4
Figure 1. Asimple bimodal distribution, in &
this case a mixture of two normal
distributions with the same variance but
different means. The figure shows the
probability density function (p.d.f.), which is
an average of the bell-ehaped p.d.f.s ofthe
two normal distributions.
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Figure 2. Histogram of body lengths of &
300 weaver ant workers.

m




Comparison of results

Percentile 95 % 99 % 99.97%
Normal approximations 19025039 22962238 29347696
Normal power
approximations 20408 130| 26540012 38086 350
Monte Carlo algorithm log
normal claims 12650847 24915297| 102 100605

Monte Carlo algorithm
gamma model for log claims |88 445 252|401 270 401 6 327 665 905

Monte Carlo algorithm
mixed empirical and Weibull | 20 238 159| 24 017 747| 30940 560
Monte Carlo algorithm
empirical distribution 19233569 24364595 32387938




Or...check out mixture distributions
on wikipedia

A mixture of two unimodal distributions with differing means is not necessarily bimodal. The combined distribution of heights of men and women
in fact the differance in mean heights of men and women is too small relative to their standard deviations to produce bimadality !

Bimodal distributions have the peculiar property that - unlike the unimodal distributions - the mean may be a more robust sample estimator than
U shaped like the arcsine distribution. It may not be true when the distribution has one or more long tails.
Moments of mixtures [=dit]
Let
f(z) = pgi(x) + (1 = p)ga()
where gj is a probability distribution and p is the mixing parameter.
The moments of f{x) are!®!
p=ppr+ (1 —p)ps
_ 2 5'2 1 2 J’Z
vy = ploy + 8] + (1 — p)log + &)
3 2 3 2
vs = plS107 + 30107 + 8] + (1 = p)[S205 + 30207 + 6
= p[Ki0} + 48i8107 4+ 66507 + 67 + (1 Koy + 4808505 + 68505 + 5,
vy = p[Ki07 + 4516107 + 65707 + 61] + (1 — p)[Ka0; + 4520205 + 6630, + 6]

where
u= ]If($}d$
0;i = Hi — [t

ve= [ (@~ py fla)dz




Solvency — day 2



Solvency

Financial control of liabilities under nearly

Worst-case scenarios

Target: the reserve

— which is the upper percentile of the portfolio
liability

Modelling has been covered (Risk premium

calculations)

The issue now Is computation

— Monte Carlo is the general tool

— Some problems can be handled by simpler,
Gaussian approximations



Structure

* Normal approximation
* Monte Carlo Theory

* Monte Carlo Practice — an example with
fire data from DNB




Normal approximations

Let 1 be claim intensity and £,and o, mean and standard deviation
of theindividual losses. If they are the same for all policy holders,
the mean and standard deviation of X over a periodof length T
become

E(X)=a,J, sd(X)=a,vJ
where

a, = uTE, and a, =/uT \Jo? +&




Normal approximations

This leads to the true percentile gepsilon being approximated by

qic\lo :a'O'J _I_a1¢€\/j

Where phi epsilon is the upper epsilon percentile of the standard normal distribution
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Monte Carlo theory

Suppose X1, X2,... are independent and exponentially distributed with mean 1.
It can then be proved

n

Pr(X, +..+ X, <A< X, +...+ Xnﬂ):ﬁe‘ﬂ (1)
for all n >= 0 and all lambda > 0.
*From (1) we see that the exponential distribution is the distribution that
describes time between events in a Poisson process.
In Section 9.3 we learnt that the distribution of Xi1+...+Xn IS gamma
distributed with mean n and shape n
*The Poisson process is a process in which events occur continuously and
independently at a constant average rate
*The Poisson probabilities on the right define the density function

n

A

Pr(N =n) = —Ie‘*, n=012,...
n:

which is the central model for claim numbers in property insurance.

Mean and standard deviation are E(N)=lambda and sd(N)=sqgrt(lambda)



Monte Carlo theory

It is then utilized that Xj=-log(U;j) is exponential if Uj is uniform, and the sum
X1+X2+... is monitored until it exceeds lambda, in other words

Algorithm 2.14 Poisson generator

0 Input:4

1 Y «0

2 Forn=12,... do

3 Draw U™ ~Uniform and Y™ « Y —log(U")
4 If Y™ > A then

5 stopand return N” <~ n—1



Monte Carlo theory

Proof of Algorithm2.14 Let X,,...,

common density function f (x) =e™ for x>0and let S, = X, +...+ X,.

The Poisson generator of Algorithm 2.14 is based on the probability
p,(A)=Pr(S, <A<S, ) (1)

which can be evaluated by conditioning on S_. If its density function

Is f,_(s), then

be stochastically independent with

n+1

A A
p,(2) = [PriA<s+X,,18, =) f,(s)ds = [e “ £ (s)ds.
0

But S, is Gamma distributed with mean & =n and shapea =n
(section 9.3). This means that f_(s) = s”‘le‘S /(n—1)'and

n

js” 1ds_% 4

A
p,(A) = e ¥ Fs" e [(n-1)ds =
! o)

as was to be proved.



An algorithm for liabllities
simulation

*sAssume claim intensities ,Ltl,..., ,uJ for J policies are stored on file
*Assume J different claim size distributions and payment functions
Hi(z),...,Hi(z) are stored

*The program can be organised as follows (Algorithm 10.1)

0 Input:4, =x,T()=1.,J), claimsizemodels, H,(z),...,H,(2)
1 X «0

2 Forj=1..J do

3 Draw U™ ~Uniform and S~ « —log(U")

4 Repeat while S™ < 4,

5 Draw claim size Z*

6 X «X +H,(2)

7 Draw U™ ~Uniform and S™ « S —log(U")
8 Return X



Experiments in R

1. Log normal distribution
2. Gamma on log scale
3. Pareto
4. Weibull

5. Mixed distribution 1

6. Monte Carlo algorithm for portfolio liabilities

7. Mixed distribution 2
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Comparison of results

Percentile 95 % 99 % 99.97%
Normal approximations 19025039 22962238 29347696
Normal power
approximations 20408 130| 26540012 38086 350
Monte Carlo algorithm log
normal claims 12650847 24915297| 102 100605

Monte Carlo algorithm
gamma model for log claims |88 445 252|401 270 401 6 327 665 905

Monte Carlo algorithm
mixed empirical and Weibull | 20 238 159| 24 017 747| 30940 560
Monte Carlo algorithm
empirical distribution 19233569 24364595 32387938




