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Last lecture….

• Exame 2011 problem 1, 2 and 3 (1.5-2h)

• Repetition, highlighting of important topics
from pensum and advice for exame (0.5-1h)

• Some brief words about the assignment
(0.5h)
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About the exame 1

• 4th of December, 1430-1830

• Bring an approved calculator

• Bring no books or notes



About the exame 2

• The exame aims to reflect the focus of the course, 
which has been practical and focused on the
application of statistical techniques in general 
insurance

• However, since this is a course at the Department of
Mathematics, there should be some mathematics in 
the exame

• The exame aims to be comprehensive, i.e., cover as 
many topics from the pensum as possible

• There will be 3 practical and 1 theoretical task
• The exame aims to test understanding of important

concepts from the course



STK 4540 - main issues

• The concept of diversification and risk premium

• How can claim frequency be modelled?

• How can claim size be modelled?

• How can solvency be simulated?

• Pricing in general insurance by regression

• Pricing in general insurance by credibility theory

• Reduction of risk in general insurance using re-
insurance



Insurance works because risk can be 
diversified away through size

•The core idea of insurance is risk spread on many units
•Assume that policy risks X1,…,XJ are stochastically independent
•Mean and variance for the portfolio total are then
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•The coefficient of variation approaches 0 as J grows large (law of large numbers)
•Insurance risk can be diversified away through size
•Insurance portfolios are still not risk-free because

•of uncertainty in underlying models
•risks may be dependent



Risk premium expresses cost per policy 
and is important in pricing

•Risk premium is defined as P(Event)*Consequence of Event
•More formally

yearsrisk  ofNumber 

amount claim Total
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•From above we see that risk premium expresses cost per policy
•Good price models rely on sound understanding of the risk premium
•We start by modelling claim frequency



The world of Poisson (Chapter 8.2)
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t0=0 tk=T

Number of claims

tk-2 tk-1 tk tk+1

Ik-1 Ik Ik+1

•What is rare can be described mathematically by cutting a given time period T into K 
small pieces of equal length h=T/K
•On short intervals the chance of more than one incident is remote
•Assuming no more than 1 event per interval the count for the entire period is 

N=I1+...+IK ,where Ij is either 0 or 1 for j=1,...,K

•If p=Pr(Ik=1) is equal for all k and events are independent, this is an ordinary Bernoulli
series
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•Assume that p is proportional to h and set hp  where 

is an intensity which applies per time unit

Some notions
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Random intensities

Poisson



The world of Poisson
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In the limit N is Poisson distributed with parameter  T 
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The world of Poisson
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•It follows that the portfolio number of claims N is Poisson distributed with parameter
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•When claim intensities vary over the portfolio, only their average counts
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Random intensities (Chapter 8.3)

• How varies over the portfolio can partially be described by observables such as age or 
sex of the individual (treated in Chapter 8.4)

• There are however factors that have impact on the risk which the company can’t know 
much about
– Driver ability, personal risk averseness, 

• This randomeness can be managed by making a stochastic variable 
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Random intensities (Chapter 8.3)

• The models are conditional ones of the form

• Let

which by double rules in Section 6.3 imply

• Now E(N)<var(N) and N is no longer Poisson distributed
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The Poisson regression model (Section 8.4)
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•The idea is to attribute variation in to variations in a set of observable variables 
x1,...,xv. Poisson regressjon makes use of relationships of the form

vvxbxbb  ...)log( 110
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•Why and not itself?
•The expected number of claims is non-negative, where as the predictor on the right of
(1.12) can be anything on the real line
•It makes more sense to transform so that the left and right side of (1.12) are
more in line with each other. 

•Historical data are of the following form

•n1 T1 x11...x1x

•n2 T2 x21...x2x

•nn Tn xn1...xnv

•The coefficients b0,...,bv are usually determined by likelihood estimation

)log(

(1.12)
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Claims exposure covariates

The model

An example

Why regression?

Repetition of GLM

The fair price



The model (Section 8.4)

14

•In likelihood estimation it is assumed that nj is Poisson distributed where
is tied to covariates xj1,...,xjv as in (1.12). The density function of nj is then

)exp(
!

)(
)( jj

j

n

jj

j T
n

T
nf

j






•log(f(nj)) above is to be added over all j for the likehood function L(b0,...,bv). 
•Skip the middle terms njTj and log (nj!) since they are constants in this context.
•Then the likelihood criterion becomes
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•Numerical software is used to optimize (1.13).
•McCullagh and Nelder (1989) proved that L(b0,...,bv) is a convex surface with a single 
maximum
•Therefore optimization is straight forward. 

(1.13)

The model

An example

Why regression?

Repetition of GLM

The fair price



Repetition claim size
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Skewness

Parametric estimation: the log normal family

Parametric estimation: the gamma family

Shifted distributions

Fitting a scale family

Scale families of distributions

Non parametric modelling

The concept

Non parametric estimation

Parametric estimation: fitting the gamma



Claim severity modelling is about
describing the variation in claim size
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Claim size fire

• The graph below shows how claim size varies for fire claims for houses
• The graph shows data up to the 88th percentile

•How does claim size vary?
•How can this variation be modelled?

•Truncation is necessary (large claims are rare and disturb the picture)
•0-claims can occur (because of deductibles)
•Two approaches to claim size modelling – non-parametric and parametric

The concept



• Claim size modelling can be non-parametric where each claim zi of the past is assigned
a probability 1/n of re-appearing in the future

• A new claim is then envisaged as a random variable     for which

• This is an entirely proper probability distribution
• It is known as the empirical distribution and will be useful in Section 9.5. 

Non-parametric modelling
can be useful
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• All sensible parametric models for claim size are of the form

• and Z0 is a standardized random variable corresponding to           .
• The large the scale parameter, the more spread out the distribution

Non-parametric modelling
can be useful
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• Models for scale families satisfy

where are the distribution functions of Z and Z0.
• Differentiating with respect to z yields the family of density functions

• The standard way of fitting such models is through likelihood estimation. If z1,…,zn are
the historical claims, the criterion becomes

which is to be maximized with respect to      and other parameters. 
• A useful extension covers situations with censoring. 

Fitting a scale family
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• The chance of a claim Z exceeding b is , and for nb such events
with lower bounds b1,…,bnb the analogous joint probability becomes

Take the logarithm of this product and add it to the log likelihood of the fully observed
claims z1,…,zn. The criterion then becomes

Fitting a scale family
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complete information
(for objects fully insured)

censoring to the right
(for first loss insured)

• Full value insurance:
• The insurance company is liable that the object at all times is insured at its true 

value
• First loss insurance

• The object is insured up to a pre-specified sum.
• The insurance company will cover the claim if the claim size does not exceed the

pre-specified sum

Fitting a scale family



• The distribution of a claim may start at some treshold b instead of the origin. 
• Obvious examples are deductibles and re-insurance contracts. 
• Models can be constructed by adding b to variables starting at the origin; i.e.  

where Z0 is a standardized variable as before. Now

• Example:
• Re-insurance company will pay if claim exceeds 1 000 000 NOK

Shifted distributions
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Shifted distributions

Total claim amount Currency rate for example NOK per EURO, for 
example 8 NOK per EURO

The payout of the insurance company



• A major issue with claim size modelling is asymmetry and the right tail of the
distribution. A simple summary is the coefficient of skewness

Skewness as simple description of shape
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Skewness

Negative skewness: the left tail is longer; the mass of the distribution
Is concentrated on the right of the figure. It has relatively few low values

Positive skewness: the right tail is longer; the mass of the distribution
Is concentrated on the left of the figure. It has relatively few high values

Negative skewness Positive skewness



• The random variable        that attaches probabilities 1/n to all claims zi of the past is a 
possible model for future claims.

• Expectation, standard deviation, skewness and percentiles are all closely related to the
ordinary sample versions. For example

• Furthermore,

• Third order moment and skewness becomes
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Non-parametric estimation
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)Ẑskew(  and   )(

1
)ˆ(ˆ

Zsd

Z
zz

n
Z

n

i

i


  



Ẑ
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• A convenient definition of the log-normal model in the present context is 
as where

• Mean, standard deviation and skewness are

see section 2.4.
• Parameter estimation is usually carried out by noting that logarithms are Gaussian. 

Thus 

and when the original log-normal observations z1,…,zn are transformed to       
Gaussian ones through y1=log(z1),…,yn=log(zn) with sample mean and 
variance , the estimates of become
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The log-normal family
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• The Gamma family is an important family for which the density function is

• It was defined in Section 2.5 as is the
standard Gamma with mean one and shape alpha.  The density of the standard 
Gamma simplifies to

Mean, standard deviation and skewness are

and there is a convolution property. Suppose G1,…,Gn are independent with
. Then

The Gamma family
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• The Gamma family is an important family for which the density function is

• It was defined in Section 2.5 as is the
standard Gamma with mean one and shape alpha.  The density of the standard 
Gamma simplifies to

The Gamma family
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The Gamma family
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Parametric estimation: fitting the gamma
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Solvency

• Financial control of liabilities under nearly worst-
case scenarios

• Target: the reserve
– which is the upper percentile of the portfolio liability

• Modelling has been covered (Risk premium
calculations)

• The issue now is computation
– Monte Carlo is the general tool

– Some problems can be handled by simpler, Gaussian
approximations



10.2 Portfolio liabilities by simple 
approximation

•The portfolio loss for independent risks become Gaussian as J tends to infinity.
•Assume that policy risks X1,…,XJ are stochastically independent
•Mean and variance for the portfolio total are then
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•Note that risk is underestimated for small portfolios and in 
branches with large claims



Normal approximations
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The rule of double variance
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Let X and Y be arbitrary random variables for which
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Then we have the important identities
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The rule of double variance
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The rule of double variance
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This leads to the true percentile qepsilon being approximated by
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Where phi epsilon is the upper epsilon percentile of the standard normal distribution
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Fire data from DNB
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Portfolio liabilities by simulation

• Monte Carlo simulation

• Advantages
– More general (no restriction on use)

– More versatile (easy to adapt to changing
circumstances)

– Better suited for longer time horizons

• Disadvantages
– Slow computationally?

– Depending on claim size distribution?



An algorithm for liabilities simulation

•Assume claim intensities for J policies are stored on file
•Assume J different claim size distributions and payment functions H1(z),…,HJ(z) 
are stored
•The program can be organised as follows (Algorithm 10.1)
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7. Mixed distribution 2

5. Mixed distribution 1

4. Weibull

3. Pareto

2. Gamma on log scale

1. Log normal distribution

6. Monte Carlo algorithm for  portfolio liabilities



Comparison of results

Percentile 95 % 99 % 99.97%

Normal approximations 19 025 039 22 962 238 29 347 696

Normal power 

approximations 20 408 130 26 540 012 38 086 350

Monte Carlo algorithm log 

normal claims 12 650 847 24 915 297 102 100 605

Monte Carlo algorithm 

gamma model for log claims 88 445 252 401 270 401 6 327 665 905

Monte Carlo algorithm 

mixed empirical and Weibull 20 238 159 24 017 747 30 940 560

Monte Carlo algorithm 

empirical distribution 19 233 569 24 364 595 32 387 938



Monte Carlo theory
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Suppose X1, X2,… are independent and exponentially distributed with mean 1.
It can then be proved

for all n >= 0 and all lambda > 0. 
•From (1) we see that the exponential distribution is the distribution that
describes time between events in a Poisson process.
•In Section 9.3 we learnt that the distribution of X1+…+Xn is gamma distributed
with mean n and shape n 
•The Poisson process is a process in which events occur continuously and 
independently at a constant average rate
•The Poisson probabilities on the right define the density function

which is the central model for claim numbers in property insurance. 
Mean and standard deviation are E(N)=lambda and sd(N)=sqrt(lambda)
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Monte Carlo theory

It is then utilized that Xj=-log(Uj) is exponential if Uj is uniform, and the sum 
X1+X2+… is monitored until it exceeds lambda, in other words

1Nreturn  and stop                  5

 thenY f           4

)Ulog(  and    ~ UDraw           3

do   ,...2,1For     2
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Monte Carlo theory
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The credibility approach

Motivation

Model

Example

Combining credibility theory and GLM

• The basic assumption is that policy holders carry a list of attributes with
impact on risk

• The parameter could be how the car is used by the customer
(degree of recklessness) or for example driving skill

• It is assumed that exists and has been drawn randomly for each
individual

• X is the sum of claims during a certain period of time (say a year) and 
introduce

• We seek the conditional pure premium of the policy holder 
as basis for pricing

• On group level there is a common that applies to all risks jointly
• We will focus on the individual level here, as the difference between

individual and group is minor from a mathematical point of view


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

 )|(sd)(   and   )|()(  XXE 
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Omega is random and has been
drawn for each policy holder

 (driving skill)

1 2
(poor driver) (excellent driver)

)|()( 11  XE

)|()( 11  Xsd

)|()( 22  XE

)|()( 22  Xsd

Motivation

Model

Example

Combining credibility theory and GLM



The most accurate estimate

Motivation

Model

Example

Combining credibility theory and GLM

• Let X1,…,XK (policy level) be realizations of X dating K years back
• The most accurate estimate of pi from such records is (section 6.4) the

conditional mean

where x1,…,xK are the actual values.
• A natural framework is the common factor model of Section 6.3 where

X,X1,…,XK are identically and independently distributed given omega
• This won’t be true when underlying conditions change systematically
• A problem with the estimate above is that it requires a joint model for 

X,X1,…,XK and omega.
• A more natural framework is to break X down on claim number N and losses 

per incident Z.
• First linear credibility is considered

),...,|(ˆ
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Linear credibility

Motivation

Model

Example

Combining credibility theory and GLM

• The standard method in credibility is the linear one with estimates of pi of the
form

where b0,…,bK are coefficients so that the mean squared error is 
as small as possible.
• The fact that X,X1,…,XK are conditionally independent with the same 

distribution forces b1=…=bK, and if w/K is their common value, the estimate
becomes

• To proceed we need the so-called structural parameters

where is the average pure premium for the entire population. 
• It is also the expectation for individuals since by the rule of double 

expectation
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Linear credibility

Motivation

Model

Example

Combining credibility theory and GLM

• Both represent variation. The former is caused by diversity
between individuals and the latter by the physical processes behind the
incidents.Their impact on var(X) can be understood through the rule of
double variance, i.e.,

and represent uncertainties of different origin that add to   
var(X)

• The optimal linear credibility estimate now becomes

which is proved in Section 10.7, where it is also established that

• The estimate is ubiased and its standard deviation decreases with K
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Linear credibility

• The weight w defines a compromise between the average pure premium
pi bar of the population and the track record of the policy holder

• Note that w=0 if K=0; i.e. without historical information the best estimate
is the population average


