
STK4540: Non-life Insurance Mathematics

First assignment

This assignment consists of two exercises, but the second one is only optional! Focus on
Exercise 1 �rst. The deadline is Thursday 3rd of October at 14:30. To pass the assignment
you just need to have one correct item out of the 12 items in Exercise 1. Pretty easy! But as
a teacher I strongly encourage you to try to solve the whole assignment, including the optional
exercise. Good luck!

Exercise 1

In this exercise we are interested in the law of the minimum and maximum of the claim sizes
and the total aggregate claim size associated to an insurance portfolio. Consider a �ow of
i.i.d. claims X1, . . . , Xn, . . . with common distribution function F such that F (0) = 0, and
a Poisson random variable Nλ independent of the claims with intensity λ > 0 describing the
count number of claims.

(a) Consider the random variables Uλ = min{X1, . . . , XNλ} if Nλ > 0 and Uλ = 0 and
Vλ = max{X1, . . . , XNλ} if Nλ > 0 and Vλ = 0 if Nλ = 0. Find the distribution function
of Uλ and Vλ in terms of λ and F .

Assume for the rest of the exercise that we measure the claim sizes uniformly on the unit
interval, i.e. the law of Xi is given by LXi(B) = P (ω ∈ Ω : Xi(ω) ∈ B) = µ([0, 1]∩B) for Borel
sets B of R where µ denotes the Lebesgue measure. In particular, FXi(x) = LXi((−∞, x]) =
x1{06x<1} + 1{x>1}.

(b) Show that both the sequence {λ(1 − Vλ)}λ>0 and {λUλ}λ>0 converge in distribution to
an exponential distribution with rate 1. Show that they do not converge in probability.

(c) Make a short program simulating values of Uλ and Vλ for some λ of your choice (try small
and big) and compare the simulated distribution with that of an exponential distribution
with rate 1.

(d) For any α ∈ (0, 1), construct an approximate (1− α)100%-con�dence interval for λ.

(e) Imagine you have a consistent estimator λ̂ of λ at your disposal. For any α ∈ (0, 1),
construct an approximate (1 − α)100%-con�dence interval for the maximum claim size.

If for instance α = 0.05 and you observe λ̂obs = 100, what do you expect the maximum
claim size to be? Is this reasonable? If then λ̂obs = 1000, what happens with Vλ?
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(f) Denote by S the total aggregate claim amount S =
∑Nλ

i=1Xi. Argue that for every ε > 0
we have

P (NλUλ > ε) 6 P (S > ε) 6 P (NλVλ > ε).

(g) Using (a) and (f) prove that for every ε > 0 the tail distribution of S can be bounded by

∞∑
n=bεc+1

(
e−

ε
n
λ − e−λ

)
e−λ

λn

n!
6 P (S > ε) 6

∞∑
n=bεc+1

(
1− e(

ε
n
−1)λ

)
e−λ

λn

n!
,

where bεc = max{m ∈ N : m 6 ε} denotes the integer part of ε and deduce that
limε→0 P (S > ε) = 1− e−λ and limε→∞ P (S > ε) = 0.

(h) A stop-loss reinsurance contract with retention level K > 0 is a contract where the
reinsurer covers losses in the portfolio exceeding a well-de�ned limit K, the so-called
ceding company's retention level. This means that the reinsurer pays for RSL = (S−K)+,
where x+ = max{x, 0}. This type of insurance is useful for protecting the company
against insolvency due to excessive claims on the coverage. The net value is then given
by p(K) = E[RSL] = E[(S −K)+]. Argue that

p(K) = E[RSL] =

∫ ∞
K

P (S > ε)dε.

The rest of the exercise will deal with �nding bounds for p in terms of K. For this purpose
it may be useful to recall the following analytical inequalities; for every x, y ∈ R such that
x < y we have

ex(y − x) 6 ey − ex 6 ey(y − x).

Also for r ∈ N and λ > 0 we have

λr+1

(r + 1)!
6

∞∑
n=r+1

λn

n!
6 eλ

λr+1

(r + 1)!
.

(i) Using the information obtained so far, show that

e−λf(ε) 6 P (S > ε) 6 f(ε),

where

f(ε) = λe−λ
∞∑

n=bεc+1

(
1− ε

n

) λn
n!
.

(j) Argue that

λe−λ
(

1− ε

bεc+ 1

)
λbεc+1

(bεc+ 1)!
6 f(ε) 6 λ

λbεc+1

(bεc+ 1)!
,

and plot upper bounds for P (S > ε) for ε > 0 for di�erent values of λ, say λ ∈
{1, 5, 10, 20, 50, 100}. Find ε such that P (S > ε) ≈ 0.01. Such value is referred to as
reserve.
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(k) Assume that K is a positive integer number (this is �ne since K is usually given in terms
of a currency). Show that the (fair) price of a stop-loss contract can be bounded by

p(K) 6 λeλ
λK+1

(K + 1)!
.

Hint: At some point you need to compute the integral of λbεc+1

(bεc+1)!
w.r.t. ε along [K,∞].

Chop up the interval [K,∞) in pieces of length one and then sum up. Lastly, use the
bounds provided in item (h).

(l) Plot the bounds as a function of K for di�erent values of λ, say λ ∈ {1, 5, 10, 20, 50, 100}.

Exercise 2 (optional!)

We consider now the setting of previous exercise (you can use item (a)) for the case where the
claim sizes are discrete and uniformly distributed on {0, 1, . . . ,M} for a �xed integer levelM >
1, i.e. the law of Xi is given by LXi(B) = P (ω ∈ Ω : Xi(ω) ∈ B) = 1

M+1
#({0, 1, . . . ,M}∩B) for

subsets B of N where # denotes the counting measure. In particular, P (Xi = k) = LXi({k}) =
1

M+1
for all k = 0, . . . ,M also known as discrete uniform distribution.

(a) De�ne Vλ as before. Show that the distribution function of Vλ is given by

P (Vλ 6 k) = e−λ
M−k
M+1 , k = 0, . . . ,M.

(b) Consider the sequence λn = n, n > 1. Show that Vλn converges to M almost surely as
n→∞. Hint: Use the �rst Borel-Cantelli lemma.

(c) Find an expression for exact probabilities pm = P (S = m) for each integer m > 1 using
Panjer's recursion scheme. You should obtain

pm =
λ

M + 1

1

m

M∑
i=1

ipm−i, m >M,

given p0 = e−λ
M
M+1 and pk = 0 for k < 0.

(d) Assume for a moment that M = 1 (Bernoulli case). Find the exact distribution of S with
support on N and �nd E[S] and V ar[S].

(e) Using the previous exercise in the case M = 1 we can prove by CLT that

S − λ/2√
λ/2

→ N(0, 1)

in law, where N(0, 1) denotes a standard normal distribution. Plot the di�erent distribu-
tions of the above random variable for say λ ∈ {1, 5, 10, 20, 50, 100, } and compare to the
standard normal.

(f) For λ = 10 and M = 1 compute P (S > 5) and P (S > 10) using the exact distribution
from (d) and the normal approximation from (e). What do you observe? Comment.

3


