STK4540: Non-life Insurance Mathematics

Exercise list 0

Exercise 1

We say that a random variable X has a Pareto distribution with scale parameter $c \geq 0$ and shape parameter $\theta > 0$ if it is absolutely continuous with density function given by

$$
f(x) = \frac{\theta c^{\theta}}{x^{\theta+1}}, \quad x > c.
$$

- (a) Check that f is indeed a density function.
- (b) Compute the mean and the variance.
- (c) Find estimators \widehat{c}_n and $\widehat{\theta}_n$ for c and θ , respectively, based on a random sample X_1, \ldots, X_n .
- (d) What is the distribution of $X|X > d$ where $d > c$?
- (e) Let U be a uniformly distributed random variable on $(0, 1]$. Prove that

$$
\frac{c}{U^{1/\theta}}
$$

is Pareto distributed.

Exercise 2

Let X denote the proportion of allotted time that a randomly selected student spends working on a certain aptitude test. Suppose the pdf of X is

$$
f_{\theta}(x) = (\theta + 1)x^{\theta}, \quad 0 < x < 1,
$$

where $\theta > -1$. A random sample of ten students yields data $x_1 = 0.92, x_2 = 0.79, x_3 = 0.9$, $x_4 = 0.65, x_5 = 0.86, x_6 = 0.47, x_7 = 0.73, x_8 = 0.97, x_9 = 0.94, x_{10} = 0.77.$

- (a) Use the method of moments to obtain an estimator of θ , and then compute the estimate for this data.
- (b) Obtain the maximum likelihood estimator of θ , and then compute the estimate for the given data.
- (c) Run a simulation to find out which of the two estimator has lowest variance.

Exercise 3

For $(x, y) \in \mathbb{R}^2$,

$$
f(x,y) = \frac{4y}{x^3} \mathbf{1}_{\{0 < x < 1, 0 < y < x^2\}}.
$$

- (a) Verify that f is indeed a probability density function, then compute the marginal densities f_X and f_Y .
- (b) Compute $f_{Y|X}(y|x)$ and deduce that

$$
E[Y|X] = \frac{2}{3}X^2.
$$

(c) Establish that

$$
f_{X|Y}(x|y) = \frac{2y}{1-y} \frac{1}{x^3} \mathbf{1}_{\{0 < x < 1, 0 < y < x^2\}}
$$

and deduce $E[X|Y]$.

Exercise 4

Roll a die until you get a 6. Let Y be the total number of rolls and X the total number of 1's we get. Compute $E[X|Y]$.

Exercise 5

Let X_i , $i = 1, \ldots, n$ be independent Poisson distributed random variables each with intensity parameter $\lambda_i > 0$, $i = 1, ..., n$ respectively. Show that the sum $Y = \sum_{i=1}^n X_i$ is also Poisson distributed with intensity $\lambda = \sum_{i=1}^{n} \lambda$.

Exercise 6

Supose X and Y are square-integrable random variables (i.e. with finite second order moment) and that $E[X|Y] = Y$ and $E[Y|X] = X$. Show that $X = Y$ almost surely.

Exercise 7

Let X_1, \ldots, X_n be a random sample from a gamma distribution with parameters α and β , i.e. the common density function is given by

$$
f_{\alpha,\beta}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad x > 0.
$$

- (a) Derive the equations whose solution yields the maximum likelihood estimators of α and $β$. Do you think they can be solved explicitly?
- (b) Show that the mle of $\mu = \alpha/\beta$ is $\widehat{\mu}_{mle} = \overline{X}_n$.

Exercise 8

Let $\{X_n\}$ be a sequence of random variables with probabilities $P(X_n = 1) = \frac{1}{n}$ and $P(X_n = 1)$ $0) = 1 - \frac{1}{n}$ $\frac{1}{n}$. Prove that X_n converges to 0 in probability but not almost surely.

Exercise 9

Study the different types of convergence of the sequence of independent random variables ${X_n}_{n \geq 1}$ with law $P(X_n = 0) = 1 - \frac{1}{n}$ $\frac{1}{n}$ and $P(X_n = n) = \frac{1}{n}$.

Exercise 10

Consider a sequence of independent identically distributed random variables $\{U_n\}_{n\geq 1}$ such that $P(U_n = 1) = p$, $P(U_n = -1) = q$ with $p + q = 1$ and $0 \leq p \leq 1$. We construct the sequence:

$$
V_1 = U_1
$$
, $V_2 = U_1 U_2$, ..., $V_n = \prod_{k=1}^n U_k$.

- (a) Compute $E[V_n]$.
- (b) Find p_n and q_n where $p_n = P(V_n = 1)$ and $q_n = P(V_n = -1)$.
- (c) Analyse the convergence in distribution of the sequence $\{V_n\}_{n\geq 1}$.

Exercise 11

Consider a sequence of independent Bernoulli distributed random variables with parameter p_n for each $n \geq 1$ (i.e. probability of obtaining 1). For each natural number $n \geq 1$ let T_n denote the first time this sequence takes the value 1.

- (a) What is the law of T_n ?
- (b) Assume $p_n = \frac{\lambda}{n}$ $\frac{\lambda}{n}$, $\lambda > 0$ and define $S_n = \frac{T_n}{n}$ $\frac{l'_n}{n}$. Compute $E[S_n]$.
- (c) Prove that the sequence ${S_n}_{n\geq 1}$ convergences in law to an exponential distribution with parameter λ .

Exercise 12

Consider an i.i.d. sequence of random variables $\{X_n\}_{n\geq 1}$ with density

$$
f(x) = \exp(\lambda - x) \mathbf{1}_{(\lambda, \infty)}(x).
$$

Consider now the sequence of means $Z_n = \frac{\sum_{j=1}^n X_j}{n}$ $\frac{1}{n}$ ¹. Show that

- (a) the sequence $\{Z_n\}_{n\geqslant 1}$ converges in L^2 and in probability to $1 + \lambda$.
- (b) the minimum $\min\{X_1,\ldots,X_n\}$ converges in probability and almost surely to λ .

Exercise 13

Consider a sequence $\{X_n\}_{n\geq 1}$ of independent uniformly distributed random variables on the interval $[-1, 1]$. We define

$$
M_n = \max\{X_1 \dots, X_n\},
$$

$$
N_n = \min\{X_1 \dots, X_n\}.
$$

- (a) Compute the distribution functions of M_n and N_n .
- (b) Analyse the different types of convergence: in probability, L^2 and almost surely.

Exercise 14

Let X_1, \ldots, X_n be i.i.d. following a uniform distribution on [0, 1]. Consider a random variable Y_m independent of the sequence with a Poisson distribution with parameter $m \in \mathbb{R}$, $m > 0$. We define

$$
V_m = \max\{X_1, \ldots, X_{Y_m}\} \text{ if } Y_m > 0,
$$

and $V_m = 0$ if $Y_m = 0$.

- (a) Find the distribution function and density function of V_m .
- (b) Compute $\lim_{m\to\infty} E[V_m]$.
- (c) Show that the sequence $\{m(1-V_m)\}_{m>0}$ converges in distribution when $m \to \infty$ and find the limiting distribution.