STK4540: Non-life Insurance Mathematics

Exercise list 1

Exercise 1

Suppose that the random variable N follows a geometric distribution with parameter $p \in (0, 1)$, that is for $k \ge 1$

$$P(N = k) = (1 - p)^{k - 1}p.$$

- (a) Show that the geometric distribution defines a probability distribution on \mathbb{R} .
- (b) Let $n \in \mathbb{N} \setminus \{0\}$. Calculate $P(N \ge n)$.
- (c) Calculate E[N].
- (d) Let $t < -\log(1-p)$. Calculate $M_N(t) = E[e^{tN}]$.
- (e) Calculate $\frac{d}{dt}M_N(t)\Big|_{t=0}$.

Exercise 2

Suppose that a random variable X follows an exponential distribution with parameter $\lambda > 0$, i.e. the density f_X of X is given by

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

- (a) Show that the exponential distribution defines a probability distribution on \mathbb{R} .
- (b) Let $0 < x_1 < x_2$. Calculate $P(x_1 < X < x_2)$.
- (c) Calculate E[X] and Var[X].
- (d) Let $t < \lambda$. Calculate $\log M_X(t) = \log E[e^{tX}]$.
- (e) Calculate $\frac{d^2}{dt^2}M_X(t)\Big|_{t=0}$.

Exercise 3

Suppose that an insurance company distinguishes between small and large claims, where a claim is called large if it exceeds a fixed threshold $\theta > 0$. We use a random variable I to indicate whether a claim is small or large, i.e. we have I = 0 for a small claim and I = 1 for a large claim. In particular, we get P(I = 0) = 1 - p and P(I = 1) = p for some $p \in (0, 1)$. Finally, we model the size of a claim that belongs to the large claims section by the random variable Y, where, given that we have a small claim, Y is equal to 0 almost surely and, given that we have a large claim, Y follows a Pareto distribution with threshold $\theta > 0$ and tail index $\alpha > 0$, i.e. the density $f_{Y|I=1}$ og Y|I = 1 is given by

$$f_{Y|I=1}(x) = \frac{\alpha}{\theta} \left(\frac{x}{\theta}\right)^{-(\alpha+1)}, \quad x \ge \theta.$$

- (a) Let $y > \theta$. Calculate $P(Y \ge y)$.
- (b) Calculate E[Y].