STK4540: Non-life Insurance Mathematics

Exercise list 4

Exercise 1

Consider the risk process $U(t) = u + ct - S(t)$ in the Cramér-Lundberg model.

- (a) Show that $S(s) = \sum_{i=1}^{N(s)} X_i$ is independent of $S(t) S(s)$ for $s < t$.
- (b) Use (a) to calculate

 $E\left[e^{-hU(t)}\right]$ $S(s)$

for $s < t$ and some $h > 0$ Here we assume that $Ee^{hS(t)}$ is finite. Under the assumption that the Lundberg coefficient r exists show the following relation:

$$
E\left[e^{-rU(t)}\Big|S(s)\right] = e^{-rU(s)} \quad a.s.
$$

(c) Under the assumptions of (b) show that $Ee^{-rU(t)}$ does not depend on t.

Exercise 2

Consider the risk process with premium rate c in the Cramér-Lundberg model with Poisson intensity λ . Assume that the adjustment coefficient r exists as the unique solution to the equation $1 = E[e^{r(X_1 - cW_1)}]$. Write $m_A(h)$ for the moment generating function of any random variable A and $\rho = c/(\lambda EX_1) - 1 > 0$ for the safety loading. Show that r can be determined as the solution to each of the following equations

$$
\lambda + cr = \lambda m_{X_1}(r),
$$

\n
$$
0 = \int_0^\infty [e^{rx} - (1+\rho)] P(X_1 > x)] dx,
$$

\n
$$
e^{cr} = m_{S(1)}(r),
$$

\n
$$
c = \frac{1}{r} \log m_{S(1)}(r).
$$

Exercise 3

Assume the Cramér-Lundberg model with the Net Profit Condition (NPC). We also suppose that the moment generating function $m_{X_1}(h) = E e^{hX_1}$ of the claim sizes X_i is finite for all $h > 0$. Show that there exists a unique solution $r > 0$ (Lundberg coefficient) to the equation $1 = E e^{h(X_1 - cW_1)}$.

Exercise 4

Consider the risk process $U(t) = u + ct - S(t)$ with total claim amount $S(t) = \sum_{i=1}^{N(t)} X_i$, where the iid sequence $\{X_i\}_{i\geqslant 1}$ of $Exp(\gamma)$ distributed claim sizes is independent of the mixed homogeneous Poisson process N. In particular, we assume

$$
\{N(t)\}_{t\geq 0} = \{\widetilde{N}(\theta t)\}_{t\geq 0}
$$

where \widetilde{N} is a standard homogeneous Poisson process, independent of the positive mixing variable θ.

(a) Conditionally on θ , determine the NPC and the probability of ruin for this model, i.e.,

$$
P\left(\inf_{t\geqslant 0}U(t)<0\ \Big|\ \theta\right).
$$

(b) Apply the results of part (a) to determine the ruin probability

$$
\psi(u) = P\left(\inf_{t \ge 0} U(t) < 0\right).
$$

- (c) Use part (b) to give conditions under which $\psi(u)$ decays exponentially fast to zero as $u \to \infty$.
- (d) What changes in the above calculations if you choose the premium $p(t) = (1 + \rho)(\theta/\gamma)t$ for some $\rho > 0$? This means that you consider the risk process $U(t) = u + p(t) - S(t)$ with random premium adjusted to θ .

Exercise 5

Consider a reinsurance company with risk process $U(t) = u + ct - S(t)$, where the total claim amount $S(t) = \sum_{i=1}^{N(t)} (X_i - x)_+$ corresponds to an excess-of-loss treaty. Moreover, N is homogeneous Poisson with intensity λ , independent of the iid sequence $\{X_i\}_{i\geqslant 1}$ of $Exp(\gamma)$ random variables. We choose the premium rate according to the expected value principle:

$$
c = (1+\rho)\lambda E[(X_1 - x)_+]
$$

for some positive safety loading ρ .

- (a) Show that $c = (1 + \rho)\lambda e^{-\gamma x}/\gamma$.
- (b) Show that

$$
\phi_{(X_1-x)_+}(t) = E[e^{it(X_1-x)_+}] = 1 + \frac{it}{\gamma - it}e^{-x\gamma}, \quad t \in \mathbb{R}.
$$

(c) Show that $S(t)$ has the same distribution as $\widehat{S}(t) = \sum_{i=1}^{N(t)} X_i$, where \widehat{N} is a homogeneous Poisson process with intensity $\hat{\lambda} = \lambda e^{-x\gamma}$, independent of $\{X_i\}_i$.

- (d) Show that the processes S and \widehat{S} have the same finite-dimensional distributions. Hint: The compound Poisson processes S and \widehat{S} have independent and stationary increments. Use (c).
- (e) Define the risk process $\widehat{U}(t) = u + ct \widehat{S}(t), t \geq 0$. Show that

$$
\psi(u) = P\left(\inf_{t \ge 0} U(t) < 0\right) = P\left(\inf_{t \ge 0} \widehat{U}(t) < 0\right)
$$

and calculate $\psi(u)$. Hint: Use (d).