STK4540: Non-life Insurance Mathematics

Exercise list 6

Exercise 1

Assume the heterogeneity model and consider the *i*th policy. We suppress the dependence on i in the notation. Given $\theta > 0$, let the claim sizes X_1, \ldots, X_n in the policy be iid Paretodistributed with parameters (λ, θ) , i.e.,

$$\overline{F}(x|\theta) = P(X_i > x|\theta) = \left(\frac{\lambda}{x}\right)^{\theta}, \quad x > \lambda.$$

Assume that θ is $\Gamma(\gamma, \beta)$ distributed with density

$$f_{\gamma,\beta}(y) = rac{eta^{\gamma}}{\Gamma(\gamma)} y^{\gamma-1} e^{-eta y}, \quad y > 0.$$

(a) Show that $\theta | \vec{X}$ with $\vec{X} = (X_1, \dots, X_n)'$ is $\Gamma(\overline{\gamma}, \overline{\beta})$ distributed with parameters

$$\overline{\gamma} = \gamma + n, \quad \overline{\beta} = \beta + \sum_{i=1}^{n} \log(X_i/\lambda).$$

- (b) A reinsurance company takes into account only the values X_i exceeding a known high threshold K. They "observe" the counting variables $Y_i = I_{(K,\infty)}(X_i)$ for a known threshold $K > \lambda$. The company is interested in estimating $P(X_1 > K | \theta)$.
 - (i) Give a naive estimator of $P(X_1 > K | \theta)$ based on the empirical distribution function of X_1, \ldots, X_n .
 - (ii) Determine the a.s. limit of this estimator as $n \to \infty$. Does it coincide with $P(X_1 > K|\theta)$?
- (c) Show that Y_i , given θ , is $Bin(1, p(\theta))$ distributed, where $p(\theta) = E[Y_1|\theta]$. Compare $p(\theta)$ with the limit in (b), (ii).
- (d) Show that the Bayes estimator of $p(\theta) = E[Y_1|\theta]$ based on the data X_1, \ldots, X_n is given by $(\theta + \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n (Y_j(\lambda))^{\gamma+n}$

$$\frac{\left(\beta + \sum_{i=1}^{n} \log\left(X_i/\lambda\right)\right)^{\gamma+n}}{\left(\beta + \sum_{i=1}^{n} \log\left(X_i/\lambda\right) + \log\left(K/\lambda\right)\right)^{\gamma+n}}.$$

Exercise 2

Assume the heterogeneity model and consider a policy with one observed claim number X and corresponding heterogeneity parameter θ . We assume that $X|\theta$ is $Pois(\theta)$ -distributed, where θ has a continuous density f_{θ} on $(0, \infty)$. Notice that $E[X|\theta] = \theta$.

- (a) Determine the conditional density $f_{\theta}(y|X=k)$, $k=0,1,\ldots$, of $\theta|X$ and use this information to calculate the Bayes estimator $m_k = E[\theta|X=k]$, $k=0,1,2,\ldots$
- (b) Show that

$$m_k = (k+1)\frac{P(X=k+1)}{P(X=k)}, \quad k = 0, 1, \dots$$

(c) Show that

$$E[\theta^{l}|X=k] = \prod_{i=0}^{l-1} m_{k+i}, \quad k \ge 0, l \ge 1.$$

Exercise 3

Consider the *i*th policy in a heterogeneity model. We suppress the dependence on *i* in the notation. We assume the heterogeneity parameter θ to be Beta(a, b)-distributed with density

$$f_{\theta}(y) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} y^{a-1} (1-y)^{b-1}, \quad 0 < y < 1, \quad a, b > 0.$$

Given θ , the claim numbers X_1, \ldots, X_n are iid $Bin(k, \theta)$ -distributed.

(a) Calculate the conditional density $f_{\theta}(y|\vec{X} = \vec{x})$ of θ given

$$\dot{X} = (X_1, \dots, X_n)' = \vec{x} = (x_1, \dots, x_n)'.$$

(b) Calculate the Bayes estimator $\hat{\mu}_B$ of $\mu(\theta) = E[X_1|\theta]$ and the corresponding risk. Hint: A Beta(a, b)-distributed random variable θ satisfies the relations $E\theta = \frac{a}{a+b}$ and $Var \ \theta = \frac{ab}{(a+b+1)(a+b)^2}$.

Exercise 4

Consider the *i*th policy in a heterogeneity model. We suppress the dependence on *i* in the notation. We assume the heterogeneity parameter θ to be $N(\mu, \sigma^2)$ -distributed. Given θ , the claim sizes X_1, \ldots, X_n are iid log-normal (θ, τ) -distributed. This means that $\log X_t$ has a representation $\log X_t = \theta + \tau Z_t$ for an iid N(0, 1) sequence $\{X_t\}_{t=1}^n$ independent of θ and some positive constant τ .

(a) Calculate the conditional density $f_{\theta}(y|\vec{X} = \vec{x})$ of θ given

$$\vec{X} = (X_1, \dots, X_n)' = \vec{x} = (x_1, \dots, x_n)'.$$

(b) Calculate the Bayes estimator $\hat{\mu}_B$ of $\mu(\theta) = E[X_1|\theta]$ and the corresponding risk. It is useful to remember that

$$Ee^{a+bZ_1} = e^{a+b^2/2}$$
 and $Var \ e^{a+bZ_1} = e^{2a+b^2}(e^{b^2}-1), \quad a \in \mathbb{R}, b > 0$