STK4540: Non-life Insurance Mathematics

Exercise list 7

Exercise 1

We consider the *i*th policy in the heterogeneity model and suppress the dependence on *i* in the notation. Assume we have one claim number X in the policy which is $Poiss(\theta)$ -distributed, given some positive random variable θ . Assume that the moments $m_k = E[\theta^k] < \infty, k = 1, 2, 3, 4$, are known.

- (a) Determine the linear Bayes estimator $\hat{\theta}$ for $\mu(\theta) = E[X|\theta] = \theta$ based on X only in terms of X, m_1, m_2 . Express the minimal Bayes risk $\rho(\hat{\mu})$ as a function of m_1 and m_2 .
- (b) Now we want to find the best estimator $\tilde{\theta}_{LB}$ of θ with respect to the quadratic risk $\rho(\tilde{\mu}) = E[(\theta \tilde{\theta})^2]$ in the class of linear functions of X and X(X 1):

$$\theta = a_0 + a_1 X + a_2 X (X - 1), \quad a_0, a_1, a_2 \in \mathbb{R}.$$

This means that $\tilde{\theta}_{LB}$ is the linear Bayes estimator of θ based on the data $\vec{X} = (X, X(X - 1))'$. Apply the normal equations to determine a_0, a_1 and a_2 . Express the relevant quantities by the moments m_k . Hint: Use the well-known identity $E[Y^{(k)}] = \lambda^k$ for the factorial moments $E[Y^{(k)}] = E[Y(Y-1)\cdots(Y-k+1)], k \ge 1$, of a random variable $Y \sim Poiss(\lambda)$.

Exercise 2

In exercise 1 from list 6, calculate the linear Bayes estimator of $p(\theta) = E[Y_1|\theta]$ based on the data X_1, \ldots, X_n and the corresponding linear Bayes risk. Compare the Bayes and the linear Bayes estimators and their risk.

Exercise 3

In exercise 3 from list 6, calculate the linear Bayes estimator of $E[X_1|\theta]$ and the corresponding linear Bayes risk. Compare the Bayes and the linear Bayes estimators and their risk.

Exercise 4

In exercise 4 from list 6, calculate the linear Bayes estimator of $E[X_1|\theta]$ and the corresponding linear Bayes risk. Compare the Bayes and the linear Bayes estimators and their risk.

Exercise 5

Consider a portfolio with n independent policies.

- (a) Assume that the claim numbers $X_{i,t}$, t = 1, 2, ..., in the *i*th policy are independent and $Pois(p_{i,t}\theta_i)$ -distributed, given θ_i . Assume that $p_{i,t} \neq p_{i,s}$ for some $s \neq t$. Are conditions of th Bühlmann-Straub model satisfied?
- (b) Assume that the claim sizes $X_{i,t}$, t = 1, 2, ... in the *i*th policy are independent and $\Gamma(\gamma_{i,t}, \beta_{i,t})$ -distributed, given θ_i . Give conditions on $\gamma_{i,t}$ and $\beta_{i,t}$ under which the Bühlmann-Straub model is applicable. Identify the parameters μ, φ, λ and $p_{i,t}$.