
STK4540: Non-life Insurance Mathematics

Extra exercise list

Exercise 1

Consider the total claim amount S(t) =
∑N(t)

i=1 Xi and assume S(t) has �nite exponential mo-
ments. The so-called Esscher premium calculation principle is an insurance premium principle
de�ned as

pEss(t) =
E
[
S(t)eδS(t)

]
E [eδS(t)]

, δ > 0.

(a) Prove that this premium is higher than the net premium, i.e.

E
[
S(t)eδS(t)

]
E [eδS(t)]

> E[S(t)], δ > 0.

(b) Prove that in the Cramér-Lundberg model for the total claim amount S(t) we have

pEss(t) = λE[X1e
δX1 ]t.

(c) Consider the Cramér-Lundberg model again. Show that the Net Pro�t Condition is
satis�ed with premium rate c = λE[X1e

δX1 ] obtained by the Esscher principle.

Exercise 2

In the renewal model we have the following CLT for S(t) if V ar[X1] <∞ and V ar[W1] <∞,

sup
x∈R

∣∣∣∣∣P
(
S(t)− E[S(t)]√

V ar[S(t)]
6 x

)
− Φ(x)

∣∣∣∣∣
= sup

y∈R

∣∣∣∣∣P (S(t) 6 y)− Φ

(
y − E[S(t)]√
V ar[S(t)]

6 x

)∣∣∣∣∣→ 0,

which tells us that our portfolio will eventually converge to a normal distribution in law. That
is

P (S(t) 6 y) ≈ Φ

(
y − E[S(t)]√
V ar[S(t)]

6 x

)
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This serves to construct approximate con�dence intervals and hypothesis tests but it does not
tell us a thing about the error we encounter in the above convergence result. The following
is a classical result of the rate and error of convergence of the CLT under slightly stronger
conditions:

Theorem (Berry-Esseen inequality). Let X1, . . . , Xn be a sequence of i.i.d. random variables

with E[X1] <∞, V ar[X1] <∞ and E[|X1|3] <∞. De�ne S0 = 0, Sn = X1 + · · ·+Xn, n > 1.
Then

sup
x∈R

∣∣∣∣∣P
(

1
n
Sn − E[X1]√
V ar[X1]/n

6 x

)
− Φ(x)

∣∣∣∣∣ 6 c√
n

E[|X1 − E[X1]|3]
(V ar[X1])

3 ,

where c is a universal constant that you can take as c = 0.4748 as per 2012 and Φ is the

cumulative distribution function of a standard normal random variable.

You may think this is just the central limit theorem, which it is, but the importance of this
result is that it provides an exact error of convergence which, is uniform in x! Therefore its high
importance. Actually, this result has been improved over the years and several mathematicians
have found sharper bounds, here is a summary of the state of the inequality which looks like a
race:

Constant c Year (author)
7.59 1942 (Essen)
0.7882 1972 (van Beek)
0.7655 1986 (Shiganov)
0.7056 2007 (Shevtsova)
0.7005 2008 (Shevtsova)
0.5894 2009 (Tyurin)
0.5129 2010 (Korolev & Shevtsova)
0.4785 2010 (Tyurin)
0.4748 2012 (Korolev & Shevtsova)

Esseen also proved in 1956 that c > 0.40973, so this race is about to end :)
Nevertheless, we can only apply the Berry-Essen bound in the case of S(t)|N(t) = n(t)

conditional on a known number of claims N(t) = n(t) which does not solve the original problem
for the unconditional distribution of S(t). In such case we would have

sup
x∈R

∣∣∣∣∣P
(

1
n(t)

S(t)− E[X1]√
V ar[X1]/n(t)

6 x

)
− Φ(x)

∣∣∣∣∣ 6 c√
n(t)

E[|X1 − E[X1]|3]
(V ar[X1])

3 .

From this, we can see that the approximation is very good around the mean E[S(t)] but it
shows how dangerous it is to use the CLT when it comes to considering probabilities

P (S(t) > y|N(t) = n(t)) = P

(
1
n(t)

S(t)− E[X1]√
V ar[X1]/n(t)

>

1
n(t)

y − E[X1]√
V ar[X1]/n(t)

)

for large y. The normal approximation is poor if x =
1
n(t)

y−E[X1]√
V ar[X1]/n(t)

is too large.

2



Consider an i.i.d. sample X1, . . . , Xn and the corresponding empirical distribution function:

Fn(x) =
1

n

n∑
i=1

1{Xi6x}.

By X∗ we denote any random variable with distribution function Fn, given X1, . . . , Xn.

(a) Calculate the expectation, the variance and the third absolute moment of X∗.

(b) For (conditionally) i.i.d. random variables X∗i , i = 1, . . . , n with distribution function Fn
calculate the mean and variance of the sample X

∗
n = n−1

∑n
i=1X

∗
i .

(c) Apply the strong law of large numbers to show that the limits of E∗[X
∗
n] and nV ar∗[X

∗
n]

as n → ∞ exist and coincide with their deterministic counterparts E[X1] and V ar[X1],
provided the latter quantities are �nite. Here, E∗ and V ar∗ refer to expectation and
variance with respect to the distribution function Fn of the (conditionally) i.i.d. random
variables X∗i 's.

(d) Apply the Berry-Esseen inequality to

P ∗

( √
n√

V ar∗[X∗1 ]
(X
∗
n − E∗[X

∗
n]) 6 x

)
− Φ(x)

= P

( √
n√

V ar∗[X∗1 ]
(X
∗
n − E∗[X

∗
n]) 6 x

∣∣∣∣∣X1, . . . , Xn

)
− Φ(x),

and show that the (conditional) central limit theorem applies to (X∗i ) if E[|X1|3] < ∞,
i.e., the above di�erences converge to 0 with probability one.

Exercise 3

Given independent claim sizes X1, . . . , Xn, n > 1 with common distribution function F it
is very relevant for the insurer to know the distribution of the maximum of the claims, i.e.
Mn = max{X1, . . . , Xn}. A distribution function F is said to be an extreme value distribution

if it satis�es the following property: for every n > 1 there exist constants cn > 0 and dn ∈ R
such that for i.i.d. random variables Xi with common distribution F ,

Mn − dn
cn

law
= X1.

(a) Verify that the Gumbel distribution with distribution function Λ(x) = e−e
−x
, x ∈ R, the

Fréchet distribution with distribution function Φα(x) = e−x
−α
, x > 0 for some α > 0 and

the Weibull distribution with distribution function Ψα(x) = e−|x|
α
, x < 0 for some α > 0

are extreme value distributions. It can be shown that, upto changes of scale and location,
these three distributions are the only extreme value distributions.
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(b) The extreme value distributions are known to be the only non-degenerate limit distribu-
tions for partial maxima Mn = max{X1, . . . , Xn} of i.i.d. random variables Xi after a
suitable scaling and centering, i.e., there exist cn > 0 and dn ∈ R such that

Mn − dn
cn

law→ Y ∼ H ∈ {Λ,Φα,Ψα}.

This result is known as the Fisher�Tippett�Gnedenko theorem and it is a fundamental
result in extreme value theory.

Find suitable constants cn > 0, dn ∈ R and extreme value distributions H such that
the above convergence holds for the Pareto, exponentially distributed, and uniformly
distributed claim sizes.

Exercise 4

Consider the total claim amount

S =
N∑
i=1

Xi,

where N ∼ Bin (M, p) for some integer M > 0 and probability p and the claim sizes Xi ∼
Ber (q) for some probability q.

(a) Let qn = P (N = n), n > 0. Show that

qn =

(
a+

b

n

)
qn−1, n > 1,

with a = − p
1−p and b = p(M+1)

1−p .

(b) By the previous fact and since S is discrete (Xi's are Bernoulli) we can use Panjer's
recursion scheme to �nd the exact probabilities pn = P (S = n). Show that{

p0 = (1− pq)M ,
pn = pq

1−pq

(
M+1
n
− 1
)
pn−1, n > 1.

(c) Show that S ∼ Bin (M, pq). (You can do this using item (b) or directly). Compute E[S]
and V ar[S].

(d) It is well-known that if Mpq > 10 and M(1− pq) > 10 then by the CLT we have a fairly
good approximation with the normal distribution, i.e.

S − E[S]√
V ar[S]

≈ N(0, 1).

Assume M = 100, p = 0.5 and q = 0.2. Use this to compute the probabilities P (S > 10),
P (S > 20) and P (S > 30) using the exact value and the normal approximation. What
do you observe?
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Exercise 5

Consider an insurance policy with claims Xi ∼ U[0, θ] where θ is unknown and we suppose
θ is Pareto distributed with location parameter xm > 0 and scale parameter α. The density
functions, expectations and variances are given by

fXi|θ(x|θ) =
1

θ
, 0 6 x 6 θ, E[Xi|θ] =

θ

2
, V ar[Xi|θ] =

θ2

12
,

fθ(y) = α
xαm
yα+1

, y > xm, E[θ] =
αxm
α− 1

, V ar[θ] =
αx2m

(α− 1)2(α− 2)
,

where the Pareto variable has �nite expectation only if α > 1 and �nite variance only if α > 2.
Observe that θ provides a (random) bound for the largest claim. A frequestist approach

would be to take θ as the maximum of a sample. Here, instead we add some uncertainty
and update the distribution of θ after observations. Do not think that claims are uniformly
distributed or bounded variables, they are actually not!

We observe n claims of sizes X1, . . . , Xn. Denote X = (X1, . . . , Xn) and similarly x =
(x1, . . . , xn) to relax notation.

(a) In the Bayesian setting it is in general not easy to �nd the unconditional distribution for
the claim sizes, i.e. we have X1|θ and we have θ but we do not know X. In general we
do not need to know it. Nevertheless, �nd the (unconditional) distribution of X1 and
comment.

(b) Show that the posterior distribution, i.e. θ|X1, . . . , Xn is given by

θ|X ∼ Pareto (x∗m, α
∗)

where
x∗m = max{X1, . . . , Xn, xm}, α∗ = α + n.

(c) Find the Bayes estimator, denoted by µ̂B, for the net premium µ(θ) = E[X1|θ] and show
that µ̂B converges to µ(θ) almost surely. Compute the Bayes risk too.

(d) Assume a prior on θ Pareto distributed with xm = 10 and α = 4. We observe x1 = 2, x2 =
5, x3 = 12, x4 = 4, x5 = 5, x6 = 2, x7 = 8, x8 = 5, x9 = 5, x10 = 8. Update your prior belief
and compute the Bayes estimator based on this sample.

(e) Under the same setting as in (c) now imagine you have a portfolio S(t) =
∑N(t)

i=1 Xi with
Poisson claims N(t) ∼ Pois (λt), and Xi are also uniformly distributed with parameter θ
and θ is Pareto as in (c). Considering the ruin process U(t) = u + ct − S(t) with initial
capital u > 0 and premium rate c > 0. Find the premium you should charge in order
to avoid ruin with probability one if no data is available, and if data has been collected.
What do you observe?
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