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Chapter 1

Measures

1.1 σ-algebras

Let Ω be a nonempty set and P(Ω) = {A : A ⊂ Ω} be the power set of Ω, i.e., the class of all
subsets of Ω.

De�nition 1.1.1. A collection of sets F ⊂ P(Ω) is called an algebra if

(a) Ω ∈ F ,

(b) A ∈ F implies Ac = Ω \ A ∈ F ,

(c) A,B ∈ F implies A ∪B ∈ F .

Hence, an algebra of subsets of a given set Ω is a class of sets containing Ω that is closed
under complementation and pairwise (and hence �nite) unions. It is easy to see that one can
equivalently exchange property (c) by

(c)′ A,B ∈ F ⇒ A ∩B ∈ F .

De�nition 1.1.2. A class F ⊂ P(Ω) is called a σ-algebra if it an algebra and satis�es in
addition

(d) An ∈ F for n > 1⇒
⋃
n>1

An ∈ F .

Thus, a σ-algebra is a class of subsets of Ω that contains Ω and is closed under complemen-
tation and countable unions

The concept of σ-algebra is motivated by the concept of event in an experiment. Then a
σ-algebra of events gives intuition to all possible events one can observe in a given experiment.

Example 1.1.3. We consider tossing a coin twice. Then Ω = {hh, ht, th, tt} is our sample
space, describing the outcomes of our experiment. The σ-algebra on Ω for this experiment is a
set of 16 sets. namely,

F =
{
∅, {hh}, {ht}, {th}, {tt}, {hh, ht}, {hh, th}, {hh, tt}, {ht, th}, {hh, tt},

{th, tt}, {hh, ht, th}, {hh, ht, tt}, {hh, th, tt}, {ht, th, tt},Ω
}
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Example 1.1.4. If Ω = R then an example of σ-algebra on Ω is given by F = B(R) where
B(R) denotes the Borel σ-algebra of R, which is given by all sets (a, b), [a, b], (a, b] and [a, b) for
a, b ∈ R, a < b, ∅ and R.

If A is a set of subsets of Ω, then A is in general not a σ-algebra. But we can de�ne the
smallest σ-algebra containing A.

De�nition 1.1.5. If A is a class of subsets of Ω, the the σ-algebra generated by A, denoted by
σ(A), is de�ned as

σ(A) =
⋂

F∈I(A)

F ,

where I(A) = {F : A ⊂ F and F is a σ-algebra on Ω} is the collection of all σ-algebras
containing A.

Note that since the power P(A) is itself a σ-algebra containing A, the collection I(A) is
not empty and hence, the above intersection is well de�ned.

Example 1.1.6. If Ω = {a, b, c} then A1 = {{a}, {c}} and A2 = {{a, b}} are both a collection
of subsets of Ω but not a σ-algebra.

The σ-algebras of Ω are:

F1 = {∅,Ω}
F2 = {F1, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}
F3 = {F1, {a}, {b, c}}
F4 = {F1, {b}, {a, c}}
F5 = {F1, {c}, {a, b}}.

Then
I(A1) = {F2}, I(A2) = {F2,F5}.

Hence,
σ(A1) = F2 = P(Ω), σ(A2) = F2 ∩ F5 = F5.

Usually on a �nite set one can construct the corresponding minimal σ-algebra by adding com-
plements and then adding unions and complements of the obtained sets.

1.2 Metric spaces and the Borel σ-algebra

A metric space is a pair (M,d) where M is a nonempty set and d is a function d : M ×M →
[0,∞) satisfying

(i) d(x, y) = d(y, x) for all x, y ∈M ,

(ii) d(x, y) = 0 if, and only if x = y for all x, y ∈M ,

(iii) d(x, y) 6 d(x, z) + d(z, y) for all x, y, z ∈M (triangle inequality).
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The function d is called a metric on M or a more commonly, a distance.
Any Euclidean space Rn, for an integer n > 1, is a metric space under any of the following

metrics:

(a) For 1 6 p <∞, dp(x, y) = (
∑n

i=1 |xi − yi|p)
1/p

,

(b) d∞(x, y) = maxi=1,...,n |xi − yi|,

(c) 0 < p < 1, dp(x, y) =
∑n

i=1 |xi − yi|p.

Given an element x ∈ M , we de�ne open neighbourhoods of x of the form B(x, ε) = {y ∈
M : d(x, y) < ε}. These are often called balls. We say that a set U ⊂M is open if for all x ∈ U
there is ε > 0 such that B(x, ε) ⊂ U . In this way, a metric space is also a topological space
where the topology τ is the collection of all open sets as de�ned above. This gives rise to the
following de�nition.

De�nition 1.2.1. The Borel σ-algebra on a topological space M (in particular, on a metric
space or an Euclidean space) is de�ned as the σ-algebra generated by the collection of open sets
in M .

Example 1.2.2. Let B(Rn) denote the Borel σ-algebra on Rn. Then,

B(Rn) = σ ({U : U is an open subset of Rn})

is also generated by each of the following sets

U1 = {(a1, b1)× · · · × (an, bn) : −∞ 6 ai < b− i 6∞, 1 6 i 6 n} ,
U2 = {(−∞, x1)× · · · × (−∞, xn) : x1, . . . , xn ∈ R} ,
U3 = {(a1, b1)× · · · × (an, bn) : ai, bi ∈ Q, ai < bi, 1 6 i 6 n} ,
U4 = {(−∞, x1)× · · · × (−∞, xn) : x1, . . . , xn ∈ Q} .

1.3 Measures

A set function is an extended real valued function de�ned on a class of subsets of a set Ω.
Measures are nonnegative set functions acting on σ-algebras on Ω. Intuitively speaking, such
function, measures the content of a subset of Ω. A measure has to satisfy certain natural
conditions.

De�nition 1.3.1. Let Ω be a nonempty set and F be a σ-algebra on Ω. Then a set function µ
on F is called a measure if

(i) Nonnegativity: µ(A) ∈ [0,∞] for all A ∈ F ,

(ii) Null empty set: µ(∅) = 0,

(iii) Countable additivity (σ-additivity): for any countable collection {An}n>1 of pairwise dis-
joints sets in F ,

µ

(⋃
n>1

An

)
=
∞∑
n=1

µ(An).

.
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De�nition 1.3.2. A measure µ is called �nite or in�nite according to whether µ(Ω) < ∞ or
µ(Ω) = ∞. A �nite measure with µ(Ω) = 1 is called a probability measure. A measure µ is
called σ-�nite if there exists a countable collection {An}n>1 of not necessarily disjoints sets in
F such that ⋃

n>1

An = Ω, µ(An) <∞ for all n > 1.

Example 1.3.3. Here are some examples:

• (The counting measure) Let Ω be a nonempty set and F = P(Ω) be the set of all subsets
of Ω. De�ne µ(A) = |A|, A ∈ F where |A| denotes the number of elements in A. It is easy
to check that µ is a measure. Note that µ is �nite if and only if Ω is �nite and σ-�nite if
Ω is countably in�nity.

• (Discrete probability measures) Let ω1, ω2, · · · ∈ Ω and p1, p2, · · · ∈ [0, 1] such that
∑∞

i=1 pi =
1. De�ne for any A ⊂ Ω:

P (A) =
∞∑
i=1

piIA(ωi),

where IA(·) denotes the indicator function of a set A. For any disjoint collection of sets
A1, A2, · · · ∈ P(Ω),

P

(
∞⋃
i=1

Ai

)
=
∞∑
j=1

pjI∪∞i=1Ai
(ωj)

=
∞∑
j=1

pj

(
∞∑
i=1

IAi
(ωj)

)

=
∞∑
i=1

(
∞∑
j=1

pjIAi
(ωj)

)

=
∞∑
i=1

P (Ai),

where interchanging the order of summation is allowed since summands are nonnegative
(Tonelli). Furthermore

P (Ω) =
∞∑
i=1

piIΩ(ωi) =
∞∑
i=1

pi = 1.

All this shows that P is a probability measure on P(Ω).

• (Lebesgue-Stieltjes measures on R) A large class of measures on the Borel σ-algebra B(R)
of subsets of R, known as Lebesgue-Stieltjes measures, arise from non decreasing right
continuous functions F : R → R. For such a given F the corresponding measure µF
satis�es µF ((a, b]) = F (b) − F (a) for all −∞ < a < b < ∞, then one can construct µF
on any Borel sets via extensions theorems (too technical). Note that if An = (−n, n),
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n = 1, 2, . . . then R = cupn>1An and µF (An) < ∞ for every n > 1 and thus µF are
σ-�nite (this is good to de�ne integration theory).

Observe that if in addition limx→−∞ F (x) = 0 and limx→∞ F (x) = 1 then µF is called a
law which, in particular,

µF ((−∞, x]) = F (x)

de�nes a distribution. Integration of the Lebesgue-Stieltjes type is in particular used for
de�ning expectations of random variables.

If F (x) = x then µF is simply called the Lebesgue measure.

Proposition 1.3.4. Let µ be a measure on a σ-algebra F ,

(i) (Monotonicity) µ(A) 6 µ(B) if A ⊆ B,

(ii) (σ-subadditivity) For any countable collection of events {An}n>1 not necessarily disjoints,

µ

(⋃
n>1

An

)
6

∞∑
n=1

µ(An),

(iii) (Inclusion-exclusion formula) If A1, . . . , An 1 6 n <∞ and µ(An) <∞ for all n then

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(An)−
∑

i6i<j<n

µ(Ai ∩ Aj) + · · ·+ (−1)n−1µ

(
n⋂
i=1

Ai

)

(iv) (Monotone continuity from above and below) Let {An}n>1 be a sequence of sets in F such
that An+1 ⊆ An for all n > 1. Also, µ(An0) <∞ for some n0. Then, the intersection of
sets is measurable and

µ

(⋂
n>1

An

)
= lim

n→∞
µ(An).

Similarly, let {An}n>1 be a sequence of sets in F such that An ⊆ An+1 for all n > 1 then
the union of sets is measurable and

µ

(⋃
n>1

An

)
= lim

n→∞
µ(An).
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Chapter 2

Probability spaces

2.1 Kolmogorov's axiomatic probability model

Probability theory provides a mathematical model for random phenomena, i.e., those involving
uncertainty. First, one identi�es the set Ω of possible outcomes of a (random) experiment
associated with the phenomenon. This set Ω is called sample space, and an individual element
ω of Ω is called a sample point. Even though the outcome is not predictable ahead of time, one
is interested in the chances of some particular statement to be valid for the resulting outcome.
The set of ω's for which a given statement is valid is called an event. Thus, an event is a subset
of Ω. One then identi�es a class F of events, i.e., a class F of subsets of Ω (not necessarily
P(Ω)), and then a set function P on F such that for A in F , P (A) represents the �chance� of
the event A happening. Thus, it is reasonable to impose the following conditions on F and P :

(i) A ∈ F ⇒ Ac ∈ F .

(ii) A1, A2 ∈ F ⇒ A1 ∪ A2 ∈ F .

(iii) for all A ∈ F , 0 6 P (A) 6 1, P (∅) = 0 and P (Ω) = 1.

(iv) A1, A2 ∈ F , A1 ∩ A2 = ∅ implies P (A1 ∪ A2) = P (A1) + P (A2).

(v) An ∈ F , An ⊂ An+1 for all n = 1, 2, . . . then ∪n>1An ∈ F and limn P (An) = P (∪nAn).

Conditions (i) − (v) imply that (Ω,F , P ) is a measure space, i.e., F is a σ-algebra and
P is a measure on F with P (Ω) = 1. That is, (Ω,F , P ) is a probability space. Here are
some examples.

Example 2.1.1 (Finite sample spaces). Let Ω = {ω1, . . . , ωk} for some integer k > 1, F =
P(Ω) and P (A) =

∑k
i=1 piIA(ωi) where {pi}ki=1 are such that 0 6 pi 6 1 and

∑k
i=1 pi = 1. This

is a probability model for random experiments with �nitely many possible outcomes.
An important application of this probability model is �nite population sampling. Let {U1, . . . , UN}

be a �nite populations of N units or objects. These could be individuals in a city, counties in a
state, etc. In a typical sample survey procedure, one chooses a subset of size n, 1 6 n 6 N , from

this population. Let Ω denote the collection of all possible subsets of size n. Here k =

(
N
n

)
,

9
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each ωi is a sample of size n and pi is the selection probability of ωi. The assignment of {pi}ki=1

is determined by a given sampling scheme. For example, in simple random sampling without
replacement, pi = 1

k
for i = 1, . . . , k.

Example 2.1.2 (Countably in�nite sample spaces). Let Ω = {ω1, ω2, . . . } be a countable set,
F = P(Ω), and P (A) =

∑∞
i=1 piIA(ωi) where {pi}∞i=1 are such that 0 6 pi 6 1 and

∑∞
i=1 pi = 1.

It is easy to verify that (Ω,F , P ) is a probability space. This is a probability model for random
experiments with countably in�nite number of outcomes. For example, the experiment of tossing
a coin until a �head� is produced is such a probability space.

Example 2.1.3 (Uncountable sample spaces). Here are some examples of uncountable sample
spaces:

(a) (Random variables). Let Ω = R, F = B(R), P = µF , the Lebesgue-Stieltjes measure cor-
responding to a cdf F , i.e., corresponding to a function F : R→ R that is nondecreasing,
right-continuous and satis�es limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1. This serves as
a model for a single random variable X.

(b) (Random vectors). Let Ω = Rk, F = B(Rk), P = µF , the Lebesgue-Stieltjes measure
corresponding to a (multidimensional) cdf F on Rk.

(c) (Random sequences). Let Ω = R∞ the set of all sequences {xn}n>1 of real numbers. Let C
be the class of all �nite dimensional sets of the form A×R×· · · , where A ∈ B(Rk) for some
1 6 k <∞, let µk be a probability measure on B(Rk) such that µk+1(A×R) = µk(A) for
all A ∈ B(Rk) and k. This will be the model for a sequence {Xn}n>1 of random variables
such that for

2.2 Random variables and random vectors

Random variables and vector are the central objects of this course.

De�nition 2.2.1 (Random variable). Let (Ω, ,F, P ) be a probability space and X : Ω → R be
a measurable set function, i.e. X−1(A) ∈ F for every A ∈ B(R). Then, X is called a random
variable on (Ω, ,F, P ).

Recall that, X is measurable if, and only if for all x ∈ R, {ω : X(ω) 6 x} ∈ F .

De�nition 2.2.2 (Law/ probability distribution of a random variable). Let X be a random
variable on (Ω, ,F, P ). Let

PX(A) = P (X−1(A)), A ∈ F .

Then, the probability measure PX is called the probability distribution of the law of X.

De�nition 2.2.3 (Cumulative distribution function). Let X be a random variable on (Ω, ,F, P ).
Let

FX(x) = P ({ω : X(ω) 6 x}), x ∈ R.

Then, FX is called the cumulative distribution function (cdf) of X.
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Observe that FX is a function and PX is a set function. Also, ifAx = (−∞, x] for x ∈ R
then PX(Ax) = FX(x).

(add generalization to vectors from page 192).
It is clear that the distribution of X = (X1, . . . , Xk) determines the marginal distribution

PXi
of Xi for all i = 1, . . . , k. However, the marginal distributions {PXi

: i = 1, . . . , k}
do not uniquely determine the joint distribution PX , without additional conditions, such as
independence.

De�nition 2.2.4 (Expected value). Let X be a random variable on (Ω, ,F, P ). The expected
value ofX, denoted by EX or E[X], is de�ned as

E[X] =

∫
Ω

X(ω)P (dω),

provided the integral is well de�ned. That is, at least one of the two quantities
∫
X+dP and∫

X−dP is �nite.

Remark 2.2.5. • If h is a Borel measurable function then

E[h(X)] =

∫
Ω

h(X(ω))P (dω).

• The case h = 1A for some Borel set A ∈ R then

E[1A] =

∫
Ω

1A(ω)P (dω) = P (A)

• If X has distribution function FX then

E[h(X)] =

∫
R
h(x)FX(dx).

In particular, if FX(x) = P (X 6 x) is absolutely continuous and fX is its absolutely
continuous derivative then

E[h(X)] =

∫
R
h(x)fX(x)dx.

Proposition 2.2.6 (Change of variables formula). Let X be an absolutely continuous random
variable with density function fX de�ned over the support [a, b]. Let Y = h(X) be an invertible
function of X with inverse denoted by h−1, i.e. X = h−1(Y ). Then the probability density
function of Y is given by

fY (y) = fX(h−1(y))

∣∣∣∣ ddyh−1(y)

∣∣∣∣ ,
de�ned over the support [u(a), u(b)].

De�nition 2.2.7. For any positive integer n, the nth moment µn of a random variable X is
de�ned by

µn = E[Xn],

provided the expectation is well de�ned.
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De�nition 2.2.8. The variance of a random variable X is de�ned as V ar[X] = E[(X−E[X])2],
provided E[X2] <∞. The variance is a measure of distance or deviation to the mean.

De�nition 2.2.9 (Moment generating function (mgf)). The moment generating function (mgf)
of a random variable X is de�ned by

MX(t) = E[etX ], t ∈ R.

Since etX is always almost surely nonnegative, MX is always well de�ned but could be
in�nity.

Proposition 2.2.10. Let X be a nonnegative random variable and t > 0. Then

MX(t) = E[etX ] =
∞∑
n=0

tn

n!
µn.

Proposition 2.2.11. Let X be a random variable and let MX(t) be �nite for all |t| < ε for
some ε > 0. Then

(i) E|X|n <∞ for all n > 1,

(ii) MX(t) =
∑∞

n=0
tn

n!
µn for all |t| < ε,

(iii) MX is in�nitely di�erentiable on (−ε, ε) and for k ∈ N the k-th derivative of MX is

M
(k)
X (t) =

∞∑
n=0

tn

n!
µn+k = E[etXXk], |t| < ε.

In particular,

M
(k)
X (0) = µk = E[Xk].

Theorem 2.2.12. If two random variables have the same moment generating function, then
they have the same distribution. That is

MX(t) = MY (t)⇒ X ∼ Y.

Remark 2.2.13. If MX(t) is �nite for |t| < ε for some ε > 0, then all the moments {µn}n>0

of X are determined and also its probability distribution. However, in general, the sequence
{µn}n>0 of moments of X need not determine the distribution of X uniquely.

De�nition 2.2.14 (Characteristic function). Let X be a random variable. The characteristic
function (cf) of X is de�ned as

ϕX(t) = E[eitX ], t ∈ R.

Theorem 2.2.15. Two random variables (not necessarily on the same probability space) have
the same law if, and only if they have the same characteristic function.
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2.3 Some elementary inequalities

Proposition 2.3.1 (Markov's inequality). Let X be a random variable on (Ω,F , P ). Then for
any φ : [0,∞)→ [0,∞) nondecreasing and any t > 0 with φ(t) > 0,

P (|X| > t) 6
E[φ(|X|)]
φ(t)

.

In particular,

P (|X| > t) 6
E[|X|k]
tk

,

P (|X| > t) 6
E[eα|X|]

eαt
,

for every α > 0, and hence,

P (|X| > t) 6 inf
α>0

E[eα|X|]

eαt
,

Proposition 2.3.2 (Chebyshev's inequality). Let X be a random variable with EX2 < ∞,
EX = µ, V arX = σ2. Then for any k > 0,

P (|X − µ| > kσ) 6
1

k2
.

Proposition 2.3.3 (Jensen's inequality). Let X be a random variable with P (a < X < b) = 1
for −∞ 6 a < b 6∞. Let φ : (a, b)→ R be convex on (a, b). Then

φ(EX) 6 Eφ(X)

provided E|X| <∞ and E|φ(X)| <∞.

Proposition 2.3.4 (Hölder's inequality). Let X and Y be random variables on (Ω,F , P ) with
E|X|p <∞, E|Y |q <∞, 1 < p <∞, 1 < q <∞, 1

p
+ 1

q
= 1. Then

E|XY | 6 (E|X|p)1/p(E|Y |q)1/q,

with equality if, and only if P (a|X|p = b|Y |q) = 1 for some 0 6 a, b < ∞. In particular, if
p = q = 2 we have

E|XY | 6
√
EX2

√
EY 2,

or also,

Cov(X, Y ) 6
√
V arX

√
V arY .

Proposition 2.3.5 (Minkowski's inequality). Let X and Y be random variables on (Ω,F , P )
with E|X|p <∞, E|Y |p <∞, 1 6 p <∞. Then

(E[|X + Y |p])1/p 6 (E|X|p)1/p + (E|Y |p)1/p.
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2.4 Convergence of random variables

When measuring a physical quantity such as the mass of an object, it is commonly believed that
the average of several measurements is more reliable than a single one. Similarly, in applications
of statistical inference when estimating a population mean µ, a random sample {X1, . . . , Xn} of
size n is drawn from the population, and the sample average or empirical mean Xn = 1

n

∑n
i=1Xi

is used as an estimator for the parameter µ. This is based on the idea that as n gets large, Xn

will get closed to µ in some suitable sense.
In what follows we will review the di�erent ideas of convergence one can give to a sequence

of random variables and how they are interrelated.

De�nition 2.4.1 (Pointwise or sure convergence). Let {Xn}n>1 be a sequence of random vari-
ables on a probability space (Ω,F , P ). The sequence {Xn}n>1 is said to converge surely or
pointwise to a random variable X if

lim
n→∞

Xn(ω) = X(ω) for all ω ∈ Ω.

De�nition 2.4.2 (Convergence almost sure). Let {Xn}n>1 be a sequence of random variables
on a probability space (Ω,F , P ). The sequence {Xn}n>1 is said to converge almost surely (P -
a.s.) or with probability one to a random variable X if there exists a set N ∈ F such that
P (N) = 0 and

lim
n→∞

Xn(ω) = X(ω) for all ω ∈ Ω \N.

This is often written as Xn → X a.s. or Xn → X P -a.s.

De�nition 2.4.3 (Convergence in probability). Let {Xn}n>1 be a sequence of random variables
on a probability space (Ω,F , P ). The sequence {Xn}n>1 is said to converge in probability to a
random variable X if for every ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0.

This is often written as Xn
P−→ X

De�nition 2.4.4 (Convergence in distribution). Let {Xn}n>1 be a sequence of random variables
on a probability space (Ω,F , P ). The sequence {Xn}n>1 is said to converge in distribution or
in law to a random variable X if

lim
n→∞

P (Xn < x) = P (X < x)

for every x ∈ R at which F (x) := P (X < x) is continuous.

This is often written as Xn
d−→ X or Xn

L−→ X. In fact, the random variables do not need to
share a common probability space.

De�nition 2.4.5 (Convergence in pth mean). Let {Xn}n>1 be a sequence of random variables
on a probability space (Ω,F , P ) and p > 1 a real number. The sequence {Xn}n>1 is said to
converge in the pth mean or in the Lp-norm to a random variable X if the pth moments E[|Xn|p]
and E[|X|p] exist and

lim
n→∞

E[|Xn −X|p] = 0.

This is often written as Xn
Lp

−→ X.
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Figure 2.1: Interrelation of di�erent types of convergence

Theorem 2.4.6 (Lévy continuity criterion). A sequence of random random variables {Xn}∞n=1

(not necessarily sharing the same probability space) convergences in law to some random variable
X if, and only if

ϕXn(t)
n→∞−−−→ ϕX(t),

for every t ∈ R and ϕX(t) is continuous at t = 0.

Example 2.4.7. Show that a sequence of Bernoulli random variables Xn with probability 1/n
converges to 0 in probability, in distribution and in any mean p > 1.

Example 2.4.8. A sequence of i.i.d. {Xn}∞n=1 with law N(0, n) for each n > 1 does not
convergence in any of the above mentioned senses.

Example 2.4.9. Convergence in distribution of {Xn}∞n=1 to X means that the law of Xn gets
arbitrarily close to the law of X. Whilst, convergence in probability of Xn to X means that the
random variable Xn gets very close to the random variable X. For example, let X ∼ N(0, 1)
and de�ne Y = −X . Then X and Y have the same law, so if Xn convergence in law to X
so does it to Y as well, but if Xn convergences in probability to X, then it can not converge in
probability to Y since X and Y are di�erent elements in L0(Ω).

2.4.1 Almost sure convergence vs convergence in probability

From a statistical point of view (and hence practical) there is no di�erence between the two
notions. The di�erence is of philosophical nature. Hence, for a statistician, whether an esti-
mator is consistent or strongly consistent is not really relevant,so proving that an estimator is
(weakly) consistent is enough for sampling and statistical purposes.

Nevertheless, the di�erence between the two types of convergence is important in mathe-
matics and mathematical statistics, as each type allows one for the use of di�erent techniques
that may lead to new theories. Hence, theoretically, they are important.

In any case, let us look at an example that may throw some light on how one can interpret
the di�erence with an example. Imagine we use a device such that the probability of it failing
is less than before. Convergence in probability says that the chance (probability) of it failing
goes to 0 as the number of trials increases towards in�nity. So, after using the device a large
number of times, you can be very con�dent of it working correctly, it still might fail, it's just
very unlikely.
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Convergence almost surely is a bit stronger. It says that the total number of failures is
�nite. That is, if you count the number of failures as the number of usages goes to in�nity, you
will get a �nite number. The impact of this is as follows: As you use the device more and more,
you will, after some �nite number of usages, exhaust all failures. From then on the device will
work perfectly.

On the other hand, you do not actually know when you have exhausted all failures, so
from a purely practical point of view, there is not much di�erence between the two modes of
convergence.

However, it has importance from a philosophical point of view, for example, in the fact
that the strong law of large numbers exists, as opposed to just the weak law. Because now, a
scienti�c experiment to obtain, say, the speed of light, is justi�ed in taking averages. At least
in theory, after obtaining enough data, you can get arbitrarily close to the true speed of light.
There will not be any failures (however improbable) in the averaging process.

Example 2.4.10 (Lawof large numbers). Choose some ε > 0. Collect n estimates X1, . . . , Xn

of the speed of light (or some other quantity) that has some true value µ. We compute the
average

Sn =
1

n

n∑
i=1

Xi.

As we obtain more data (n increases) we can compute Sn, n = 1, 2, . . . . The weak law says
(under some assumptions on Xi) that the probability

P (|Sn − µ| > ε)→ 0

as n goes to in�nity. Whereas the strong law says that the number of times |Sn−µ| > ε is �nite
with probability one. That is, if we de�ne I(|Sn − µ| > ε) that returns one when |Sn − µ| > ε
and zero otherwise, then

∞∑
n=1

I(|Sn − µ| > ε)

convergences. This gives us considerable con�dence in the value of Sn, because it guarantees
(i.e. with probability one) the existence of some n0 such that |Sn − µ| < ε for all n > n0 (i.e.
the average never fails for n > n0). Note that the weak law gives no such guarantee.

2.5 Borel-Cantelli lemmas

In this section we will review some results on classes of independent events which are important
in proving laws of large numbers.

De�nition 2.5.1. Let (Ω,F) be a measure space and {An}n>1 ⊂ F be a sequence of sets. Then

lim sup
n→∞

An =
∞⋂
k=1

⋃
n>k

Ak,

lim inf
n→∞

An =
∞⋃
k=1

⋂
n>k

Ak,
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Proposition 2.5.2. Both lim supn→∞An and lim infn→∞An belong to F .

In probability theory, lim supn→∞An is referred to as the event that �An happens in�nitely
often� and lim infn→∞An as the event that �all but a �nitely many An's happen�.

Example 2.5.3. Let Ω = R, B(R) and P = λ the Lebesgue measure. Consider the family of
sets

An =

{
[0, 1/n], n odd,

[1− 1/n, 1], n even.

Then lim supnAn = {0, 1} and lim infn ∅.

The following result on the probabilities of lim supnAn and lim infnAn is very useful in
probability theory.

Theorem 2.5.4 (First Borel-Cantelli lemma). Let (Ω,F , P ) be a probability space and {An}n>1

be a sequence of events in F . If
∞∑
n=1

P (An) <∞,

then

P

(
lim sup
n→∞

An

)
= 0.

A partial converse of this result is often referred to as second Borel-Cantelli lemma, under
the additional assumption of pairwise independent events.

Theorem 2.5.5 (Second Borel-Cantelli lemma). Let (Ω,F , P ) be a probability space and
{An}n>1 be a sequence of pairwise independent events in F . If

∞∑
n=1

P (An) =∞,

then

P

(
lim sup
n→∞

An

)
= 1.

Remark 2.5.6. This result is also called a zero-one law as it states that for pairwise indepen-
dent events, the probability that An happens in�nitely often is either 1 or 0. A very popular
example is that of the in�nite typing monkeys.

Example 2.5.7. A monkey pushes keys of a typewriter at random. Assume this typewriter
has 50 keys and that the chances of a given key are equal (uniformly distributed). Consider
the word banana which has 6 letters. The probability of typing banana in a row is (1/50)6 =
(15 625 000 000)−1. Imagine we have in�nitely many strings (monkeys typing) and we let An
be the event that the �rst 6 characters of string n is the word banana. Obviously, {En}∞n=1 is
a sequence of mutually independent events with

∞∑
n=1

P (En) =∞.
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Hence, by the second Borel-Cantelli lemma we can conclude that

P

(
lim sup
n→∞

An

)
= 1.

This means that the probability that the events En occur in�nitely often is one. This translates
to saying that the event that a monkey types the word banana during this in�nite string is
one and, actually, this will happen an in�nite number of times. One can generalize this to
any given text, such as the complete works of William Shakespeare. Of course, the notion of
in�nite is crucial, and the time it would get for the monkey to type such a long text in a row is
inconceivable.



Chapter 3

Central limit theorem and strong law of

large numbers

Theorem 3.0.1 (Weak law of large numbers). Let {Xn}∞n=1 be a sequence of i.i.d. random
variables with µ = E[X1] = · · · = E[Xn] = · · · . Then

Xn =
1

n

n∑
i=1

Xi
P−→ µ,

that is for every ε > 0
lim
n→∞

P
(∣∣Xn − µ

∣∣ > ε
)
.

Interpreting this result, the weak law states that for any nonzero margin speci�ed, no matter
how small, with a su�ciently large sample there will be a very high probability that the average
of the observations will be close to the expected value; that is, within the margin.

Theorem 3.0.2 (Strong law of large numbers). Let {Xn}∞n=1 be a sequence of i.i.d. random
variables with µ = E[X1] = · · · = E[Xn] = · · · . Then

Xn =
1

n

n∑
i=1

Xi
a.s.−−→ µ,

that is
P
(

lim
n→∞

Xn = µ
)

= 1.

What this means is that the probability that, as the number of trials n goes to in�nity, the
average of the observations converges to the expected value, is equal to one.

The assumptions of both laws are quite general (e.g. independent variables, no �nite vari-
ance, etc.) but the distinction between the two is important since convergence in probability
doesnot imply almost sure convergence, and there are assumption under which one does not
have almost sure convergence but one has convergence in probability.

Theorem 3.0.3 (Lindeberg-Lévy CLT). Suppose {Xn}∞n=1 is a sequence of i.i.d. random vari-
ables with E[Xi] = µ and V ar[Xi] = σ2, both �nite. Then

Xn − µ
σ/
√
n

L−→ N(0, 1).

19
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This theorem only ensures convergence of the laws of Xn, we have not speci�ed any prob-
ability space. This result is very useful to construct con�dence intervals and build hypothesis
tests when the distributions of Xn are not entirely known and the samples are large enough.
This result concerns only means, there are other CLT-type of results concerning other statistics,
for instance the maximum of a given sample of random variables (extreme value theory) which
has its interest in insurance.
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