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Problem 1 (weight 4 points)

(a) The Cramér-Lundberg model is a model for the total claim amount
S(t) = ∑

N(t)
i=1 Xi where N is specified to be a homogeneous Poisson

process, {Xi}i≥1 are i.i.d. and independent of N. More concretely,
we have the following specifications:

– Claims happen at the arrival times 0 ≤ T1 ≤ T2 ≤ . . . of a
homogeneous Poisson process N(t) = #{i ≥ 1 : Ti ≤ t}, t ≥ 0.

– The ith claim arriving at time Ti causes the claim size Xi. The
sequence {Xi}i≥1 constitutes an i.i.d. sequence of non-negative
random variables.

– The sequences {Ti}i≥1 and {Xi}i≥1 are independent. In
particular, N and {Xi}i≥1 are independent.

Give 1p if the answer is correct. Give 0.5p if N is chosen to be a
homogeneous Poisson process.

(b) The risk process is defined as

U(t) = u + ct− S(t), t ≥ 0,

i.e. initial capital (usually big), plus income from the premiums
minus the claims. Define Z1 = X1 − cW1, where X1 is the first claim,

(Continued on page 2.)



Exam in STK4540, 12th December 2019 Page 2

c > 0 the premium rate and W1 the inter-arrival time to the first
claim. It is enough to look at Z1 since {Xi}i≥1 and {Wi}i≥1 are i.i.d.
A necessary condition to avoid ruin with probability one is

E[Z1] = E[X1]− cE[W1] < 0,

meaning that, in average, the claim size "E[X1]" should not exceed
the income "cE[W1]".

Give 0.75p if the condition is stated. Give 0.25p for the interpretation.

(c) The Bühlmann model assumes the following:

– The ith policy is described by the pair (θi, {Xi,t}t≥1), where
the random parameter θi is the heterogeneity parameter and
{Xi,t}t≥1 is the sequence of claim sizes or claim numbers in the
policy.

– The sequence of pairs (θi, {Xi,t}t≥1), i = 1, 2, . . . , is iid.

– The sequence {θi}i≥1 is i.i.d.

– Conditionally on θi, the sequence {Xi,t}t≥1 are independent and
their expectation and variance are given functions of θi:

µ(θi) = E[Xi,t|θi], v(θi) = Var[Xi,t|θi].

Give 0.5p if the candidate defines the heterogeneity model instead.
Give 0.5p if the candidate explains that the point of this model is to
have a distribution-free assumption given θi. Give 1p if the definition
is correct, and 0.25p per assumption.

(d) Observe that

eF(x)F(x) =
∫ ∞

x
F(y)dy

by the definition of eF. Then we need to prove that∫ ∞

x
F(y)dy = eF(0)e

−
∫ x

0
1

eF(y)
dy

.

Both sides are positive so applying logarithms we get

log
(∫ ∞

x
F(y)dy

)
= log(eF(0))−

∫ x

0

1
eF(y)

dy.

By the fundamental theorem of calculus (on the unbounded interval
(0, ∞)) we have that both sides are continuously differentiable and
by differentiating we have

−F(x)∫ ∞
x F(y)dy

= − 1
eF(x)

,

which is a true identity by the definition of eF

(Continued on page 3.)
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This formula actually shows that, whenever F is continuous and
F(x) > 0 for x > 0 then eF and F uniquely determine each other.
The mean excess function is used to determine whether a random
variable has heavy or light tails being the criterion: limu→∞ eF(u) = 0
light tails and limu→∞ eF(u) = ∞ heavy tails.

Give 0.5p for the proof and 0.5p for the explanation related to
small/large claims. Give also points if they assume F is differentiable
to prove the identity.

Problem 2 (weight 4 points)

This exercise is worth (a) 0.5p, (b) 0.5p, (c) 1p, (d) 0.5p, (e) 0.5p and (f) 1p.

(a) we can compute E[X11{X1≤L}] by conditioning on X1:

E[X11{X1≤L}] = E[X1|X1 ≤ L]P(X1 ≤ L) =
L + 1

2
L
M

.

Give 0.5p if correct.

(b) Again, by conditioning

E[eiθX11{X1≤L} ] = E[eiθX1 |X1 ≤ L]P(X1 ≤ L) + 1P(X1 > L)

= ϕL(θ)
L
M

+
M− L

M
.

Give 0.5p if correct.

(c) Since characteristic functions characterize distributions we will
compute both and check whether they are equal. In general, for a
compound Poisson process of the form H(t) = ∑

M(t)
i=1 Yi being M

Poisson with intensity µ and Yi i.i.d., one has

E[eiθH(t)] = E
[

eiθ ∑
M(t)
i=1 Yi

]
= E[ϕY1(θ)

M(t)] = e−µt(1−ϕY1
(θ)),

where ϕY1 denotes the characteristic function of Y1.

So, on the one hand

E[eiθS(t)] = e
−λt

(
1−ϕX11{X1≤L} (θ)

)
= e−λt L

M (1−ϕL(θ)),

where the latter step follows from (c). On the other hand,

E[eiθŜ(t)] = e−λ̂t(1−ϕL(θ)) = e−λt L
M (1−ϕL(θ)).

Since both characteristic functions coincide, the random variables
S(t) and Ŝ(t) have equal distributions for every t ≥ 0. Obs: this does

(Continued on page 4.)
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not mean, that S ∼ Ŝ as a random variable in an infinite dimensional
space, this is the next item.

Give 0.5p per computation and 1p if everything is correct independ-
ently of the method. Subtract 0.25p for major mistakes.

(d) It is enough to prove it for n = 2. We have

E
[
ei(θ1S(t1)+θ2S(t2))

]
= E

[
ei(θ1+θ2)S(t1)+θ2(S(t2)−S(t1))

]
= E

[
ei(θ1+θ2)S(t1)

]
E
[
eiθ2(S(t2)−S(t1))

]
= E

[
ei(θ1+θ2)S(t1)

]
E
[
eiθ2(S(t2−t1))

]
= E

[
ei(θ1+θ2)Ŝ(t1)

]
E
[
eiθ2(Ŝ(t2−t1))

]
= . . .

= E
[
ei(θ1Ŝ(t1)+θ2Ŝ(t2))

]
.

Give 0.5p if it is correct.

(e) We have

inf
t≥0

U(t) = inf
t≥0

(u + ct− S(t)) .

Bankrupcy can only happen at the arrival times Tn of the claims since
the premium income is a linear function. Hence,

inf
t≥0

U(t) = inf
n≥0

(u + cTn − S(Tn)) .

But now we have a countable set of S(Tn) so we can say S(Tn) ∼
Ŝ(Tn) and the claim follows. Give 0.5p if it is correct.

(f) Let Z1 = X̂1 − cŴ1 being W1 ∼ exp(λ̂). Then the Lundberg
coefficient is the positive root of the equation mZ1(h) = 1. But
mZ1(h) = mX̂1

(h)mŴ1
(−ch). Using the definitions of moment

generating functions for both variables we obtain

eh − e(L+1)h

L(1− eh)

λ̂

λ̂ + ch
= 1.

Now using eh ≈ 1 + h we have

1 + h− 1− (L + 1)h
−Lh

λ̂

λ̂ + ch
≈ 1.

Further,

λ̂

λ̂ + ch
≈ h ⇐⇒ ch2 + λ̂h− λ̂ = 0 ⇐⇒ r ≈ −λ̂ +

√
λ̂2 + 4cλ̂

2c
> 0.

(Continued on page 5.)
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Hence, the probability of ruin is bounded by

ψ(u) ≤ e−ru

Give 0.5p for proving the equation and 0.5p for finding the
approximate root.

Problem 3 (weight 4 points)

(a) The posterior density satisfies the following proportionality

fp(y|~X = ~x) ∝

(
n

∏
i=1

P(X1 = xi|p = y)

)
fp(y).

Then we can write the content of each expression that only depends
on y,

fp(y|~X = ~x) ∝

(
n

∏
i=1

y(1− y)xi−1

)
yα−1(1− y)β−1

= yn+α−1(1− y)∑n
i=1 xi−n+β.

The latter is a function proportional to the density function of a
beta distributed random variable with parameters α = α + n and
β = β + ∑n

i=1 xi − n. Observe that xi ≥ 1 for all i so ∑n
i=1 xi − n ≥ 0.

Give 1p for writing down the formula for the conditional denisty.
Give 2p if it is correct.

(b) The Bayes estimator is given by the posterior mean, i.e.

µ̂B(p) = E[µ(p)|~X]

= E
[

1
p
|~X
]

=
∫ 1

0

1
y

fp(y|~X = ~x)dy

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

1
y

yα−1(1− y)β−1dy

=
Γ(α + β)

Γ(α)���Γ(β)

Γ(α− 1)���Γ(β)

Γ(α− 1 + β)

Γ(α− 1 + β)

Γ(α− 1)Γ(β)

∫ 1

0
yα−2(1− y)β−1dy︸ ︷︷ ︸

=1

=
Γ(α + β)

Γ(α + β− 1)
Γ(α− 1)

Γ(α)
.

Finally using the fact that Γ(z)
Γ(z−1) = z − 1 and Γ(z′−1)

Γ(z′) = 1
z′ we

conclude that

µ̂B(p) =
α + β + ∑n

i=1 Xi − 1
n + α

.

(Continued on page 6.)
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If we write

µ̂B(p) =
α + β− 1

n + α
+

Xn

1 + α/n
we can apply the (conditionally on p) strong law of large number to
conclude that

µ̂B(p)→ E[X1|p] = µ(p)
almost surely as n→ ∞ and hence µ̂B is strongly consistent.

Give 0.5p for saying that the Bayes estimator is the posterior
expectation. Give 1p for the Bayes estimator and 1p for the strong
consistency. Give 2p if everything is correct and subtract points if
there are major mistakes.

Problem 4 (weight 2 points)

Using the formula for the CLM estimate given in the exercise we can fill in
the run-off triangle and obtain

Figure 1: Observed and estimated cumulative payments.

The technical provisions for year, say 2020, are the sum of the
incremental claims loss settlements. This corresponds to the incremental
settlements placed in the diagonal corresponding to year 2020, that is
(1677 − 1587) + (1845 − 1477) + (2089 − 1734) = 813. Repeating this
procedure for each year (increments in each diagonal) we obtain the
following table:

Figure 2: Technical provisions for future years

(Continued on page 7.)
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which are the provisions for the years 2020, 2021 and 2022.
Give 1p if the candidate has computed the estimated claims loss

settlements. Give 1p for the estimated loss settlement amounts for years
2017 and 2019.

The final point sum is a number X between 0 and 14. The grade is then
computed as a number between 0 and 100 as follows

Grade =
100
14

X.


