
Non-life insurance mathematics (STK4540)
Solutions to the problems of the 1.mandatory assignment

Problem 1 (i) By assumption we know that the inter-arrival times Wi, i ≥ 1 are i.i.d.
with common distribution W1 ∼ Exp(λ). So by Exercises 1, Problem 1 we know that the
MLE λ̂ is given by

λ̂ =
n

Tn
.

The observed inter-arrival times are W1 = 1 (i.e. 09/30/1988 is excluded),W2 = 3,W3 =
4, ..,W12 = 2. So n = 12 (sample size) and Tn = W1 + ... + W12 = 38 (nth arrival time of a
fire loss for n = 12) we get

λ̂ =
n

Tn
=

12

38
≈ 0.315789.

(ii) If the data set was large, the graph of the QQ-plot would indicate that the real inter-
arrival time distribution is heavier tailed than the assumed one, since it curves down to the
right.

(iii) The theoretical mean excess function is given by eF (u) = 1

λ̂
≈ 3.167 for all u (see

Exercises 2, Problem 1). If the data set was large, the graph which is curving up towards
the end wouldn’t indicate convergence against that level and rather suggest that the real
inter-arrival time distribution is more heavy-tailed than the assumed one.

(iv) Because of Exercises 1, Problem 1 we know that Tn ∼ Γ(n, λ). So

P (T5 > 7) = e−λ7
5∑

k=0

(λ7)k

k!
≈ 0.92636.

Problem 2 (i)
F (x) = x−αL(x),

where

L(x) :=

(
x

x+ 1

)α
(1 + α log(x+ 1)), x > 0.

Since (
λx
λx+1

)α(
x
x+1

)α (1 + α log(λ(x+ 1)))

(1 + α log(x+ 1))

=

(
λ

λ+ 1
x

)α
(

1
1+ 1

x

)α (1 + α log(λ) + α log(x+ 1))

(1 + α log(x))
−→
x−→∞

1

for all λ > 0, it follows that L is slowly varying. Therefore X1 is regularly varying with index
α > 0 (see Def. 3.4.4 in the lecture notes).

Hence, by Prop. 3.4.6 and Remark 3.4.8 X1 is subexponential, too.
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(ii) By differentiating the distribution function F we can compute its probability density
and obtain the following log-likelihood function with respect to the claim sizes

l(α) = 2n log(α) +
n∑
i=1

(−(α+ 1) log(xi) + log log(xi)).

By solving the equation
d

dα
l(α) =

2n

α
−

n∑
i=1

log(xi) = 0

we see that the maximum of the likelihood function is attained at

α̂ =
2n

n∑
i=1

log(xi)

n=12
= 1.62724.

Problem 3 We know that
Ψ(u) ∼ ρ−1F ∗X1,I(u)

for u −→∞ (Th. 3.4.13).
We want to approximate

F ∗X1,I(u) =
1

E∗[X1]

∫ u

0
P ∗(X1 > y)dy

by means of the empirical distribution function Fn.
So we see that

E∗[X1] ≈
1

n

n∑
i=1

Xi
n=12
= 5.70186.

On the other hand,
P ∗(X1 > y) ≈ 1− Fn(y).

Hence, ∫ u

0
P ∗(X1 > y)dy ≈

∫ u

0
(1− 1

n

n∑
i=1

1(−∞,y](Xi))dy

= u− 1

n

n∑
i=1

(max(u,Xi)−Xi).

Using the latter, we find that

Ψ(25) = 14.7513%, Ψ(100) = 0%.

Problem 4 See the self-explaining hint.

2



Problem 5 (i) Conditionally on θ, S(t), t ≥ 0 has the dynamics of a total claim amount
with respect to the Cramér-Lundberg model. So conditionally on θ, the NPC condition has
to be

E [X1 |θ]− cE [W1 |θ] < 0.

However, E [X1 |θ] = E [X1] = 1
γ , since X1 is independent of θ and X1 ∼ Exp(γ). On the

other hand, we have that E [W1 |θ] = 1
θ . So the conditional NPC condition takes the form

1

γ
− c1

θ
< 0.

Further, we know from Exercises 2, Prob 3 that

P (inf
t≥0

U(t) < 0 |θ) =
1

1 + ρ
e
−γ ρ

1+ρ
u

with probability 1, where ρ := cE[W1 |θ]
E[X1]

−1 = cγθ − 1 > 0 (with probability 1).
(ii) It follows from (i) that

Ψ(u) = E

[
P (inf

t≥0
U(t) < 0 |θ)

]
= E

[
θ

cγ
exp(−γ

cγθ − 1

cγθ
u)

]
= E

[
θ

cγ
exp(

θ

c
u)

]
exp(−γu).

(iii) If e.g. supu>0(E
[
θ
cγ exp( θcu)

]
/e−ru) < ∞ for some r ∈ (0, γ), we obtain from (ii)

that Ψ(u) has exponential decay to zero for u −→∞.

(iv) For c := (1 + ρ)(θ/γ), where ρ > 0 is deterministic, we see that the above conditional
NPC is satisfied. In this case we can argue as before, but obtain that

P (inf
t≥0

U(t) < 0 |θ) =
1

1 + ρ
e
−γ ρ

1+ρ
u

with probability 1. So

Ψ(u) =
1

1 + ρ
e
−γ ρ

1+ρ
u.

Problem 6 Using characteristic functions it can be shown that S(t), t ≥ 0 has indepen-
dent and stationary increments. Using the latter property, we find for 0 < t1 < t2 < ... < tn
that

E [exp(−λ1S(t1)− ...− λnS(tn))] (1)

= E [exp(−λ1S(t1)− λ2(S(t1) + (S(t2)− S(t1)))− ...− λn(S(t1) + (S(t2)− S(t1)) + ...+ (S(tn)− S(tn−1)))]

= E [exp(−(λ1 + ...+ λn)S(t1)− (λ2 + ...+ λn)(S(t2)− S(t1))− ...− λn(S(tn)− S(tn−1)))]

= E [exp(−(λ1 + ...+ λn)S(t1))] · E [exp(−(λ2 + ...+ λn)(S(t2)− S(t1)))] · ... · E [exp(−λn(S(tn)− S(tn−1)))]

= E [exp(−(λ1 + ...+ λn)S(t1))] · E [exp(−(λ2 + ...+ λn)(S(t2 − t1)))] · ... · E [exp(−λn(S(tn − tn−1)))] .
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On the other hand, using monotone convergence, we get that

E [exp(−λ1S(t1))]

= E

exp(−λ1
N(t1)∑
i=1

(Xi − x)+)


= E

exp(−λ1
N(t1)∑
i=1

(Xi − x)+)(
∑
k≥0

1{N(t1)=k})


=

∑
k≥0

E

[
exp(−λ1

k∑
i=1

(Xi − x)+)1{N(t1)=k}

]

=
∑
k≥0

E

[
exp(−λ1

k∑
i=1

(Xi − x)+)

]
P (N(t1) = k)

=
∑
k≥0

(E [exp(−λ1(X1 − x)+)])k
(λt1)

k

k!
e−λt1 .

By applying the probability density of the exponential distribution, we also find that

E [exp(−λ1(X1 − x)+)]

= E
[
1{X1≤x} exp(−λ1 · 0)

]
+ E

[
1{X1>x} exp(−λ1(X1 − x))

]
= P (X1 ≤ x) + eλ1xE

[
1{X1>x} exp(−λ1X1)

]
= 1− e−γx + eλ1x

∫ ∞
x

exp(−λ1y)γ exp(−γy)dy

= 1− e−γx + γeλ1x
∫ ∞
x

exp(−(λ1 + γ)y)dy

= 1− e−γx + γeλ1x

(
− 1

(λ1 + γ)
exp(−(λ1 + γ)y)

∣∣∣∣∞
y=x

)
= 1− e−γx + γeλ1x

1

(λ1 + γ)
exp(−(λ1 + γ)x)

= 1− e−γx +
γ

(λ1 + γ)
e−γx

= 1 + (
γ

(λ1 + γ)
− 1)e−γx.

So

E [exp(−λ1S(t1))]

=
∑
k≥0

(1 + (
γ

(λ1 + γ)
− 1)e−γx)k

(λt1)
k

k!
e−λt1

= exp

(
(1 + (

γ

(λ1 + γ)
− 1)e−γx)λt1 − λt1

)
= exp

(
(

γ

(λ1 + γ)
− 1)e−γxλt1

)
.
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On the other hand, consider the total claim amount process

S̃(t) =

N∗(t)∑
i=1

Xi,

where N∗(t), t ≥ 0 is a homogeneous Poisson process with intensity λ∗ > 0, which is inde-
pendent of the claim sizes Xi, i ≥ 1. Then we can carry out the same calculations as above
for x = 0 and obtain that

E
[
exp(−λ1S̃(t1))

]
= exp

(
(

γ

(λ1 + γ)
− 1)λ∗t1

)
.

Choose now λ∗ = λe−γx. Then we see that

E
[
exp(−λ1S̃(t1))

]
= E [exp(−λ1S(t1))]

for all λ1, t1 > 0. Since also S̃(t), t ≥ 0 is a process with independent and stationary incre-
ments, it follows from (1) and the hint that

(S̃(t1), ..., S̃(tn))
law
= (S(t1), ..., S(tn))

for all 0 < t1 < t2 < ... < tn. The latter (in connection with the Laplace-Stieltjes transform)
also implies that

(Ũ(t1), ..., Ũ(tn))
law
= (U(t1), ..., U(tn))

for all 0 < t1 < t2 < ... < tn, where Ũ(t) := u+ ct− S̃(t) is another risk process. Hence,

Ψ(u) = Ψ̃(u),

where Ψ̃(u) is the ruin probability with respect to Ũ(t), t ≥ 0 (which also satisfies the Net
Profit condition for γ ≥ 1).

We also know from Problem 3, Exercises 2 that

Ψ̃(u) =
1

1 + ρ
exp(−γ ρ

1 + ρ
u).

So for u = 25, γ = λ = 1, x = 18 and ρ = 0.3 we get that Ψ(25) = 0.00240166.
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