Non-Life Insurance Mathematics (STK4540) 2. Mandatory assignment

2 Problems out of 7 are supposed to be solved.

Deadline: Thursday, 9. November, 14:30 (electronic submission via Canvas).

Problem 1 Assume the heterogeneity model for the i-th policy of an insurance. Given $\theta \sim$ $\Gamma(\gamma, \beta)$ (Gamma distribution) the claim sizes X_{1}, \ldots, X_{n} in the policy are Pareto distributed with parameters (λ, θ), that is

$$
P\left(X_{i}>x \mid \theta\right)=(\lambda / x)^{\theta}, x>\lambda .
$$

A reinsurance company only considers the values X_{i} which exceed a known high treshold K. They "observe" the counting variables $Y_{i}:=1_{(K, \infty)}\left(X_{i}\right)$ for a known $K>\lambda$. The company is interested in finding an estimate of $p(\theta):=P\left(X_{1}>K \mid \theta\right)$.

Calculate the linear Bayes estimator and its risk with respect to $p(\theta):=E\left[Y_{1} \mid \theta\right]$ based on the observations Y_{1}, \ldots, Y_{n}, when $X_{1}=22, X_{5}=80, X_{10}=71$ and $X_{j}=2$ for $j=$ $2,3,4,6,7,8,9$ (in years), $K=55$ and $\lambda=1.5$ (in 1000 NOK). Further, suppose that $\beta=$ $\gamma=2$.

Problem 2 We consider again the heterogeneity model and require that in the i-th policy of an insurance the claim numbers $X_{t}, t \geq 1$ given the heterogeneity parameter θ are Poisson distributed with intensity θ.
(i) Suppose that θ is Gamma distributed with parameters $\gamma, \beta>0$.

Calculate the linear Bayes estimator $\widehat{\mu}_{L B}$ of the expected claim number $\mu(\theta):=E[X \mid \theta]$ and its corresponding risk for the claim number data $X_{1}=2, X_{4}=1, X_{5}=1, X_{7}=$ $7, X_{10}=1$ and $X_{j}=0$ (in 1000 NOK) for $j=2,3,6,8,9$ (in years) and the parameters $\gamma=1.75, \beta=1.3$.
(ii) Assume now that $\theta=\exp (Z)$, where $Z \sim \operatorname{Exp}(\lambda)$ (exponential distribution) for $\lambda=3$. Compute $\widehat{\mu}_{L B}$ for the same data as in (i).

Problem 3 Assume the heterogeneity model and consider a policy with one observed claim number X and corresponding heterogeneity parameter θ. Require that X given θ is Poisson distributed with parameter θ, where θ has a continuous density f_{θ} on $(0, \infty)$. Note that $E[X \mid \theta]=\theta$.
(i) Find the conditional density $f_{\theta}(y \mid X=k), k \geq 0$ of θ given X and use this to calculate the Bayes estimator $m_{k}:=E[\theta \mid X=k], k \geq 0$.
(ii) Show that

$$
m_{k}=(k+1) \frac{P(X=k+1)}{P(X=k)}, k \geq 0 .
$$

(iii) Verify that

$$
E\left[\theta^{l} \mid X=k\right]=\prod_{j=1}^{l-1} m_{k+j}, k \geq 0, l \geq 1
$$

Problem 4 Calculate $E[X]$ under the assumptions of Problem 1.
Problem 5 Consider the i-th policy in a heterogeneity model. Assume that the claim size variables $X_{j}, j \geq 1$ given θ are log-normally distributed, that is $X_{j}=\exp \left(\theta+\tau Z_{j}\right), j \geq 1$. Here θ is normally distributed with mean μ and variance $\sigma^{2}, \tau>0$ is a constant and $Z_{j}, j \geq 1$ is an i.i.d.-sequence of standard normally distributed random variables being independent of θ.

Calculate the linear Bayes estimator with respect to the premium of a car insurance and for the claim size data $X_{1}=15, X_{6}=20, X_{j}=1$ (in 1000 NOK) for $j=2,3,4,5,7,8$ (in years) and the parameters $\mu=0, \sigma^{2}=\frac{1}{2}, \tau=\frac{3}{4}$.

Problem 6 Consider the heterogeneity model with heterogeneity parameter θ and claim numbers $X=X_{i}=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ in the i th policy. Assume that θ is Beta distributed with density

$$
f_{\theta}(y)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} y^{a-1}(1-y)^{b-1}, 0<y<1, a, b>0 .
$$

Given θ, the claim numbers X_{1}, \ldots, X_{n} are i.i.d. $\operatorname{Bin}(k, \theta)$ distributed (Binomial distribution).
(i) Compute the conditional density $f_{\theta}(y \mid X=x)$ of θ given

$$
X=\left(X_{1}, \ldots, X_{n}\right)^{\prime}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}
$$

(ii) Calculate the Bayes estimator $\widehat{\mu}_{B}$ of $\mu(\theta)=E\left[X_{1} \mid \theta\right]$ and the corresponding risk.

Hint: $E[\theta]=\frac{a}{a+b}$ and $\operatorname{Var}[\theta]=a b /\left[(a+b+1)(a+b)^{2}\right]$, if θ is Beta distributed with parameters $a, b>0$.

Problem 7 Consider the stochastic recurrence equation

$$
\begin{equation*}
Y_{t}=A_{t} Y_{t-1}+B_{t}, t \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $\left(A_{t}, B_{t}\right) \in \mathbb{R}^{2}, t \in \mathbb{Z}$ is an i.i.d. sequence.
In the context of insurance Y_{t} can be interpreted as the present value of future accumulated payments. Here A_{t} stands for a stochastic discount factor and B_{t} is a payment at time t. The recurrence relation can be also used in connection with the modelling og financial log-returns (e.g. in $\operatorname{ARCH}(1)$ - or $\operatorname{GARCH}(1,1)$-models).

Assume $B_{t}=1$ for all $t, E\left[\log \left(A_{1}\right)\right]<0$ and that

$$
E\left[\left(A_{1}\right)^{r}\right]=1
$$

for a (unique) positive r.
(i) Show that the unique solution to (1) is given by the process

$$
Y_{t}=1+\sum_{i=-\infty}^{t-1} \prod_{j=i+1}^{t} A_{j}, t \in \mathbb{Z}
$$

and strictly stationary, that is for all $n \geq 1, t, h \in \mathbb{Z}$:

$$
\left(Y_{t}, \ldots, Y_{t+n-1}\right) \stackrel{d}{=}\left(Y_{t+h}, \ldots, Y_{t+h+n-1}\right) .
$$

(ii) Prove that the tail distribution of Y_{t} has a lower bound $m(x) \leq x^{-r}$ for $x \geq 1$.

