Non-Life Insurance Mathematics (STK4540) 2. Mandatory assignment

2 Problems out of 7 are supposed to be solved.

Deadline: Thursday, 9. November, 14:30 (electronic submission via Canvas).

Problem 1 Assume the heterogeneity model for the *i*-th policy of an insurance. Given $\theta \sim \Gamma(\gamma, \beta)$ (Gamma distribution) the claim sizes $X_1, ..., X_n$ in the policy are Pareto distributed with parameters (λ, θ) , that is

$$P(X_i > x | \theta) = (\lambda/x)^{\theta}, x > \lambda.$$

A reinsurance company only considers the values X_i which exceed a known high treshold K. They "observe" the counting variables $Y_i := 1_{(K,\infty)}(X_i)$ for a known $K > \lambda$. The company is interested in finding an estimate of $p(\theta) := P(X_1 > K | \theta)$.

Calculate the linear Bayes estimator and its risk with respect to $p(\theta) := E[Y_1 | \theta]$ based on the observations $Y_1, ..., Y_n$, when $X_1 = 22$, $X_5 = 80$, $X_{10} = 71$ and $X_j = 2$ for j = 2, 3, 4, 6, 7, 8, 9 (in years), K = 55 and $\lambda = 1.5$ (in 1000 NOK). Further, suppose that $\beta = \gamma = 2$.

Problem 2 We consider again the heterogeneity model and require that in the *i*-th policy of an insurance the claim numbers $X_t, t \ge 1$ given the heterogeneity parameter θ are Poisson distributed with intensity θ .

(i) Suppose that θ is Gamma distributed with parameters $\gamma, \beta > 0$.

Calculate the linear Bayes estimator $\hat{\mu}_{LB}$ of the expected claim number $\mu(\theta) := E[X | \theta]$ and its corresponding risk for the claim number data $X_1 = 2$, $X_4 = 1, X_5 = 1$, $X_7 = 7, X_{10} = 1$ and $X_j = 0$ (in 1000 NOK) for j = 2, 3, 6, 8, 9 (in years) and the parameters $\gamma = 1.75, \beta = 1.3$.

(ii) Assume now that $\theta = \exp(Z)$, where $Z \sim Exp(\lambda)$ (exponential distribution) for $\lambda = 3$. Compute $\hat{\mu}_{LB}$ for the same data as in (i).

Problem 3 Assume the heterogeneity model and consider a policy with one observed claim number X and corresponding heterogeneity parameter θ . Require that X given θ is Poisson distributed with parameter θ , where θ has a continuous density f_{θ} on $(0, \infty)$. Note that $E[X | \theta] = \theta$.

(i) Find the conditional density $f_{\theta}(y | X = k)$, $k \ge 0$ of θ given X and use this to calculate the Bayes estimator $m_k := E[\theta | X = k]$, $k \ge 0$.

(ii) Show that

$$m_k = (k+1)\frac{P(X=k+1)}{P(X=k)}, k \ge 0.$$

(iii) Verify that

$$E[\theta^{l} | X = k] = \prod_{j=1}^{l-1} m_{k+j}, k \ge 0, l \ge 1.$$

Problem 4 Calculate E[X] under the assumptions of Problem 1.

Problem 5 Consider the *i*-th policy in a heterogeneity model. Assume that the claim size variables $X_j, j \ge 1$ given θ are log-normally distributed, that is $X_j = \exp(\theta + \tau Z_j), j \ge 1$. Here θ is normally distributed with mean μ and variance $\sigma^2, \tau > 0$ is a constant and $Z_j, j \ge 1$ is an *i.i.d.*-sequence of standard normally distributed random variables being independent of θ .

Calculate the linear Bayes estimator with respect to the premium of a car insurance and for the claim size data $X_1 = 15$, $X_6 = 20$, $X_j = 1$ (in 1000 NOK) for j = 2, 3, 4, 5, 7, 8 (in years) and the parameters $\mu = 0, \sigma^2 = \frac{1}{2}, \tau = \frac{3}{4}$.

Problem 6 Consider the heterogeneity model with heterogeneity parameter θ and claim numbers $X = X_i = (X_1, ..., X_n)'$ in the *i*th policy. Assume that θ is Beta distributed with density

$$f_{\theta}(y) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} y^{a-1} (1-y)^{b-1}, 0 < y < 1, a, b > 0.$$

Given θ , the claim numbers $X_1, ..., X_n$ are *i.i.d.* $Bin(k, \theta)$ distributed (Binomial distribution).

(i) Compute the conditional density $f_{\theta}(y | X = x)$ of θ given

$$X = (X_1, ..., X_n)' = (x_1, ..., x_n)'.$$

(ii) Calculate the Bayes estimator $\hat{\mu}_B$ of $\mu(\theta) = E[X_1 | \theta]$ and the corresponding risk.

Hint: $E[\theta] = \frac{a}{a+b}$ and $Var[\theta] = \frac{ab}{[(a+b+1)(a+b)^2]}$, if θ is Beta distributed with parameters a, b > 0.

Problem 7 Consider the stochastic recurrence equation

$$Y_t = A_t Y_{t-1} + B_t, t \in \mathbb{Z},\tag{1}$$

where $(A_t, B_t) \in \mathbb{R}^2, t \in \mathbb{Z}$ is an *i.i.d.* sequence.

In the context of insurance Y_t can be interpreted as the present value of future accumulated payments. Here A_t stands for a stochastic discount factor and B_t is a payment at time t. The recurrence relation can be also used in connection with the modelling og financial log-returns (e.g. in ARCH(1)- or GARCH(1,1)-models).

Assume $B_t = 1$ for all t, $E[\log(A_1)] < 0$ and that

$$E[(A_1)^r] = 1$$

for a (unique) positive r.

(i) Show that the unique solution to (1) is given by the process

$$Y_t = 1 + \sum_{i=-\infty}^{t-1} \prod_{j=i+1}^t A_j, t \in \mathbb{Z}$$

and strictly stationary, that is for all $n\geq 1,t,h\in\mathbb{Z}$:

$$(Y_t, ..., Y_{t+n-1}) \stackrel{d}{=} (Y_{t+h}, ..., Y_{t+h+n-1}).$$

(ii) Prove that the tail distribution of Y_t has a lower bound $m(x) \le x^{-r}$ for $x \ge 1$.