Non-Life Insurance Mathematics
 Exercises 5, 19.10.2023

Problem 1 Consider the heterogeneity model and assume that in the i-th insurance policy the claim numbers $X_{t}, t \geq 1$ given the heterogeneity parameter θ are Poisson distributed with intensity θ. Suppose that θ is a positive random variable with known moments $m_{k}:=E\left[\theta^{k}\right]<$ $\infty, k=1,2,3,4$.
(i) Find the linear Bayes estimator $\widehat{\mu}_{L B}$ of $\mu(\theta)$ based on the observation X_{1} in terms of X_{1}, m_{1} and m_{2}. Calculate the corresponding risk.
(ii) Determine the linear Bayes estimator of $\mu(\theta)$ based on the data

$$
Y:=\left(X_{1}, X_{1}\left(X_{1}-1\right)\right)^{\prime} .
$$

Hint: Use the fact that

$$
E[Z(Z-1) \ldots(Z-k+1)]=\lambda^{k}, k \geq 1
$$

for Poisson distributed random variables Z with intensity λ.
Problem 2 Consider Problem 3, Exercises 4. Calculate the linear Bayes estimator and its risk with respect to $p(\theta):=E\left[Y_{1} \mid \theta\right]$ based on the claim size data X_{1}, \ldots, X_{n}, where $Y_{1}:=1_{(K, \infty)}\left(X_{1}\right)$ and K is a known high treshold K. Compare the Bayes and linear Bayes estimators and compute those for the realizations $X_{1}=10, X_{5}=20, X_{j}=1$ (in 1000 NOK) for $j=2,3,4,6,7,8$ (in years) and the parameters $\lambda=\beta=\gamma=1, K=100$.

Problem 3 Consider a portfolio with n independent policies.
(i) Assume that the claim numbers $X_{i, t}, t \geq 1$ in the i th policy are independent and $\operatorname{Pois}\left(p_{i, t} \theta_{i}\right)$ distributed, given θ_{i}. Assume that $p_{i, t} \neq p_{i, s}$ for some $s \neq t$. Are the conditions of the Bühlmann-Straub model satisfied ?
(ii) Assume that the claim sizes $X_{i, t}, t \geq 1$ in the i th policy are independent and $\Gamma\left(\gamma_{i, t}, \beta_{i, t}\right)$ distributed, given θ_{i}. Give conditions on $\gamma_{i, t}, \beta_{i, t}$ under which the Bühlmann-Straub model is applicable. Identify the parameters μ, φ, λ and $p_{i, t}$.

Problem 4 Assume the Bühlmann-Straub model with r policies, where the claim sizes/claim numbers $X_{i, t}, t \geq 1$ in policy i are independent, given θ_{i}. Let w_{i} be the weights satisfying $\sum_{i=1}^{n} w_{i}=1$ and $\bar{X}_{i}=\frac{1}{p_{i}} \sum_{t=1}^{n_{i}} p_{i, t} X_{i, t}$ (weighted sample mean), where $p_{i}:=\sum_{t=1}^{n_{i}} p_{i, t}$.
(i) Show that

$$
\widehat{\mu}=\sum_{i=1}^{r} w_{i} \bar{X}_{i}
$$

is an unbiased estimator of $\mu=E\left[\mu\left(\theta_{i}\right)\right]=E\left[E\left[X_{i, t} \mid \theta_{i}\right]\right]$ and calculate the variance of $\widehat{\mu}$.
(ii) Choose the weights w_{i} in a way such that $\operatorname{Var}[\widehat{\mu}]$ is minimized and compute the minimal value $\operatorname{Var}[\widehat{\mu}]$.

