Non-Life Insurance Mathematics Exercises 6, 2.11.2023

Problem 1 Consider the Bühlmann model with the claims $X_j, t \ge 1$ and the heterogeneity parameter θ with respect to the *i*-th insurance policy.

Show that

$$E[Var[\overline{X}|\theta]] = n^{-1}E[Var[X_1|\theta]],$$

where $\overline{X} := \frac{1}{n} \sum_{j=1}^{n} X_i$.

Problem 2 Explain how a homogeneous Poisson process can be obtained from a Poisson random measure $PRM(\mu)$.

Problem 3 The Laplace functional of a point process N is defined as

$$\Psi_N(g) = E[\exp(-\int_E g(z)N(\omega, dz))],$$

where g is any non-negative bounded measurable function g on the state space E.

Show that two point processes N_1 and N_2 are equal in distribution if and only if their Laplace functionals coincide.

Problem 4 Consider a continuous distribution F on \mathbb{R} and let $Y_i, i \ge 0$ be a sequence of *i.i.d.* random variables with common distribution $F^* := \sqrt{F}$. Define the random variables $X_i := \max(Y_{i-1}, Y_i), i \ge 1$

(i) Show that X_i and X_{i+k} are independent for all $k \ge 2$, whereas X_i and X_{i+1} are dependent for all i.

(ii) Verify that

$$F_{X_i}(x) \stackrel{def}{=} P(X_i \le x) = F(x), x \in \mathbb{R}.$$

(iii) Show for $n \ge 2$ that N_n given by

$$N_n(A) = \sum_{i=1}^n \varepsilon_{X_i}(A), A \subset \mathbb{R}$$
 Borel set

is a non-simple point process for the state space $E(\varepsilon_x \text{ Dirac measure at } x)$.