STK 4540 Exercises 1

Problem 3 We have real-life fire insurance data collected at Copenhagen Reinsurance in the period from 09/01/1990 until 10/01/1990, that is fire losses

$$X_1 = 14.851485, ..., X_8 = 5.726072$$

and inter-arrival times

$$W_1 = 7, ..., W_8 = 1.$$

(i) $p_{Net}(t)$ and $p_{EV}(t)$? for large t in the renewal model:

$$p_{Net}(t) := E[S(t)] \overset{\text{Prop. 3.1.3, Mikosch}}{\approx} t \cdot \frac{E[X_1]}{E[W_1]}$$

and

$$p_{EV}(t) := (1 + \rho)E[S(t)] \overset{\text{Prop. 3.1.3, Mikosch}}{\approx} t \cdot (1 + \rho) \cdot \frac{E[X_1]}{E[W_1]}$$

for large t, where $\rho = 0.04$.

We use the sample mean $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ to estimate $E[X_1]$ and $E[W_1]$ and get

$$E[X_1] \approx 4.187 \text{ and } E[W_1] \approx 3.75.$$

So

$$p_{Net}(t) \approx 1.117 \cdot t$$
 and $p_{EV}(t) \approx 1.161 \cdot t$.

(ii) Recall that

$$p_{Var}(t) := E[S(t)] + \alpha Var[S(t)].$$

Find $\alpha > 0$ such that

$$\frac{p_{Var}(t)}{p_{EV}(t)} \xrightarrow[t \to \infty]{} 1.$$

We have that

$$\frac{p_{Var}(t)}{p_{EV}(t)} = \frac{E[S(t)] + \alpha Var[S(t)]}{(1+\rho)E[S(t)]} = \frac{1}{(1+\rho)} + \frac{\alpha}{(1+\rho)} \frac{Var[S(t)]/t}{E[S(t)]/t}$$

$$\xrightarrow{\text{Prop. 3.1.3, Mikosch}} \frac{1}{(1+\rho)} + \frac{\alpha}{(1+\rho)} \frac{\lambda [Var[X_1] + Var[W_1]\lambda^2 (E[X_1])^2]}{\lambda E[X_1]}$$

$$= \frac{1}{(1+\rho)} + \frac{\alpha}{(1+\rho)} \frac{[Var[X_1] + Var[W_1]\lambda^2 (E[X_1])^2]}{E[X_1]} \stackrel{!}{=} 1$$

for $t \longrightarrow \infty$, where $\lambda = 1/E[W_1]$. Thus

$$\alpha = \frac{\rho E[X_1]}{Var[X_1] + Var[W_1]\lambda^2 (E[X_1])^2}$$

Compute the sample variance $\frac{1}{n-1}\sum_{i=1}^n Y_i^2 - n\overline{Y}$ of X_1 and W_1 and we get

$$Var[X_1] \approx 20.764$$
 and $Var[W_1] \approx 5.357$.

Then

 $\alpha \approx 0.0061$.

So it follows from (1) and (2) that

$$Var[S(t)] = E[\theta] \cdot t \cdot Var[X_1] + (Var[\theta] \cdot t^2 + E[\theta] \cdot t + (E[\theta])^2 \cdot t^2)(E[X_1])^2 - (E[\theta])^2 \cdot t^2(E[X_1])^2$$

$$= E[\theta] \cdot t \cdot (Var[X_1] + (E[X_1])^2) + Var[\theta] \cdot t^2 \cdot (E[X_1])^2.$$

Thus

$$\frac{p_{Var}(t)}{p_{EV}(t)} = \frac{1}{(1+\rho)} + \frac{\alpha}{(1+\rho)} \frac{Var[S(t)]}{E[S(t)]}$$

$$= \frac{1}{(1+\rho)} + \frac{\alpha}{(1+\rho)} \frac{E[\theta] \cdot t \cdot (Var[X_1] + (E[X_1])^2) + Var[\theta] \cdot t^2 \cdot (E[X_1])^2}{E[\theta] \cdot t \cdot E[X_1]}$$

$$\xrightarrow{t \to \infty} \infty.$$

The latter is in contrast to the renewal model for which the limit exists.