
Non-Life Insurance Mathematics (STK4540)
Solutions to the exam

Problem 1 By Theorem 6.3.1 in Mikosch we have that

b�LB = (1� w)�+ wY ;
where

w =
n�

'+ n�
and Y =

1

n

nX
j=1

Yj :

By Exercises 5, Prob. 2 we know that
1.

� = E[p(�)] = E[P (X1 > K j�)] = E[(
�0

K
)�]

=

�
�

� � log(�0=K)

�

� 0:098:

2.

� = V ar[p(�)] = V ar[(
�0

K
)�]

=

�
�

� � 2 log(�0=K)

�

�
�

�

� � log(�0=K)

�2

� 0:0174.

3.

' = E[V ar[X1 j�]] = E[p(�)]� E[(p(�))2]

=

�
�

� � log(�0=K)

�

�
�

�

� � 2 log(�0=K)

�

� 0:0711:

So
w
n=10
=

10 � 0:0174
0:0711 + 10 � 0:0174 � 0:71 and Y = 0:1:

Therefore, we get that b�LB = (1� w)�+ wY � 9:94%
is the estimated probability for X1 > 50000 NOK given �.

The corresponding risk is given by

�(b�LB) = (1� w)� � 0:0050:
Problem 2 (i) Since the claim numbers are modelled by a Poisson process, the inter-

arrival times Wi; i � 1 are i:i:d: with common distribution W1 � Exp(�). So by Exercises 1,
Problem 1 we know that the MLE b� is given by

b� = nPn
i=1Wi

:
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The observed arrival times are W1 = 2 (the day 07/31/1989 is excluded);W2 = 1;W3 =
1;W4 = 1;W5 = 2;W6 = 1;W7 = 1. So n = 7 (sample size) and we get that

b� = 7

9
� 0:778:

(ii) We know that
	(u) � ��1F �X1;I(u)

for u �!1 (Th. 3.4.13).
Next we want to approximate

F �X1;I(u) =
1

E�[X1]

Z u

0
P �(X1 > y)dy

by means of the empirical distribution function Fn.
So we see that

E�[X1] �
1

n

nX
i=1

Xi
n=7
= 26:809.

On the other hand,
P �(X1 > y) � 1� Fn(y).

Hence, Z u

0
P �(X1 > y)dy �

Z u

0
(1� 1

n

nX
i=1

1(�1;y](Xi))dy

= u� 1

n

nX
i=1

(max(u;Xi)�Xi) � 22:532:

Using the latter, we �nd that
	(140) � 63:814%.

Problem 3 (i) We apply Theorem 6.3.1 in Mikosch and get that

b�LB = (1� w)�+ wX;
where

w =
n�

'+ n�
and X =

1

n

nX
j=1

Xj :

Here:
1.

� = E[�(�)] = E[�]
hint
=
2:7

1:5
= 1:8:

2.
� = V ar[�(�)] = V ar[�]

hint
=

2:7

(1:5)2
= 1:2:

3.
' = E[V ar[X1 j�]] = E[�]

hint
=
2:7

1:5
= 1:8:
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Thus
w
n=10
=

10 � 1:2
1:8 + 10 � 1:2 =

12

13:8
� 0:860 and X = 0:8:

Therefore, we get that b�LB = (1� w)�+ wX � 0:94:

expected claim number (per year) given the observations.
The corresponding risk is given by

�(b�LB) = (1� w)� � 0:168:
(ii) We now assume in (i) that � = exp(Z) for Z � N (0; 1). Then
1.

� = E[�(�)] = E[exp(Z)] = e
1
2 � 1:649:

2.

� = V ar[�(�)] = E[(�(�))2]� �2

= E[e2Z ]� �2 = e
1
2
�4 � �2

� 4:670:

3.
' = E[V ar[X1 j�]] = E[�] � 1:649.

So
w
n=10
=

10 � 4:67
1:649 + 10 � 4:67 � 0:966 and X = 0:8:

Hence b�LB = (1� w)�+ wX � 0:829:

Problem 4 (i) Recall that

bSi;m+k = bf (m)m�i+k�1 � ::: � bf (m)m�i � Si;m;

where bf (m)j =

Pm�j�1
i=1 Si;i+j+1Pm�j�1
i=1 Si;i+j

is the chain ladder estimator of fj .
So bf (m)0 =

P2016
i=2013 Si;i+1P2016
i=2013 Si;i

=
490629

323661
� 1:516;

bf (m)1 =

P2015
i=2013 Si;i+2P2015
i=2013 Si;i+1

=
412845

340153
� 1:214;

bf (m)2 =

P2014
i=2013 Si;i+3P2014
i=2013 Si;i+2

=
291229

254436
� 1:145;

3



bf (m)3 =

P2013
i=2013 Si;i+4P2013
i=2013 Si;i+3

� 1:039:

Hence, we obtain the following predictors in the run-o¤ triangle table:

Year i Si;i Si;i+1 Si;i+2 Si;i+3 Si;i+4
2013 65285 88495 120096 138346 143682
2014 73173 114299 134340 152883 158845
2015 87135 137359 158409 181378 188452
2016 98068 150476 182678 209166 317096
2017 138982 210697 255786 292875 304297

(ii) Using those predictors in (i), we get the technical provision for 2019, i.e.

(188452� 181378) + (209166� 182678) + (255786� 210697) = 78651:

and that of 2021, i.e.
304297� 292875 = 11422:

Problem 5 (i) De�ne Mn = maxi=1;:::;nXi: Then we obtain by the de�nition of the
random times Tn; n � 1, the convention maxj=2;:::;1Xj := 0; "dobbel-forventning" and the
geometrical sum that

P (XT2 > x;X1 < x; T2 <1)
= P (XT2 > x; max

j=2;:::;T2�1
Xj � X1; X1 < x; T2 <1)

=
X
n�2

P (XT2 > x; max
j=2;:::;T2�1

Xj � X1; X1 < x; T2 = n)

=
X
n�2

P (Xn > x; max
j=2;:::;n�1

Xj � X1; X1 < x; T2 = n)

=
X
n�2

P (Xn > x; max
j=2;:::;n�1

Xj � X1; X1 < x)

Xi i:i:d:=
X
n�2

P (Xn > x)P ( max
j=2;:::;n�1

Xj � X1; X1 < x):

ButX
n�2

P (Xn > x)P ( max
j=2;:::;n�1

Xj � X1; X1 < x)

= P (X1 > x)
X
n�2

E[(FX1(X1))
n�21(0;x)(X1)]

= P (X1 > x)E[
X
n�2
(FX1(X1))

n�21(0;x)(X1)]

= P (X1 > x)E[
1

1� FX1(X1)
1(0;x)(X1)] = P (X1 > x)

Z x

0

1

1� FX1(y)
g(y)dy:
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So for Pareto distributed X1 with parameters 
 = � = 1; we �nd that

P (XT2 > x;X1 < x; T2 <1) =
1

x

Z x

1

1
1
y

1

y2
dy

=
log(x)

x
, if x > 1 and zero else.

(ii) The de�nition of Yn gives

Yn = 1 +

nX
k=2

1fXk>Mk�1g

for n � 2. The latter implies that

E[Yn] = 1 +
nX
k=2

P (Xk > Mk�1):

Since the �re losses Xi are i:i:d with a continuous common distribution we �nd that

1 = P (X1 � X2) + P (X2 > X1)
P (X1 > X2) + P (X2 > X1) = 2P (X2 > M1):

So P (X2 > M1) =
1
2 : In the same way we conclude that

P (Xk > Mk�1) =
1

k

for k � 3. On the other hand, if we compute E[Y 2n ] we need to calculate probabilities of the
form

P (Xk1 > Mk1�1; Xk2 > Mk2�1)

for k1 > k2: Taking into account all possible permutations we get (by induction) that the
latter probability must be

(k2 + 1) � ::: � (k1 � 1)
1

k1!
(k2 � 1)! =

1

k1k2

Thus we have

V ar[Yn] = E[Y
2
n ]� (E[Yn])2 =

nX
k=1

(
1

k
� 1

k2
):

Hence
V ar[Y7] � 1:081:

(iii) One checks that
max(0; X � Y ) = X �min(X;Y )

and
max(0; Y �X) = Y �min(X;Y ):
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Taking the expectation, we see that

E[max(0; X � Y )] = E[X]� E[min(X;Y )] = E[X]� E[Y ] = E[X]� E[X] = 0:

Therefore, since max(0; X � Y ) � 0, it follows that

max(0; X � Y ) = 0

with probability 1. So X � Y with probability 1. Similarly, we get Y � X with probability
1. Hence P (X = Y ) = 1, which implies that V ar[X � Y ] = 0:
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