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Problem 1. (10 points)
Consider the heterogeneity model for the i-th policy of an insurance. Given θ ∼ Γ(γ, β)
(Gamma distribution) the claim sizes X1, ..., Xn in the policy are assumed to be Pareto
distributed with parameters (λ, θ), that is

P (Xi > x |θ) = (λ/x)θ, x > λ.

A reinsurance company takes into account only the values Xi which exceed a known high
treshold K. They "observe" the counting variables Yi := 1(K,∞)(Xi) for a known K > λ. The
company is interested in estimating p(θ) := P (X1 > K |θ).
Compute the linear Bayes estimator and its risk with respect to p(θ) := E[Y1 |θ] based on the
observations Y1, ..., Yn, when X1 = 20, X5 = 40, X10 = 100 and Xj = 2 (in 1000 NOK) for
j = 2, 3, 4, 6, 7, 8, 9 (in years) and the parameters λ = 1.5, β = γ = 3,K = 50.

Problem 2. (10 points)
Have a look at the following Danish �re insurance data collected at Copenhagen Reinsurance
in the period from 07/31/1989 until 08/09/1989:

Date Loss Xi in DKM
08/02/1989 1.270110
08/03/1989 1.784928
08/04/1989 16.088061
08/04/1989 1.439458
08/04/1989 152.413209

Date Loss Xi in DKM
08/05/1989 1.439458
08/05/1989 3.130398
08/07/1989 6.287045
08/08/1989 2.777307
08/09/1989 1.033023

The �re losses in the above table are given in millions of Danish Krone. Suppose that the
dynamics of the total claim amount S(t) is described by the Crámer-Lundberg model.

(Continued on page 2.)
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(i) Calculate the maximum-likelihood estimator λ̂ of the jump intensity of the claim number
process N(t).
(ii) Let F ∗ = F ∗

X1
be the real claim size distribution. Require that the net pro�t condition

(NPC) holds and that E∗[X1] < ∞ (expected value of X1 with respect to F ∗). Further,
assume that F ∗ has a probability density and that its integrated tail distribution F ∗

X1,I
is

subexponential.
Compute a (rough) estimate of the ruin probability Ψ(u) for the safety loading ρ = 25% and
the initial capital u = 140 (in millions of Danish Krone) by approximating F ∗ by the empirical
distribution function with respect to the �re insurance data above.

Hint: Apply the following convention: Claims X
(m)
1 , ..., X

(m)
n arriving on day m ≥ 0 are

interpreted as 1 claim Xm :=
∑n

i=1X
(m)
i arriving on day m.

Problem 3. (10 points)
Consider the heterogeneity model and suppose that in the i-th policy of an insurance the
claim numbers Xt, t ≥ 1 given the heterogeneity parameter θ are Poisson distributed with
intensity θ.
(i) Require that θ is Gamma distributed with parameters γ, β > 0.
Compute the linear Bayes estimator µ̂LB of the expected claim number µ(θ) := E[X |θ] and
its corresponding risk for the claim number data X1 = 1, X4 = 2, X5 = 1, X7 = 1, X10 = 3
and Xj = 0 (in 1000 NOK) for j = 2, 3, 6, 8, 9 (in years) and the parameters γ = 2.7, β = 1.5.
(ii) Suppose now that θ = exp(Z), where Z ∼ N (0, 1) (normal distribution with mean zero
and variance 1).
Calculate µ̂LB for the same data as in (i).

Hint: E[θ] = γ
β , V ar[θ] = γ

β2 , if θ ∼ Γ(γ, β).

Problem 4. (10 points)
Assume Mack's model. The following run-o� triangle in the �gure shows the cumulative paid
claims:

Year i Si,i Si,i+1 Si,i+2 Si,i+3 Si,i+4

2013 65285 88495 120096 138346 143682
2014 73173 114299 134340 152883
2015 87135 137359 158409
2016 98068 150476
2017 138982

(i) Compute the predictors Ŝi,m+k of the total claim amounts

S2014,m+1,

S2015,m+1, S2015,m+2,

S2016,m+1, ..., S2016,m+3,

S2017,m+1, ..., S2017,m+4.

(Continued on page 3.)
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for m = 2017 based on the data of the run-o� triangle.
(ii) Compute the technical provisions for the year 2019, that is

2∑
j=0

(Ŝ2015+j,2019 − Ŝ2015+j,2018)

and for the year 2021, that is
Ŝ2017,2021 − Ŝ2017,2020.

Problem 5. (10 points)
Consider an i.i.d-sequence (Xi)i≥1 of wind storm losses. Require that X1 has a probability
density f and that P (X1 > x) > 0 for all x ≥ 0. Let us now have a look at stochastic time
points Tn, n ≥ 1 de�ned by

Tn+1 := inf {k > Tn : Xk > XTn}

for n ≥ 1, where T1 := 1 and inf ∅ := ∞. Further, de�ne the sequence of random variables
given by

Yn := # {1 ≤ i ≤ n : Ti ≤ n} , n ≥ 1,

where #C denotes the number of elements in a set C.

(i) Derive a formula for the probability P (XT2 > x and X1 < x and T2 < ∞) for all x > 0.
Compute this probability for Pareto distributed X1 with parameters γ = θ = 1, that is

P (X1 ≤ x) =

{
1− 1

x , if x > 1
0 else

.
(ii) Find a formula for V ar[Yn] and calculate V ar[Y7].

(iii) Assume that the random variables X and Y model wind storm losses. Suppose that

E[X2], E[Y 2] < ∞ and that X
d
= Y and Y

d
= min(X,Y ). Calculate V ar[X − Y ].

Hint: For random variables Z1, Z2 the notation Z1
d
= Z2 means that Z1 and Z2 have the same

distribution.

End


