UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in	STK4540 — Non-Life Insurance Mathematics.				
Day of examination:	December 02, 2021, Final written exam.				
Examination hours:	09:00-13:00.				
This problem set consists of 4 pages.					
Appendices:	None				
Permitted aids:	Approved calculator				

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1. (10 points)

Consider the heterogeneity model for the *i*-th policy of an insurance. Given $\theta \sim \Gamma(\gamma, \beta)$ (Gamma distribution) the claim sizes $X_1, ..., X_n$ in the policy are assumed to be Pareto distributed with parameters (λ, θ) , that is

$$P(X_i > x | \theta) = (\lambda/x)^{\theta}, x > \lambda.$$

A reinsurance company takes into account only the values X_i which exceed a known high treshold K. They "observe" the counting variables $Y_i := 1_{(K,\infty)}(X_i)$ for a known $K > \lambda$. The company is interested in estimating $p(\theta) := P(X_1 > K | \theta)$.

Compute the linear Bayes estimator and its risk with respect to $p(\theta) := E[Y_1 | \theta]$ based on the observations $Y_1, ..., Y_n$, when K = 40, $\lambda = 1.7$, $X_1 = 15$, $X_5 = 35$, $X_{10} = 90$ and $X_j = 2$ (in 1000 NOK) for j = 2, 3, 4, 6, 7, 8, 9 (in years). Further assume that $\beta = \gamma = 2.5$.

Hint: Recall that the Gamma distribution has the probability density

$$f_{\gamma,\beta}(x) = \frac{\beta^{\gamma}}{\Gamma(\gamma)} x^{\gamma-1} e^{-\beta x}, x > 0,$$

where $\Gamma(z)$ is the Gamma function.

Problem 2. (10 points)

Consider the heterogeneity model and suppose that in the *i*-th policy of an insurance the claim numbers $X_t, t \ge 1$ given the heterogeneity parameter θ are Poisson distributed with intensity θ .

(i) Require that θ is Gamma distributed with parameters $\gamma, \beta > 0$.

(Continued on page 2.)

Compute the linear Bayes estimator $\hat{\mu}_{LB}$ of the expected claim number $\mu(\theta) := E[X | \theta]$ and its corresponding risk for the claim number data $X_1 = 3$, $X_4 = 1$, $X_5 = 1$, $X_7 = 4$, $X_{10} = 1$ and $X_j = 0$ for j = 2, 3, 6, 8, 9 (in years) and the parameters $\gamma = 2.5, \beta = 1$. (ii) Suppose now that $\theta = \exp(Z)$, where $Z \sim U(0, 1)$ (uniform distribution). Calculate $\hat{\mu}_{LB}$ for the same data as in (i).

Hint:
$$E[\theta] = \frac{\gamma}{\beta}, Var[\theta] = \frac{\gamma}{\beta^2}, \text{ if } \theta \sim \Gamma(\gamma, \beta).$$

Problem 3. (10 points)

Have a look at the following Danish fire insurance data collected at Copenhagen Reinsurance in the period from 07/31/1983 until 08/23/1983:

$\underline{\text{Date}}$	Loss X_i in DKM	$\underline{\text{Date}}$	Loss X_i in DKM
08/02/1983	3.448276	08/17/1983	1.192436
08/05/1983	4.671858	08/22/1983	1.204093
08/09/1983	1.156841	08/22/1983	2.558398
08/16/1983	1.223582	08/22/1983	1.618465
08/16/1983	4.078930	08/23/1983	1.822024

The fire losses in the above table are given in millions of Danish Krone. Suppose that the dynamics of the total claim amount S(t) is described by the Crámer-Lundberg model.

(i) Calculate the maximum-likelihood estimator λ of the jump intensity of the claim number process N(t).

(ii) Let $F^* = F_{X_1}^*$ be the real claim size distribution. Require that the net profit condition (NPC) holds and that $E^*[X_1] < \infty$ (expected value of X_1 with respect to F^*). Further, assume that F^* has a probability density and that its integrated tail distribution $F_{X_1,I}^*$ is subexponential.

Compute a (rough) estimate of the ruin probability $\Psi(u)$ for the safety loading $\rho = 20\%$ and the initial capital u = 4 (in millions of Danish Krone) by approximating F^* by the empirical distribution function with respect to the fire insurance data above.

Hint: Apply the following convention: Claims $X_1^{(m)}, ..., X_n^{(m)}$ arriving on day $m \ge 0$ are interpreted as 1 claim $X_m := \sum_{i=1}^n X_i^{(m)}$ arriving on day m.

Problem 4. (10 points)

Assume Mack's model. The following *run-off triangle* in the figure shows the cumulative paid claims:

<u>Year i</u>	$S_{i,i}$	$S_{i,i+1}$	$S_{i,i+2}$	$S_{i,i+3}$	$S_{i,i+4}$
2014	64275	83475	119096	132344	140621
2015	75172	104222	124341	150811	
2016	88142	127457	153402		
2017	99071	140273			
2018	139881				

(Continued on page 3.)

(i) Compute the predictors $\widehat{S}_{i,m+k}$ of the total claim amounts

$$\begin{split} S_{2015,m+1}, \\ S_{2016,m+1}, S_{2016,m+2}, \\ S_{2017,m+1}, \dots, S_{2017,m+3}, \\ S_{2018,m+1}, \dots, S_{2018,m+4}. \end{split}$$

for m = 2018 based on the data of the run-off triangle.

(ii) Compute the technical provisions for the year 2020, that is

$$\sum_{j=0}^{2} (\widehat{S}_{2016+j,2020} - \widehat{S}_{2016+j,2019})$$

and for the year 2022, that is

$$\widehat{S}_{2018,2022} - \widehat{S}_{2018,2021}$$

Hint: Recall that

$$\widehat{S}_{i,m+k} = \widehat{f}_{m-i+k-1}^{(m)} \cdot \dots \cdot \widehat{f}_{m-i}^{(m)} \cdot S_{i,m},$$

where

$$\hat{f}_{j}^{(m)} = \frac{\sum_{i=1}^{m-j-1} S_{i,i+j+1}}{\sum_{i=1}^{m-j-1} S_{i,i+j}}$$

is the chain ladder estimator of f_j .

Problem 5. (10 points)

Assume the Crámer-Lundberg model for the claim numbers $N(t), t \ge 0$ with jump intensity $\lambda^* > 0$ and the *i.i.d* claim sizes $X_i, i \ge 1$ with $X_1 \sim Exp(\lambda)$. Denote by $X_{(j)}$ the *j*-th smallest claim size of the claim sizes $X_1, ..., X_n$. So $X_{(1)} \le ... \le X_{(n)}$. Consider now the claim size amount R(t) at time t given by the losses in excess of the k-th largest claim size, that is consider

$$R(t) = \sum_{i=1}^{N(t)} (X_{(N(t)-i+1)} - X_{(N(t)-k+1)})_+$$

for $N(t) \ge k$ and $k \ge 2$, where $(a)_+ \stackrel{def}{=} \max(a, 0)$ for $a \in \mathbb{R}$.

(i) Derive a formula for the distribution

$$P(R(t) \le x \mid N(t) \ge k)$$

for $k \ge 2$. (ii) Calculate $P(R(t) \le 5 | N(t) \ge 5)$ for $\lambda^* = \lambda = 1$ and t = 10.

(Continued on page 4.)

Hint: Use the fact that the probability density of an order statistics $(X_{(1)}, ..., X_{(n)})$ with respect to *i.i.d* $X_1, ..., X_n$ with density $f = f_{X_1}$ is given by

$$f_{X_{(1)},\dots,X_{(n)}}(x_1,\dots,x_n) = \begin{cases} n! \prod_{i=1}^n f(x_i) & \text{if } x_1 < \dots < x_n \\ 0 & \text{else} \end{cases}$$

End