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Problem 1. (10 points)
Consider the heterogeneity model for the i-th policy of an insurance. Given θ ∼ Γ(γ, β)
(Gamma distribution) the claim sizes X1, ..., Xn in the policy are assumed to be Pareto
distributed with parameters (λ, θ), that is

P (Xi > x |θ) = (λ/x)θ, x > λ.

A reinsurance company takes into account only the values Xi which exceed a known high
treshold K. They "observe" the counting variables Yi := 1(K,∞)(Xi) for a known K > λ. The
company is interested in estimating p(θ) := P (X1 > K |θ).
Compute the linear Bayes estimator and its risk with respect to p(θ) := E[Y1 |θ] based on the
observations Y1, ..., Yn, when K = 40, λ = 1.7, X1 = 15, X5 = 35, X10 = 90 and Xj = 2 (in
1000 NOK) for j = 2, 3, 4, 6, 7, 8, 9 (in years). Further assume that β = γ = 2.5.

Hint: Recall that the Gamma distribution has the probability density

fγ,β(x) =
βγ

Γ(γ)
xγ−1e−βx, x > 0,

where Γ(z) is the Gamma function.

Problem 2. (10 points)
Consider the heterogeneity model and suppose that in the i-th policy of an insurance the
claim numbers Xt, t ≥ 1 given the heterogeneity parameter θ are Poisson distributed with
intensity θ.
(i) Require that θ is Gamma distributed with parameters γ, β > 0.

(Continued on page 2.)
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Compute the linear Bayes estimator µ̂LB of the expected claim number µ(θ) := E[X |θ] and
its corresponding risk for the claim number data X1 = 3, X4 = 1, X5 = 1, X7 = 4, X10 = 1
and Xj = 0 for j = 2, 3, 6, 8, 9 (in years) and the parameters γ = 2.5, β = 1.
(ii) Suppose now that θ = exp(Z), where Z ∼ U(0, 1) (uniform distribution).
Calculate µ̂LB for the same data as in (i).

Hint: E[θ] = γ
β , V ar[θ] = γ

β2 , if θ ∼ Γ(γ, β).

Problem 3. (10 points)
Have a look at the following Danish �re insurance data collected at Copenhagen Reinsurance
in the period from 07/31/1983 until 08/23/1983:

Date Loss Xi in DKM
08/02/1983 3.448276
08/05/1983 4.671858
08/09/1983 1.156841
08/16/1983 1.223582
08/16/1983 4.078930

Date Loss Xi in DKM
08/17/1983 1.192436
08/22/1983 1.204093
08/22/1983 2.558398
08/22/1983 1.618465
08/23/1983 1.822024

The �re losses in the above table are given in millions of Danish Krone. Suppose that the
dynamics of the total claim amount S(t) is described by the Crámer-Lundberg model.
(i) Calculate the maximum-likelihood estimator λ̂ of the jump intensity of the claim number
process N(t).
(ii) Let F ∗ = F ∗

X1
be the real claim size distribution. Require that the net pro�t condition

(NPC) holds and that E∗[X1] < ∞ (expected value of X1 with respect to F ∗). Further,
assume that F ∗ has a probability density and that its integrated tail distribution F ∗

X1,I
is

subexponential.
Compute a (rough) estimate of the ruin probability Ψ(u) for the safety loading ρ = 20% and
the initial capital u = 4 (in millions of Danish Krone) by approximating F ∗ by the empirical
distribution function with respect to the �re insurance data above.

Hint: Apply the following convention: Claims X
(m)
1 , ..., X

(m)
n arriving on day m ≥ 0 are

interpreted as 1 claim Xm :=
∑n

i=1X
(m)
i arriving on day m.

Problem 4. (10 points)
Assume Mack's model. The following run-o� triangle in the �gure shows the cumulative paid
claims:

Year i Si,i Si,i+1 Si,i+2 Si,i+3 Si,i+4

2014 64275 83475 119096 132344 140621
2015 75172 104222 124341 150811
2016 88142 127457 153402
2017 99071 140273
2018 139881

(Continued on page 3.)
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(i) Compute the predictors Ŝi,m+k of the total claim amounts

S2015,m+1,

S2016,m+1, S2016,m+2,

S2017,m+1, ..., S2017,m+3,

S2018,m+1, ..., S2018,m+4.

for m = 2018 based on the data of the run-o� triangle.
(ii) Compute the technical provisions for the year 2020, that is

2∑
j=0

(Ŝ2016+j,2020 − Ŝ2016+j,2019)

and for the year 2022, that is
Ŝ2018,2022 − Ŝ2018,2021.

Hint: Recall that
Ŝi,m+k = f̂

(m)
m−i+k−1 · ... · f̂

(m)
m−i · Si,m,

where

f̂
(m)
j =

∑m−j−1
i=1 Si,i+j+1∑m−j−1
i=1 Si,i+j

is the chain ladder estimator of fj .

Problem 5. (10 points)
Assume the Crámer-Lundberg model for the claim numbers N(t), t ≥ 0 with jump intensity
λ∗ > 0 and the i.i.d claim sizes Xi, i ≥ 1 with X1 ∼ Exp(λ). Denote by X(j) the j−th
smallest claim size of the claim sizes X1, ..., Xn. So X(1) ≤ ... ≤ X(n). Consider now the claim
size amount R(t) at time t given by the losses in excess of the k-th largest claim size, that is
consider

R(t) =

N(t)∑
i=1

(X(N(t)−i+1) −X(N(t)−k+1))+

for N(t) ≥ k and k ≥ 2, where (a)+
def
= max(a, 0) for a ∈ R.

(i) Derive a formula for the distribution

P (R(t) ≤ x |N(t) ≥ k)

for k ≥ 2.
(ii) Calculate P (R(t) ≤ 5 |N(t) ≥ 5) for λ∗ = λ = 1 and t = 10.

(Continued on page 4.)
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Hint: Use the fact that the probability density of an order statistics (X(1), ..., X(n)) with
respect to i.i.d X1, ..., Xn with density f = fX1 is given by

fX(1),...,X(n)
(x1, ..., xn) =

 n!

n∏
i=1

f(xi) if x1 < ... < xn

0 else

End


