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Problem 1. (10 points)
Consider the following Danish �re insurance data collected at Copenhagen Reinsurance in the
period from 06/30/1980 until 07/26/1980:

Date Loss Xi in DKM
07/02/1980 1.464129
07/04/1980 3.963250
07/04/1980 5.563852
07/07/1980 4.392387
07/10/1980 3.640313

Date Loss Xi in DKM
07/12/1980 1.677892
07/14/1980 1.449488
07/15/1980 263.250366
07/25/1980 2.500732
07/26/1980 11.7086

The �re losses in the above table are given in millions of Danish Krone. Assume that the
dynamics of the total claim amount S(t), t ≥ 0 is described by the Crámer-Lundberg model.

(i) Compute the maximum-likelihood estimator λ̂ of the intensity of the claim number process
N(t), t ≥ 0.
(ii) Let F ∗ = F ∗

X1
be the real claim size distribution. Suppose that the net pro�t condition

(NPC) holds and that E∗[X1] < ∞ (expected value of X1 with respect to F ∗). Further,
require that F ∗ has a probability density and that its integrated tail distribution F ∗

X1,I
is

subexponential.
Calculate a (rough) estimate of the ruin probability Ψ(u) for the safety loading ρ = 35% and
the initial capital u = 200 (in millions of Danish Krone) by approximating F ∗ by means of
the empirical distribution function with respect to the �re insurance data above.

Hint: Apply the following convention: Claims X
(m)
1 , ..., X

(m)
n arriving on day m ≥ 0 are

interpreted as 1 claim Xm :=
∑n

i=1X
(m)
i arriving on day m.

Problem 2. (10 points)
Assume the heterogeneity model for the i-th policy of an insurance. Given θ ∼ Γ(γ, β)

(Continued on page 2.)
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(Gamma distribution) the claim sizes X1, ..., Xn in the policy are Pareto distributed with
parameters (λ, θ), that is

P (Xi > x |θ) = (λ/x)θ, x > λ.

A reinsurance company only considers the values Xi which exceed a known high treshold K.
They "observe" the counting variables Yi := 1(K,∞)(Xi) for a known K > λ. The company is
interested in �nding an estimate of p(θ) := P (X1 > K |θ).

Calculate the linear Bayes estimator and its risk with respect to p(θ) := E[Y1 |θ] based on the
observations Y1, ..., Yn, when K = 55, λ = 1.5, X1 = 22, X5 = 80, X10 = 71 and Xj = 2 (in
1000 NOK) for j = 2, 3, 4, 6, 7, 8, 9 (in years). Further, suppose that β = γ = 2.

Hint: Recall that the Gamma distribution has the probability density

fγ,β(x) =
βγ

Γ(γ)
xγ−1e−βx, x > 0,

where Γ(z) is the Gamma function.

Problem 3. (10 points)
We consider again the heterogeneity model and require that in the i-th policy of an insurance
the claim numbers Xt, t ≥ 1 given the heterogeneity parameter θ are Poisson distributed with
intensity θ.

(i) Suppose that θ is Gamma distributed with parameters γ, β > 0.
Calculate the linear Bayes estimator µ̂LB of the expected claim number µ(θ) := E[X |θ] and
its corresponding risk for the claim number data X1 = 2, X4 = 1, X5 = 1, X7 = 7, X10 = 1
and Xj = 0 for j = 2, 3, 6, 8, 9 (in years) and the parameters γ = 1.75, β = 1.3.
(ii) Assume now that θ = exp(Z), where Z ∼ Exp(λ) (exponential distribution) for λ = 3.
Compute µ̂LB for the same data as in (i).

Hint: E[θ] = γ
β , V ar[θ] = γ

β2 , if θ ∼ Γ(γ, β).

Problem 4. (10 points)
Assume Mack's model. The following run-o� triangle in the �gure shows the cumulative paid
claims:

Year i Si,i Si,i+1 Si,i+2 Si,i+3 Si,i+4

2015 66238 87434 113473 135235 147162
2016 70233 99167 117432 149111
2017 89256 123672 150156
2018 101389 145157
2019 142381

(Continued on page 3.)
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(i) Calculate the predictors Ŝi,m+k of the total claim amounts

S2016,m+1,

S2017,m+1, S2017,m+2,

S2018,m+1, S2018,m+2, S2018,m+3,

S2019,m+1, S2019,m+2, S2019,m+3, S2019,m+4.

for m = 2019 based on the data of the run-o� triangle.
(ii) Compute the technical provisions for the year 2021, that is

2∑
j=0

(Ŝ2017+j,2021 − Ŝ2017+j,2020)

and for the year 2023, that is
Ŝ2019,2023 − Ŝ2019,2022.

Hint: Recall that
Ŝi,m+k = f̂

(m)
m−i+k−1 · ... · f̂

(m)
m−i · Si,m,

where

f̂
(m)
j =

∑m−j−1
i=1 Si,i+j+1∑m−j−1
i=1 Si,i+j

is the chain ladder estimator of fj .

Problem 5. (10 points)
Consider a reinsurance company with risk process U(t) = u+ ct−S(t), where the total claim
amount S(t) is given by

S(t) =

N(t)∑
i=1

(Xi − x)+.

The latter amount corresponds to a so-called excess-of-loss treaty. Here (a)+
def
= max(a, 0)

for a ∈ R. Assume that N(t), t ≥ 0 is a homogeneous Poisson process with intensity λ > 0,
which is independent of the i.i.d. claim size sequence Xi, i ≥ 1. Suppose that X1 ∼ Exp(γ)
for γ ≥ 1 and that the premium rate c is de�ned as

c = (1 + ρ)λE [(X1 − x)+]

for some safety loading ρ > 0.

Derive a formula for the ruin probability Ψ(u) := P (inft≥0 U(t) < 0) and calculate Ψ(u) for
u = 20, γ = λ = 1, x = 15 and ρ = 0.2.

Hint: Let Z = (Z1, ..., Zn) be a random vector with non-negative random variables Zi, i =
1, ..., n. De�ne for λ1, ..., λn ≥ 0

ΨZ(λ1, ..., λn) = E [exp(−(λ1Z1 + ...+ λnZn))] (Laplace-Stieltjes transform).

(Continued on page 4.)
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Consider another random vector Y = (Y1, ..., Yn) with non-negative random variables Yi, i =
1, ..., n. Use the following fact:
Z and Y have the same probability distribution if and only if ΨZ(λ1, ..., λn) = ΨY (λ1, ..., λn)
for all λ1, ..., λn ≥ 0.

End


