UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: STK4540 — Non-Life Insurance Mathematics.

Day of examination: Monday, December 3, 2012.

Examination hours: 14:30 – 18:30.

This problem set consists of 3 pages.

Appendices: None.

Permitted aids: Approved calculator.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Results you may need

If X and Y are random variables, then

$$E(Y) = E\{\xi(X)\}$$
 and $\operatorname{var}(Y) = \operatorname{var}\{\xi(X)\} + E\{\sigma^2(X)\}$

where
$$\xi(x) = E(Y|X = x)$$
 and $\sigma^2(x) = \text{var}(Y|X = x)$.

The Poisson density function for N is

$$p(n) = \frac{\lambda^n}{n!} e^{-\lambda}, \quad n = 0, 1, 2, \dots$$

with mean and standard deviation $E(N) = \lambda$ and $sd(N) = \sqrt{\lambda}$. If $\mathcal{X} = Z_1 + \cdots + Z_N$ with Z_1, Z_2, \ldots independent and identically distributed and also independent of N, then

$$E(\mathcal{X}) = \lambda \xi_z$$
 and $\operatorname{var}(\mathcal{X}) = \lambda(\xi_z^2 + \sigma_z^2)$

where $\xi_z = E(Z_i)$ and $\sigma_z = \operatorname{sd}(Z_i)$.

The Pareto and Gamma density functions for Z are

$$f(z) = \frac{\alpha/\beta}{(1+z/\beta)^{1+\alpha}}, \quad z > 0 \qquad \text{and} \qquad f(z) = \frac{\alpha^{\alpha}}{\Gamma(\alpha)\xi_z^{\alpha-1}} z^{\alpha-1} e^{-\alpha z/\xi_z}, \quad z > 0$$

with mean and standard deviation $\xi_z = \beta/(\alpha - 1)$ and $\operatorname{sd}(Z) = \xi_z \sqrt{\alpha/(\alpha - 2)}$ for Pareto and $E(Z) = \xi_z$ and $\operatorname{sd}(Z) = \xi_z/\sqrt{\alpha}$ for Gamma.

Use all these results freely; don't prove them.

Problem 1

a) What is the pure premium of a policy holder? Offer a mathematical definition and explain the actuarial meaning of the concept and its relationship to market premia (at most ten lines!).

(Continued on page 2.)

- b) Use a precise mathematical argument and argue that portfolio uncertainty under a suitable condition disappears as the number of policies $J \to \infty$.
- c) Extend the argument in b) and analyse a situation where the risk of all policy holders depend on a common random claim intensity μ .
- d) What is the reserve of a portfolio? Again offer a mathematical definition and sketch a computer program showing how reserves can be computed when all customers have the same claim intensity μ which may be both fixed and random.

The table shows approximate ϵ -percentiles of the sum of claims during one year for a Poisson/Pareto portfolio. There were J=1000 policies and the parameters of the Pareto distribution were $\alpha=3$ and $\beta=2$. Claim numbers assumed common intensity for all policy holders, either a fixed one 0.05 per policy per year or a Gamma-distributed one with mean 0.05 and shape $\alpha=4$.

ϵ	0.01	0.05	0.25	0.50	0.75	0.95	0.99
	6.5	13.2	29.1	44.9	65.4	104.3	138.2
	25.1	30.6	40.4	48.3	57.5	74.1	91.4

e) Which of the rows of the table belongs to which intensity scenario? Explain briefly and propose assessments of the reserve under both scenarios.

Problem 2

Consider a Poisson/Pareto portfolio with fixed claim intensity μ and shape parameter $\alpha > 1$ in the Pareto distribution. There is an annual re-insurance contract. For each incident $Z^{\text{re}} = \max(Z - b, 0)$ is received by the cedent where b is some threshold.

a) Show that the pure premium of the re-insurance is

$$\pi^{\rm re} = J\mu \int_{b}^{\infty} \{1 - F(z)\} dz$$

where F(z) is the distribution function of a claim Z against the cedent.

- **b)** Use this to find an expression for π^{re} in terms of the parameters of the Pareto distribution.
- c) Express cedent net responsibility in mathematical terms and explain how you modify the program in Problem 1d) so that it returns cedent net reserve under re-insurance contracts.
- d) Argue that if the re-insurance market requires 50% more than the pure premium, then this amount is for cedents an average loss due to re-insurance.

The table shows for the portfolio in Problem 1e) the pure re-insurance premium and the net 99% reserve for the cedent as the threshold b is varied.

(Continued on page 3.)

\overline{b}	infinite	30	20	10	5	4	3	2	1	0
π^{re}	0	0.2	0.4	1.4	4.1	5.6	8.0	12.5	22.0	50.0
Reserve	91.7	87.1	85.5	79.9	71.7	68.2	63.4	55.1	39.4	0

The cedent takes the view that 10% of the capital saved by taking out re-insurance can be regarded as an annual profit for the company.

e) Determine from the table the threshold that is for the cedent optimal when the re-insurance market is as in d).

Suppose the contract is agreed in an inflationary economy with I the rate of inflation per year.

- f) How is the fact that claims tend to be more costly a year from now expressed into the Pareto model?
- g) Argue that premia will be too low if future inflation is ignored and that this bias will increase with α so that the lighter the tail of the claim distribution the more wrong pricing will become.

Problem 3

This problem examines optimal credibility estimation. Let N be the number of claims from a policy holder during a year and suppose $N|\mu \sim \text{Poisson}(\mu)$ with μ Gamma-distributed with mean ξ_{μ} and shape α . There is a historical record $N_1, \ldots N_K$ of claim numbers from this customer, and it is then reasonable to assume (as is done in the following) that N, N_1, \ldots, N_K are independent given μ .

a) If n_1, \ldots, n_K are the actual realizations of N_1, \ldots, N_K , show that $\mu | n_1, \ldots, n_K$ is Gamma distributed with mean

$$\hat{\mu} = \xi_{\mu} \frac{\bar{n} + \alpha/K}{\xi_{\mu} + \alpha/K}$$

and shape $\alpha + K\bar{n}$ where $\bar{n} = (n_1 + \cdots + n_K)/K$.

- b) If ξ_z is the expected claim per event (the same for all customers), argue that $\hat{\pi} = \hat{\mu}\xi_z$ is an estimate of the pure premium π of the individual.
- c) Show that $\hat{\pi}$ is unbiased; i.e. show that $E(\hat{\pi} \pi) = 0$.
- d) Argue that $\operatorname{sd}(\mu|n_1+\ldots,n_K)=\hat{\mu}/\sqrt{\alpha+K\bar{n}}$ and deduce that

$$\operatorname{sd}(\hat{\pi} - \pi) = \xi_{\mu} \xi_{z} \sqrt{\frac{1}{K \xi_{\mu} + \alpha}}.$$

e) Interprete the result in d) by explaining why $\operatorname{sd}(\hat{\pi} - \pi) \to 0$ when $K \to \infty$ and $\alpha \to \infty$ and why it reduces to $\xi_z \sqrt{\xi_\mu/K}$ when $\alpha = 0$.