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Problem 1

The Poisson model is a common model for claim frequency.

1a

Under certain circumstances the negative binomial model is preferred
before Poisson for claim frequency. What are those circumstances? How
can we select one of the two models?

Answer:

• An assumption underlying the pure Poisson model without regres-
sion variables is that the underlying claim intensities are equal. This
assumption can be checked calculating the dispersion coefficient, es-
imated by D = s2

n̄ , where s2 is the sample variance and n̄ is the
sample mean. If the dispersion coefficient, is much larger than 1,
this indicates that the underlying claim intensities are unequal.

• If the underlying claim intensities are unequal the negative binomial
model performs better than the Poisson model.

• Visual plotting of model against actual frequency can be done.

• QQ plot can be done.

�
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1b

Let N denote the number of claims for a period T and assume that

N|µ ∼ Poisson(µT), (1)

so that µ is stochastic.

Specific models for µ are handled through the mixing relationship

Pr(N = n) =
∫ ∞

0
Pr(N = n|µ)g(µ)dµ (2)

where g(µ) is the density function of µ.

Assume that

Pr(N = n|µ) = (µT)n

n!
e−µT and g(µ) =

(α/ξ)α

Γ(α)
µα−1e−µα/ξ (3)

where
Γ(α) =

∫ ∞

0
xα−1e−xdx. (4)

Prove that

Pr(N = n) =
Γ(n + α)

Γ(n + 1)Γ(α)
pα(1 − p)α where p =

α

α + ξT
. (5)

Answer: By the mixing formula presented in (2) it is obtained
that

Pr(N = n) =
∫ ∞

0

(µT)n

n!
e−µT × (α/ξ)α

Γ(α)
µα−1e−µα/ξdµ, (6)

or when reorganised,

Pr(N = n) =
Tn(α/ξ)α

n!Γ(α)

∫ ∞

0
µn+α−1e−µ(T+α/ξ)dµ. (7)

Substituting z = µ(T + α/ξ) in the integrand yields

Pr(N = n) =
Tn(α/ξ)α

n!Γ(α)(T + α/ξ)n+α

∫ ∞

0
zn+α−1e−zdz, (8)

where the integrand is Γ(n + α). Hence

Pr(N = n) =
Γ(n + α)

Γ(n + 1)Γ(α)
Tn(α/ξ)α

(T + α/ξ)n+α
=

Γ(n + α)

Γ(n + 1)Γ(α)
pα(1 − p)n,

(9)
where p = α/(α + ξT). This is the density function stated in (5). �
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1c

Female and male frequencies as a function of policyholder age

Assume that the following plot is presented, showing claim frequency
for male and females as a function of policyholder age.

What does the plot tell you about the impact of gender and
policyholder age on risk? Please propose a claim frequency regression
model that includes these effects.

Answer:

• Young policyholders are most risky regardless of gender, but young
males are more risky than young females.

• The risk attains a minimum at approximately 50 years for males and
some years later for females.

• The risk rises for both genders as policyholders get older, but old
males are less risky than old females. However, the risk never
reaches the level of the youngest policyholders.

• The plot suggests an interaction between gender and policyholder
age. The most important feature to capture is young males, but
also old males can represent a model term, depending on policy
exposure.

• A model proposal could be

log(µj) = b0 + b1xj1 + b2xj2 + b3(xj1xj2), (10)

where b0 represents the intercept, b1 is the effect of policyholder age,
xj1 is the policyholder age of policyholder j, b2 is the effect of gender,
xj2 is the gender of policyholder j and (xj1, xj2) is an interaction term
which is 1 if a male is below 35 years and 0 otherwise. This model
disregards the potential interaction between age and gender for old
males.

�
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1d

Table 4 shows a result from a Poisson regression.

Interpret how the claim frequency varies with the parameters gender
and policyholder age in the model in Table 4.

Answer:

• In the model females are less risky than males.

• In the model the young policyholders are most risky. The risk
decreases with policyholder age until the policyholder age reaches
56 − 70 where the minimum is attained. The risk increases slightly
for the oldest policyholder age group.

�

Variable Value Regression estimate standard deviation
Intercept -2.315 0.0065
Gender Male 0 0
Gender Female -0.037 0.027

Policyholder age group 20-25 0 0
Policyholder age group 26-39 -0.501 0.068
Policyholder age group 40-55 -0.541 0.067
Policyholder age group 56-70 -0.711 0.07
Policyholder age group 71-94 -0.637 0.073

Table 1: Regression estimates with standard deviation for a Poisson regression.

1e

If the model in Table 4 were to be used in pricing, is it advisable to
implement these estimates directly? (Hint: What happens to the price if a
customer changes policyholder age group?)

Answer:

• The subdivision in Table 4 is far to crude to be implemented directly.
If a policyholder changes policyholder age group the price would
change considerably, which could provoke quite a few clients.

• A model proposal as presented in (10) would provide a continuous
relationship between policyholder age and claim frequency.

• Alternatively, more flexible mathematical formulations could be
provided by polynomials of higher order.

�
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Problem 2

The Solvency II directive establishes a revised set of capital adequacy
rules for insurance and reinsurance undertakings in the EEA. The starting
point for assessing the available capital of an undertaking is to value its
assets and liabilities. The liabilities of insurance undertakings include
the technical provisions which constitute a significant proportion of their
balance sheets.

2a

What is the purpose of Solvency II?

Answer: The purpose of Solvency II is to

• to protect policy holders across the EU,

• to optimize capital allocation by aligning capital requirements to
actual risk,

• to create an equal and consistent regulatory regime across the EU,

• to create regulations that are consistent with the ones in comparable
industries (particularly banking),

• to create an improved «platform» for proper regulation and super-
vision, based on increased transparency, more data and better docu-
mentation.

• Solvency II has been developed to improve the weaknesses of
Solvency I:

Based on a number of individual directives from the 1970s –
Solvency I was formally established in 2002.

Solvency I is not a harmonised framework at the EU-level: There
are significant differences between the various countries e.g. in the
valuation of provisions.

Solvency I is very basic in terms of risk measurement: Insurance
risk is the only type of risk taken into account; and only at a high
level.

Solvency I is often supplemented by other, national regulations.
E.g. in Norway insurers were also required to comply with banking
regulations (Basel I).

Solvency I is «good» at preventing insolvencies, but it has not
required insurers to maintain a level of capital corresponding to the
risk exposure of the entity

�
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2b

What are the most important risk categories in Solvency II (the standard
model) and what are their drivers?

Answer:

• The most important risk categories in non-life insurance are market
risk and insurance risk.

• The drivers of market risk are interest rate levels, the development
of equity prices, the development of property prices and other asset
classes the insurance company is invested in. Furthermore, currency
could be a risk driver, as well as concentration.

• The drivers of insurance risk are premium risk, reserve risk, lapse
risk and Non-life catastrophe risk.

2c

Under Solvency II the projection of run-off triangles is one of the allowed
methods for valuing the technical provisions for non-life insurance
business.

The simplest of the run-off triangle methods is the chain ladder
method.

Introduce

Cij, cumulative claims from accident year i, reported through the end of period j,
(11)

m, is the last development period that is known, (12)

f̂ j =
∑

m−j
i=1 Cij+1

∑
m−j
i=1 Cij

, is the one period development loss factor. (13)

The run-off triangle in Table 3 shows cumulative payments for the
period 2008-2012.

Fill out the triangle using the chain ladder method.

Claim year Development year
0 1 2 3 4

2008 7 008 25 877 31 723 32 718 33 019
2009 30 105 65 758 76 744 79 560
2010 89 181 171 787 201 381
2011 109 818 198 015
2012 97 250

Table 2: Run-off triangle for cumulative payments.

(Continued on page 7.)
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Answer:
The formula (13) yields the factors f̂1 = 25877+65758+171787+198015

7008+30105+89181+109818 =

1.958, f̂2 = 1.176, f̂3 = 1.035 and f̂4 = 1.0092.
Applying these factors to the triangle in the Table above yields

Claim year Development year
0 1 2 3 4

2008 7 008 25 877 31 723 32 718 33 019
2009 30 105 65 758 76 744 79 560 80 282
2010 89 181 171 787 201 381 208 456 210 373
2011 109 818 198 015 233 971 242 192 244 420
2012 97 250 190 428 223 988 231 858 233 991

Table 3: Run-off triangle for cumulative payments.

�

2d

Another method for modelling delay is the method invented by Kaminsky
(1987). Let ql be the probability that a claim is settled l periods after the
incident took place, where q0 + . . . + qL = 1 if L is maximum delay. The
process is multinomial if different events are independent. Suppose there
are J policies under risk in a period of length T. The number of claims
N is typically Poisson distributed with parameter λ = JµT, but not all
are settled at once. If Nl are those settled l periods later, then N0 + . . . +
NL = N , and the earlier assumptions make the conditional distribution of
N0, . . . ,NL given N multinomial with probabilities q0, . . . , qL.

This Poisson/multinomial modelling implies

Nl ∼ Poisson(JµTql), l = 0, . . . , L (14)

and
N0, . . . ,NL stochastically independent. (15)

Prove (14) and (15).

Answer: Let N be the total number of claims during a period T
and Nl those among them settled l periods later for l = 0, . . . , L. Clearly
N = N0 + . . . +NL and with n = n0 + . . . + nL,

Pr(N0 = n0, . . . ,NL = nL) = Pr(N0 = n0, . . . ,NL = nL|N = n)Pr(N = n)
(16)

where by assumption

Pr(N0 = n0, . . . ,NL = nL|N = n) =
n!

n0! · · · nL!
qn0

0 · · · qnL
L (17)

(Continued on page 8.)
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and

Pr(N = n) =
λn

n!
e−λ =

λn0+...+nL

n!
e−λ(q0+...+qL) =

1
n!
(λn0e−q0λ) · · · (λnL e−qLλ)

(18)
since q0 + . . . + qL = 1. This yields

Pr(N0 = n0, . . . ,NL = nL) =
qn0

0 · · · qnL
L

n0! · · · nL!
(λn0e−q0λ) · · · (λnL e−qLλ) =

L

∏
l=0

(qlλ)
nl

nl !
e−qlλ

(19)
as claimed in (14) and (15). �

Problem 3

The cumulative function and the density function of the exponential
distribution is

F(x) = 1 − e−x/ξ , x > 0 and f (x) =
1
ξ

e−x/ξ , (20)

where mean and standard deviation are given

E(X) = ξ and Var(X) = ξ2. (21)

The Weibull family is related to the exponential through

Z = βX1/α, Xexponential with mean 1, (22)

where α and β are positive parameters.

3a

Find the cumulative distribution function and the density function of the
Weibull distribution.

Propose a way to generate a stochastic variable from the Weibull
distribution using the inversion sampler. (Hint: Utilize the relation F(x) =
U ⇐⇒ X = F−1(U) where U is sampled from a standard uniform distribution.

Answer: The distribution function of Z is

F(z) = Pr(X ≤ (Z/β)α) = 1 − e−(z/β)α
, (23)

since Z = βX1/α ⇐⇒ X = (Z/β)α and X is Exponential with mean 1.

The density function f (z) is found by differentiating F(z) with respect
to z:

f (z) =
d
dz

F(z) = −− α

β
(

z
β
)α−1e−(z/β)α

=
α

β
(

z
β
)α−1e−(z/β)α

. (24)

To generate a stochastic variable from the Weibull distribution using the
inversion sampler F(x) = U ⇐⇒ X = F−1(U):

U = 1 − e−(Z/β)α ⇐⇒ 1 − U = e−(Z/β)α ⇐⇒ β(− log(U))1/α = Z,
(25)

since U and 1 − U have the same uniform distribution on [0, 1]. �

(Continued on page 9.)
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3b

Find the likelihood function of the Weibull given observations z1, . . . , zn,

L(α, β) =
n

∑
i=1

log( fi(α, β, zi)). (26)

Find
∂L(α, β)

∂β
(27)

and find β̂α such that ∂L(α,β)
∂β = 0.

Answer: The likelihood function of the Weibull given observa-
tions z1, . . . , zn,

L(α, β) =
n

∑
i=1

log( fi(α, β, zi)) =
n

∑
i=1

log
α

β
(

zi

β
)α−1e−(zi/β)α

=
n

∑
i=1

{log(α)− log(β) + (α − 1) log(zi)− (α − 1) log(β)− (z/β)α}

= n log(α) + (α − 1)
n

∑
i=1

log(zi)− nα log(β)− 1
βα ∑

i=1
zα

i .

Furthermore,

∂L(α, β)

∂β
= −nα

1
β
− (−α)β−α−1

n

∑
i=1

zα
i ,

and
∂L(α, β)

∂β
= 0 ⇐⇒ nα

β
=

α

βα+1

n

∑
i=1

zα
i ,

which yields that

β̂α = {
n

∑
i=1

zα
i }1/α.

�

3c

Find the cumulative distributive function of the over-threshold distribution
for the Weibull distribution defined as the distribution of Zb = Z− b given
Z > b.

Answer:

Pr(Z − b > z|Z > b) =
Pr(Z > z + b, Z > b)

Pr(Z > b)
=

Pr(Z > z + b)
Pr(Z > b)

=
1 − F(z + b)

1 − F(b)

=
1 − (1 − e−((z+b)/β)α

1 − (1 − e−(b/β)α
)

= e−((z+b)/β)α+(b/β)α
.

�

(Continued on page 10.)
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3d

What does a known result say about the distribution of over-threshold
distributions in general?

Answer: The general result formulated by Pickands says that
there exists a parameter α (not depending on b and possibly infinite) and
some sequence βb such that

F̄b(βby) → P̄(y/α) as b → ∞ where P̄(y/α) =

{
(1 + y)−α, if 0 < α < ∞,

e−y if α = ∞.
(28)

Here the limit P̄(y/α) is the tail distribution of the Pareto model, and
Zb = Z − b|Z > b becomes Pareto(α, β) as b → ∞. �

3e

In practice the data set at hand may not contain extreme enough
observations so that the result in part d) can be utilized.

To view this function the sample mean excess plot is constructed.
The sample mean excess function is defined as

en(b) =
∑n

i=1(Xi − b)I(Xi > b)
∑n

i=1 I(Xi > b)
, (29)

where I(Xi > b) is the indicator function such that I(Xi > b) = 1 if
(Xi > b) and 0 otherwise.

How can sample mean excess plots be of assistance when a model for
the extreme right tail is selected?

Answer: The mean of the over-threshold distribution (if it exists)

is known as the the mean excess function and becomes for the Pareto
distribution

E(Zb|Z > b) =
β + b
α − 1

= ξ +
b

α − 1
(requires α > 1) (30)

where ξ = E(Z). From the equation above it is clear that for the Pareto
distribution the mean excess function is linear in b.

The plot below shows that the mean excess function has different
characteristics for different parametric claim size distributions. If the
sample mean excess plot resembles some of the shapes in the plot below,
this may often be used as a help when modelling the tail distribution.

To select extreme right tail distribution simply plot the sample mean
excess plot in R. if the plot presented resembles some of the shapes in
the plot below, this might indicate that the resembling shape is a suitable
candidate for the extreme right tail.

(Continued on page 11.)
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Mean excess function for different parametric claim size distributions

�

Problem 4

Assume that you are presented some natural disaster data for Norway
for the period 1980-2014. Based on the data you are asked to estimate
the next year’s premium for natural disasters for Norway. An incident
like a hurricane, a storm or a flood can lead to many small claims. Up
to December 2014 there are 59 such incidents including in total over 160
000 small claims. In this task small claims occurring on the same day are
joined together into one large claim to reduce the amount of data.

Therefore, the claim frequency of interest here is the number of claim
days per year. Imagine that the yearly claim frequency, i.e., the number of
claim days per year shows an increasing trend in the period 1980-2014.

Assume that the claim frequency of the number of claim days per year
follows a negative binomial distribution with a time trend. Let Ni be the
number of days with natural disasters occurring in year i and assume that

Ni ∼ Negative Binomial with parameters a, b and p

and
E(Ni) =

1 − p
p

× (ai + b), i = 0, 1, ....

and
Var(Ni) =

1 − p
p2 × (ai + b), i = 0, 1, ....

4a

If a = 0, what does this tell you about the development of the claim
frequency from 1980 until today? Answer the same question assuming
that a > 0.

Answer: If the parameter a = 0 the model predicts that there
is no trend in the claim frequency from 1980 up to today. If a > 0 the
modelled claim frequency increases linearly from year to year. �

(Continued on page 12.)
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4b

Assume that the maximum likelihood principle has been applied to
estimate a, b and p and assume that a = 1.227, b = 129.6 and p = 0.3643.

How many days with natural disasters per year does the model predict
for 1980? How many days with natural disasters per year does the model
predict for 2015?

Answer: In 1980 the modelled number of claims is 226 while in
2015 the modelled number of claims is 301. �

4c

On average the claim size per claim day has been more than 1.7 MNOK,
measured with the value of the NOK today. The distribution of the claims
is severely skewed to the right. This means that most claims are small and
that a few are really large. When the claim size is modelled, this property
is important to capture.

Average Standard deviation Skewness 99% quantile 99.5% quantile
1 732 214 25 982 012 46.9 7 954 324 21 665 234

Table 4: Annual claim intensities broken down on gear type and driving limit.

Propose an algorithm that models claim size bearing in mind that you
want a tail in the claim size distribution that is adequately heavy. You may
write in pseudo code or use the R language.

Answer: To obtain a tail that is adequately heavy a mixture
distribution is proposed, where the non-parametric distribution is used
up to a threshold b. Above the threshold b the Pareto distribution is used,
bearing in mind that all over-threshold distributions become Pareto when
b is large enough.

A claim Z may be written

Z = (1 − Ib)Z≤b + IbZ>b (31)

where

Z≤b = Z|Z ≤ b, Z>b = Z|Z > b andIb = 0i f Z ≤ b, 1otherwise. (32)

The threshold b may be selected inspecting the percentiles or using the
sample mean excess plot on a subset of the original dataset. Using the
latter technique the threshold b should then be selected where the sample
mean excess peaks in the plot. Assume in the following that b is selected
as the 99th percentile in the original claim size distribution. The procedure

to sample a random claim size is then given:

(Continued on page 13.)
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1. Sample a random number U between 0 and 1

2. If U is less than 0.99 than sample a claim size at random amongst the
99% smallest observed claims.

3. If U is greater than 0.99 the claim size is calculated as the sum of the
observed 99% percentile and an addition sampled from the Pareto
distribution with the estimated parameters α and β.

An R code for this procedure is:

z=all natural catastrophes;

p=0.01;

alpha=1.478;

beta=57 895 000;

m=100000;

n1=(1-p)*length(z);

z=sort(z);

U=runif(m);

ind = floor(1+U*n1);

Y=z[n1]+(U**(-1/alpha)-1)*beta;

L=runif(m)<1-p;

Z=L*z[ind]+(1-L)*Y

�

4d

The agency managing the natural disasters of Norway is considering a
reinsurance program to cover really large natural disasters. The contract
of interest is the a × b contract for single events.

Propose an algorithm that models portfolio liability for natural
disasters using the claim frequency model of part a) and b) and the claim
size distribution you developed in part c). When this is done, modify
the algorithm so that the a × b contract on single events is used on single
events.

Answer: When a model for the claim frequency based on the
history 1980-2014 was used, the negative binomial with a trend term was
best. However, going one year forward, the Poisson distribution may
be used in the simulations, calibrating λ from the expected number of
catastrophe days in 2015 obtained from the negative binomial distribution.
in a) and b)

Without reinsurance.

TotalClaims_upto99 <- TotalClaims[TotalClaims<=percentile_99_tot]

Number_of_simulations <- 100000

(Continued on page 14.)
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simulations_total <- c()

TotalClaims_sorted <- sort(TotalClaims)

number_of_event_days<-301

for (i in 1:Number_of_simulations)

{

number_of_cat_events <- rpois(1,number_of_event_days); #Model for how many small/medium events happen per year

uniform_vector <- runif(number_of_cat_events) ;

ind=floor(1+uniform_vector*8987) ; # indices for non parametric sampling for this year

Y=percentile_99_tot+(uniform_vector**(-1/alpha_ex)-1)*beta_ex; # extreme catastrophes this year

L=runif(number_of_cat_events)<p;

Z=L*TotalClaims_sorted[ind]+(1-L)*Y;

simulations_total[i] <- sum(Z)

}

With reinsurance.

a<-600 000 000

b<- 1 200 000 000

TotalClaims_upto99 <- TotalClaims[TotalClaims<=percentile_99_tot]

number_of_event_days<-301

Number_of_simulations <- 100000

simulations_total <- c()

TotalClaims_sorted <- sort(TotalClaims)

for (i in 1:Number_of_simulations)

{

number_of_cat_events <- rpois(1,number_of_event_days); #Model for how many small/medium events happen per year

uniform_vector <- runif(number_of_cat_events) ;

ind=floor(1+uniform_vector*8987) ; # indices for non parametric sampling for this year

Y=percentile_99_tot+(uniform_vector**(-1/alpha_ex)-1)*beta_ex; # extreme catastrophes this year

L=runif(number_of_cat_events)<p;

Z=L*TotalClaims_sorted[ind]+(1-L)*Y;

Z_ce=pmax(pmin(Z,a),Z-b);

simulations_total[i] <- sum(Z_ce)

}

4e

The preferred contract is an a × b where a = 600MNOK and b =
1200MNOK. The reinsurance yields a reduction of required reserve, as

(Continued on page 15.)
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displayed in Table 5. The same table also displays that some claims
are saved. Before reinsurance was considered the natural disaster pool
obtained a return on capital of 10%. A return on capital is here defined as
operating profit divided by required capital (or required reserve).

Average portfolio liability in MNOK Required reserve in MNOK
Without reinsurance 600 3 123

With reinsurance 550 2 139

Table 5: Natural catastrophe liabilities with and without reinsurance.

How much should the pool be willing to pay for the reinsurance to
maintain a similar return on capital when the reinsurance is taken into
account? (Hint: The claims saved by the reinsurance is the minimum to pay for
the reinsurance. In addition it is expected that the reinsurance company charges a
loading on top of that. How much can this loading be so that the return on capital
is acceptable?).

Answer: Before reinsurance the operating profit of the pool is
approximately 312 MNOK (10% of required capital which is 3123 MNOK).
When reinsurance is taken into account an operating profit of 214 MNOK
would generate the same return on capital since the required capital has
decreased to 2139 MNOK. Since the average portfolio liability is decreased
with 50 MNOK using reinsurance the pool can spend up to approximately
150 MNOK on reinsurance and still maintain a similar return on capital.
�


