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Problem 1

(a) The Cramér-Lundberg model is a model for the total claim amount
S(t) = ∑

N(t)
i=1 Xi where N is specified to be a homogeneous Poisson

process, {Xi}i≥1 are i.i.d. and independent of N. More concretely,
we have the following specifications:

– Claims happen at the arrival times 0 ≤ T1 ≤ T2 ≤ . . . of a
homogeneous Poisson process N(t) = #{i ≥ 1 : Ti ≤ t}, t ≥ 0.

– The ith claim arriving at time Ti causes the claim size Xi. The
sequence {Xi}i≥1 constitutes an i.i.d. sequence of non-negative
random variables.

– The sequences {Ti}i≥1 and {Xi}i≥1 are independent. In
particular, N and {Xi}i≥1 are independent.

Give 1p if the answer is correct. Give 0.5p if N is chosen to be a
homogeneous Poisson process.

(b) The risk process is defined as

U(t) = u + p(t)− S(t), t ≥ 0,

i.e. initial capital (usually big), plus income from the premiums
minus the claims. The event of ruin is the event

R = {ω : U(t, ω) < 0 for some t ≥ 0} .

(Continued on page 2.)
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The probability of ruin is then P(R), which has several equivalent
definitions

P(R) = P(inf {t > 0 : U(t) < 0} < ∞).

Give 1p if the three definitions are correct. Give 0.5p if risk process
is correct, and 0.25p for ruin and probability of ruin.

(c) Let, in the renewal model, Wi = Ti − Ti−1, i ≥ 1, T0 := 0 denote the
interarrival times. Let Zi := Xi − cWi, i ≥ 1. Since Xi and Wi are
i.i.d. we can look at Z1 = X1 − cW1. A necessary condition to hope
for ruin with probability different from one is the so-called Net Profit
Condition (NPC) and it is given by

E[Z1] = E[X1]− cE[W1] < 0,

which implies

c >
E[X1]

E[W1]
.

If in addition, we are in the Cramér-Lundberg model then W1 ∼
Exp(λ) being λ the intensity of the Poisson process N and the NPC
is c > λE[X1]. The condition is rather intuitive; E[W1] represents
the average time between claims, which is exactly when we obtain
the linear income cE[W1] (in average). This amount should be bigger
than the average claim size generated at time T1.

Give 1p for the statement of the NPC, give 0.5p if the candidate
states the condition in the Cramér-Lundberg model, and give special
consideration to a student who has explained the interpretation of
NPC.

(d) Choosing f (x) = ehx we immediately have

P(X ≥ a) ≤ mX(h)
eha = e−hamX(h),

which shows that the tail P(X ≥ a) has exponential decay. The
existence of the moment generating function of a claim size around
the origin implies exponential decay, which in particular, is a bad
model if the want to model large claim sizes which is a common
feature in non-life insurance.

Give 0.5p for the proof and 0.5p for the explanation related to
small/large claims

Problem 2

(a) First observe that the distribution of the Xi’s is given by

P(Xi = 1) = P(ω1) = 0.2, P(Xi = 2) = P(ω2) = 0.7, P(Xi = 3) = P(ω3) = 0.1.

(Continued on page 3.)
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Fix t ≥ 0. Since P(X1 = 0) = 0 we have p0(t) = P(N(t) = 0) = e−λt.
Then for n = 1 using the formula in the exercise we have

p1(t) = λtP(X1 = 1)p0(t) = 0.2λte−λt.

For n = 2:

p2(t) =
λt
2
(P(X1 = 1)p1(t) + 2P(X2 = 2)p0(t))

=
λt
2

(
0.2 · 0.2λte−λt + 2 · 0.7e−λt

)
= 0.2λ2t2e−λt + 0.7λte−λt.

For n ≥ 3 we then have

pn(t) =
λt
n

(0.2pn−1(t) + 1.4pn−2(t) + 0.3pn−3(t)) .

Give 0.25p for p0(t), p1(t) and p2(t). Give 1p for everything. Do not
penalize for not simplifying the expressions.

(b) We will need E[X1] and Var[X1]:

E[X1] = 0.2 + 2 · 0.7 + 3 · 0.1 = 0.2 + 1.4 + 0.3 = 1.9

and

E[X2
1] = 0.2 + 22 · 0.7 + 32 · 0.1 = 0.2 + 2.8 + 0.9 = 3.9

Hence,

Var[X1] = E[X2
1]− E[X1]

2 = 3.9− 1.92 = 0.29

By the independence of {Xi}i≥1 and N and a conditioning argument
we know that

E[S(t)] = E[X1]E[N(t)] = λtE[X1] = 1.9λt.

By the law of total variance we have

Var[S(t)] = Var[E[S(t)|N(t)]] + E[Var[S(t)|N(t)]]
= Var[N(t)E[X1]] + E[N(t)Var[X1]]

= E[X1]
2Var[N(t)] + E[N(t)]Var[X1]

= 1.92λt + λt0.29
= 3.9λt.

The Central Limit Theorem says that for large t we have

S(t)− 1.9λt√
3.9λt

≈ N(0, 1).

Give 0.25p for computing E[X1] and Var[X1]. Give 0.5p for
computing E[S(t)] and Var[S(t)]. Give 1p if in addition the CLT is
stated.

(Continued on page 4.)
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(c) By the first year we will have observed the random number of claims
N(1). Hence, X1, . . . , XN(1). Observing no thefts means that there is
no Xj such that Xj = 1 for all j = 1, . . . , N(1). Hence, if we call A the
event that no policyholders report a theft during the first year then

P(A) = P(X1 6= 1, . . . , XN(1) 6= 1).

Using conditional probability and the law of total probability we
have

P(A) =
∞

∑
n=0

P(X1 6= 1, . . . , Xn 6= 1|N(1) = n)P(N(1) = n).

Since all Xi are independent and equally distributed we have

P(A) =
∞

∑
n=0

P(X1 6= 1)n e−λλn

n!
= eλ(P(X1 6=1)−1) = e10(0.8−1) ≈ 0.13534.

Give 0.25p if the candidate tried something meaningful. Otherwise
give 1p for the exercise.

(d) We are under the Cramér-Lundberg model so we need to charge c
such that

c > λE[X1] = 10 (1000 · 0, 2 + 2000 · 0, 7 + 3000 · 0, 1) = 19 000NOK.

Give 0.25p if the candidate understands that one has to use the NPC.
Otherwise 1p for everything.

Problem 3

(a) We do not know about the law of Xi and hence about Xn. But
we know that conditionally on θ, the Xi’s are i.i.d. and Weibull
distributed. Using the law of total variance we have

Var

[
1
n

n

∑
i=1

Xi

]
= Var

[
E

[
1
n

n

∑
i=1

Xi|θ
]]

+ E

[
Var

[
1
n

n

∑
i=1

Xi|θ
]]

.

Hence,

Var

[
1
n

n

∑
i=1

Xi

]
= Var

[
1
n

n

∑
i=1

E [Xi|θ]
]
+ E

[
1
n2

n

∑
i=1

Var [Xi|θ]
]

= Var [E [X1|θ]] + E
[

1
n

Var [X1|θ]
]

= Var
[
θ1/λΓ (1 + 1/λ)

]
+

1
n

E
[
θ2/λ

(
Γ (1 + 2/λ)− Γ (1 + 1/λ)2

)]
= Γ (1 + 1/λ)2 Var[θ1/λ] +

Γ (1 + 2/λ)− Γ (1 + 1/λ)2

n
E[θ2/λ].

(Continued on page 5.)
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We can observe that the variance of this estimator does not vanish as
n tends to infinity unless θ is deterministic.

The computation of the variance does not need to be very specific.
It is enough to conclude that it does not tend to 0. Give 1p. Give
something if there is a minimum effort to justify why it is a bad
estimator.

(b) The posterior density of θ given ~X = ~x is

fθ(y|~X = ~x) ∝

(
n

∏
i=1

fX1(xi|θ = y)

)
fθ(y).

We only care about factors depending on y. Hence,

fθ(y|~X = ~x) ∝

(
n

∏
i=1

λ

y
xλ−1

i e−
xλ

i
y

)(
1
y

)α+1

e−
β
y

∝
(

1
y

)n (1
y

)α+1

e−∑n
i=1 xλ

i
1
y e−β 1

y

=

(
1
y

)n+α+1

e−
∑n

i=1 xλ
i +β

y

which gives rise to an inverse Gamma density with parameter α =
n + α and β = ∑n

i=1 xλ
i + β.

Give 0.25p if the student writes the relation between posterior,
likelihood and prior.

(c) The net premium is given by

µ(θ) = E[X1|θ] = θ1/λΓ (1 + 1/λ) .

The Bayes estimator µ̂B is the posterior mean of the random quantity
above. Hence,

µ̂B = Γ (1 + 1/λ) E[θ1/λ|~X].

Let us focus on E[θ1/λ|~X]. This is the posterior expectation, hence

E[θ1/λ|~X] =
∫ ∞

0
y1/λ β

α

Γ(α)

(
1
y

)α+1

e−
β
y dy

=
β

α

Γ(α)

∫ ∞

0

(
1
y

)n+α− 1
λ+1

e−
β
y dy

=
β

α

Γ(α)

Γ
(

n + α− 1
λ

)
β

n+α− 1
λ

=
Γ
(

n + α− 1
λ

)
Γ (n + α)

(
∑n

i=1 Xλ
i + β

)−1/λ
.

(Continued on page 6.)
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As a result, the Bayes estimator is

µ̂B =
Γ (1 + 1/λ) Γ

(
n + α− 1

λ

)
Γ (n + α)

(
n

∑
i=1

Xλ
i + β

)1/λ

.

Give 0.1p if the student has computed µ(θ). Give 0.25p if the
candidate has said that the Bayes estimator is the posterior mean
of µ(θ). Give 0.5p if there are meaningful computations towards the
Bayes estimator. Give 1p for everything

(d) Take µ̂B and express the estimate as follows

µ̂B =
Γ (1 + 1/λ) Γ

(
n + α− 1

λ

)
n1/λ

Γ (n + α)

(
1
n

n

∑
i=1

Xλ
i +

β

n

)1/λ

.

Define Yi := Xλ
i , then {Yi}n

i=1 are conditionally on θ i.i.d. and the
strong law of large numbers implies

1
n

n

∑
i=1

Yi
a.s.−−−→

n→∞
E[Y1|θ] = E[Xλ

1 |θ].

Furthermore,

lim
n

Γ
(

n + α− 1
λ

)
n1/λ

Γ (n + α)
= 1.

Hence,
µ̂B

a.s.−−−→
n→∞

Γ (1 + 1/λ) E[Xλ
1 |θ]1/λ.

Finally, we need to show that E[Xλ
1 |θ] = θ. Indeed,

E[Xλ
1 |θ] =

∫ ∞

0
yλ λ

θ
yλ−1e−

yλ

θ dy

=
∫ ∞

0

λ

θ
y2λ−1e−

yλ

θ dy

=
λ

θ
(θ1/λ)2λ

Γ
(

2λ
λ

)
λ

= θ.

Give 0.5p if the candidate applied the limit and the strong law of
large numbers to obtain a limiting expression but does not compute
the conditional expectation. Give 1p for everything.

(Continued on page 7.)
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Problem 4

Using the formula for the CLM estimate given in the exercise we can fill in
the run-off triangle and obtain

Figure 1: Observed and estimated cumulative payments.

The technical provisions for year, say 2016, are the sum of the
incremental claims loss settlements. This corresponds to the incremental
settlements placed in the diagonal corresponding to year 2016, that is
(3080− 2745) + (3114− 2763) + (2940− 2294) + (2859− 2195) = 1996.
Repeating this procedure for each year (increments in each diagonal) we
obtain the following table:

Figure 2: Technical provisions for future years

The provisions for the years 2017 and 2019 are 1559 and 504,
respectively.

Give 1p if the candidate has computed the estimated claims loss
settlements. Give 1p for the estimated loss settlement amounts for years
2017 and 2019.

The final point sum is a number X between 0 and 14. The grade is then
computed as a number between 0 and 100 as follows

Grade =
100
14

X.


