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II. Likelihood in statistical inference 

and survey sampling

• Problems with design-based inference

• Likelihood principle, conditionality principle and 

sufficiency principle

• Likelihood and likelihood principle in survey sampling

• Underpins model-based inference to sample survey
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Traditional approach

Design-based inference

• Population (Target population): The universe of all units of

interest for a certain study: U = {1,2, …, N}

– All units can be identified and labeled

– Variable of interest y with population values

– Typical problem: Estimate total t or population mean t/N

• Sample: A subset s of the population, to be observed

• Sampling design p(s) of all possible subsets;

– The probability distribution of the stochastic sample

),...,,( 21 Nyyyy
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Problems with design-based inference

• Generally: Design-based inference is with respect to 

hypothetical replications of sampling for a fixed population 

vector y

• The basis of inference is the known sampling distribution 

p(s) --- also referred to as frequentistic approach 

• However, sampling variance may fail to reflect – in an 

intuitive manner – the information in a given sample
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Problem with design-based variance measure 

Illustration 1
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Problem with design-based variance measure

Illustration 2
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In case both experts select the same sample (with 

no duplicates), compute the same estimate, but 

give different measures of precision…
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The likelihood principle, LP

• Likelihood Axiom: The likelihood function contains all 

information about the unknown parameters

• LP: Two proportional likelihood functions for 𝜃, from the

same or different experiments, should give identically the same 

statistical inference

model in the parametersunknown   theare  ; ),(~ :Model  xfX

• The likelihood function, with data x: )()(  xx fl 

Measures the likelihood of different 𝜃 values given the data x

l is conceptually different to f ---

x is fixed and 𝜃 varies in l; 𝜃 is fixed x varies in f
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• Maximum likelihood estimation satisfies LP, using the

curvature of the likelihood as a measure of precision

(Fisher)

• LP is controversial, but hard to argue against because

of the fundamental result by Birnbaum, 1962 (Theorem)

• LP follows from sufficiency (SP) and conditionality

principles (CP) that are found to be intuitive:

o SP: Statistical inference should be based on sufficient

statistics

o CP: If you have 2 possible experiments and choose one

at random, the inference should depend only on the

chosen experiment [NB. There exits other formulations.]
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Illustration of CP

• A choice is to be made between a census og taking a sample 

of size 1. Each with probability ½.

• Census is chosen

• Unconditional approach:
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The Horvitz-Thompson estimator:

! 22 tyt̂
iUHT  

Conditional approach: pi = 1 and HT estimate is t
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LP, SP and CP
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Likelihood principle:
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This includes the case where E1 = E2 and x1 and x2 are

two different observations from the same experiment
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Sufficiency principle: Let T be a sufficient statistics for  in the

experiment E. Assume T(x1) = T(x2). Then I(E, x1) = I(E, x2).

Conditionality principle: 
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Consequences for statistical analysis

• Statistical analysis given the observed data: the sampling 

distribution p(s) is irrelevant if it does not depend on 𝜃.

• Standard inference procedures such as confidence intervals

and P-values may be inflict with the LP

• History and dicussion after Birnbaum, 1962: An 
overview in ”Breakthroughs in Statistics,1890-1989, 
Springer 1991”
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Illustration- Bernoulli trials
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The likelihood functions:
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Likelihood function in design-based inference

)...,,( 21 Nyyyy
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• Unknown parameter:

• Data:

• Likelihood of parameter 

• Sampling design: p(s) 

• Likelihood function:
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• Compatible parameters with the observed sample: 
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• Likehood principle, LP : The likelihood function contains 
all information about the unknown parameters

• According to LP: 

– The design-model is such that the data contains no 
information about the unobserved part of y, yunobs

– One has to assume in advance that there is a relation 
between the data and yunobs : 

• As a consequence of LP: Necessary to assume a 
model

– The sampling design is irrelevant for statistical 
inference, because two sampling designs leading to the 
same s will have proportional likelihoods
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Let p0 and p1 be two sampling designs. Assume we get the same 

sample s in either case. Then the data x are the same and Wx is 

the same for both experiments.

The likelihood function for sampling design pi , i = 0,1:
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• Same inference under the two different designs. This is in direct 

opposition to usual design-based inference, where the only 

stochastic evaluation is with respect to the sampling design, for 

example the Horvitz-Thompson estimator.

• Concepts like design unbiasedness and design variance are 

irrelevant for inference under the LP. 

• This does not mean the sampling design is not important. 

– After all the likelihood depends on the sample data!

– Are there especially good or bad samples? 

– Sampling needs to be non-informative for inference to be 

valid under the (correct) population model [an example; 

more later in connection with treatment of missing data]



19

Model-based inference

• Assumes a model for the y vector

• Conditioning on the actual sample

• Use model as the basis of statistical inference

• Problem: dependence on model

– Introduces a subjective element

– impractical to model all variables in a survey

• Design approach is “objective” in a perfect world 

without nonsampling errors
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III. Model-based and model-assisted 

approaches in survey sampling

• Model-based approach. Also called  the prediction 
approach  

– Assumes a model for the y vector

– Use modeling to construct estimator

– Ex: ratio estimator

• Model-based inference given non-informative sampling

– Inference is based on the assumed model

– Treating the sample s as fixed, conditioning on the actual sample 

• Best linear unbiased predictors

• Uncertainty assessment: mean squared error of prediction
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Model-based approach
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Remarks:

1. Any estimator can be expressed on the “prediction form:
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Ex 1.  
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Three common models

0),( and  )( ,0)(    with 2  jiiiiiii CovxVarExY 

I. A model for business surveys, the ratio model:

• assume the existence of a positive auxiliary variable x

for all units in the population.

0),( and  )( , )( 2  jiiiii YYCovxYVarxYE 
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II. A model for social surveys, simple linear regression:

0),( and  )(  ,0)(  , 2

21  jiiiiii CovVarExY 

III. Common mean model:

eduncorrelat are  '  theand )(  ,  )( 2 sYYVarYE iii  

• Ex: xi is a measure of the “size” of unit i, and yi tends to 

increase with increasing xi – allow for negative x-values
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Model-based estimators (predictors)

)|)ˆ(()|ˆ( 2 sTTEsTTVar  

1. Predictor: ZYT
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  ,  0)|ˆ( if  unbiased-model is ˆ  .3 

2. Model parameters: 𝜃

4. Model variance of model-unbiased predictor is the 

variance of the prediction error, or prediction variance 

or mean squared error of prediction

5. From now on,  skip s in the notation: all 

expectations and variances are given the selected 

sample s, for example
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Prediction variance as a variance measure for the 

actual observed sample

TYNT s   totalpopulation for theestimator   theas ˆ     Use 

0)0()ˆ(  VarTTVar

N +1 possible samples: {1}, {2},…,{N}, {1,2,…N}

Assume we select the “sample” {1,2,…,N}. 

Prediction variance:

TYNT ˆThen 
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:predictorslinear  unbiased-model

 all among   varianceprediction minimumuniformly  has ˆ )2
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Suggested Predictor:
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predictorlinear   and unbiased-model a be ˆLet  T
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The prediction variance of the BLU predictor (BLUP):
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The central limit theorem applies such that for 

large n, N-n we have that 

ˆ ˆ ˆ( ) / ( )   is approximately  (0,1)pred predT T V T T N 

Approximate 95% prediction interval for T:

ˆ ˆˆ 1.96 ( )pred predt V T T 
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Three special cases: 1) v(x) = x, the ratio model, 2) v(x)= x2

and 3) xi =1 for all i, the common mean model

1. v(x) = x
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2. v(x) =x2
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3. xi =1
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We see that the variance estimate is given by

 variancesample  the
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Exactly the same as in the design-approach, but the 

interpretation is different!!
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Simple Linear regression model
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We shall now show that this is BLUP.
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Prediction variance:
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Anticipated variance

sthisTTVar

Ts

 sample particular for y uncertaint  themeasures )ˆ(

 :ˆ unbiased-model with , sample  on the lConditiona  .1



A variance measure that tells us about the expected 

uncertainty over repeated surveys

)(on  distributi  sampling  over  the  )},ˆ({

:surveys repeatedfor  y uncertaint expected The .2

 pTTVarEp

3. This is called the anticipated variance. 

4. It evaluates the uncertainty of the strategy consisting of 

a sampling design and an associated estimator
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Example: Simple linear regression and simple 

random sample
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Let us now study the BLUP. (It can be shown that it is 

approximately design-unbiased )
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Remarks

• From a design-based perspective, the sample mean 

is unbiased, the linear regression estimator is not

• Considering only the design-bias, we might 

choose the sample mean based estimator

• The linear regression estimator could be selected 

over the sample mean estimator because the 

strategy of (SRS, BLUP) has smaller anticipated 

variance, i.e. than (SRS, HT), over all possible 

samples and populations (under the model) 
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Robust variance estimation

• The assumed model is really a prediction “tool”

• Often, the variance assumption is somewhat 

misspecified

– like constant variance 

– variance proportional to size measure xi

• Standard least squares variance estimates is 

sensitive to misspecification of variance 

assumption

• Concerned with robust variance estimators
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Variance estimation for the ratio estimator
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Working model:

Under this working model, the unbiased estimator of 

the prediction variance of the ratio estimator is
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This variance estimator is non-robust to misspecification 

of the variance model.

Suppose the true model has

)()(  and  )( 2

iiii xvYVarxYE  

Ratio estimator is still model-unbiased but 

prediction variance is now
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Robust variance estimator for the ratio 

estimator
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Suggests we may use:
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Leading to the robust variance estimator:
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General approach to robust variance 

estimation
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4. Estimate only leading term in the prediction variance, 

typically dominating, or estimate the second term from 

the more general model
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• Reference to robust variance estimation:

• Valliant, Dorfman and Royall (2000):

Finite Population Sampling and Inference. 

A Prediction Approach, ch. 5

However, even more importantly, what if the 

(linear, model) predictor is misspecified?
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Model-assisted approach
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• Design-based perspective to inference

• Assume the existence of relevant auxiliary variables, 

known for all units in the population 

• Use modeling to motivate efficiency improvement of the 

basic HT-estimator.

• Design consistency remains an estimation criterion
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Final estimator, the generalised regression estimator:
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Robustness against predictor misspecification
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Assume 𝑥𝑖𝛽 to be conditional expectation of 𝑌𝑖

It is misspecified if 𝐸 𝑌𝑖 − 𝑥𝑖𝛽 ≠ 0

Let 𝑒𝑖 = 𝑦𝑖 −𝑥𝑖𝛽 and e the corresponding population total

Can write 𝑡 = 𝑋𝛽 + 𝑒 and 𝑋 the population total of 𝑥𝑖

Let መ𝛽 be an estimator of 𝛽, and Ƹ𝑒𝑖 = 𝑦𝑖 −𝑥𝑖 መ𝛽

We have Ƹ𝑒𝑖 → ei, as መ𝛽 → 𝐸𝑝 መ𝛽 = 𝛽, in probability

such that Ƹ𝑡𝑟𝑒𝑔 = 𝑋 መ𝛽 + Ƹ𝑒𝐻𝑇 → 𝑡, in probability

even if 𝐸 𝑌𝑖 − 𝑥𝑖𝛽 ≠ 0
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Simple random sample
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In general with this “ratio model”, in order to get 

approximately design-unbiased estimators:
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Reference: Särndal, Swensson and Wretman : Model 

Assisted Survey Sampling (1992, ch. 6), Springer

• Regression estimator is approximately unbiased

Variance and variance estimation

• Variance estimation:
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Approximate 95% CI, for large n, N-n:

)ˆ(ˆ96.1ˆ
regreg tVt 

• Remark: In SSW (1992,ch.6), an alternative variance 

estimator is mentioned  that may be preferable in many cases
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Common mean model
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The ratio model with xi =1.

This is the modified H-T estimator 

Typically much more efficient than the H-T estimator
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1. The model-assisted regression estimator has often the form
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2. The prediction approach makes it clear: no need to 

estimate the observed yi

Remarks:

3. Any estimator can be expressed on the “prediction 

form:
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4. Can then use this form to see if the estimator 

makes any sense


