1. Likelihood In statistical inference
and survey sampling

Problems with design-based inference

Likelihood principle, conditionality principle and
sufficiency principle

Likelihood and likelihood principle in survey sampling
Underpins model-based inference to sample survey



Traditional approach

Design-based inference

 Population (Target population): The universe of all units of
Interest for a certain study: U = {1,2, ..., N}

— All units can be identified and labeled
— Variable of interest y with population values y =(y;, Y,
— Typical problem: Estimate total t or population mean t/N
« Sample: A subset s of the population, to be observed
« Sampling design p(s) of all possible subsets;
— The probability distribution of the stochastic sample



Problems with design-based inference

« Generally: Design-based inference is with respect to
hypothetical replications of sampling for a fixed population
vector y

« The basis of inference Is the known sampling distribution
p(s) --- also referred to as frequentistic approach

« However, sampling variance may fail to reflect — in an
Intuitive manner — the information in a given sample



Problem with design-based variance measure
[Hlustration 1

a) N +1 possible samples: {1}, {2},...,{N}, {1,2,...N}
b) Sampling design: p({i}) =1/2N, fori1=1,..,N;
p({1,2,...N})=1/2
c) Use Yy, asestimator for populationmean u
N o1 1

Unbiased: E(Y, )=, P(5)¥s = 3., = Vi + 5 4=
Design - variance:
11 -
Var(y,)=E(V, - u)? =D (Vi —u)*- =50

d) Assume we select the “sample” {1,2,. N} Then
the “actual” precision (of census) 1s not “/2



Problem with design-based variance measure
[llustration 2

a) Bxpert 1:SRS and estimate .,

2
Precision is measured by (1- f )G—
n

2 1 N ) _
o —mziﬂ(yi_ﬂ) , f=n/N

b) Bxert 2:SRS with replacement and estimate .
measures precision by 5% / n

In case both experts select the same sample (with
no duplicates), compute the same estimate, but
give different measures of precision...




The likelthood principle, LP

Model: X ~ f,(x), 8 € Q; 8 are the unknown parameters in the model

* The likelihood function, with data x: 1.(6) = f,(9)
Measures the likelihood of different 8 values given the data x

| is conceptually differentto f ---

X 1S fixed and 8 varies in |; @ is fixed x varies in f
e Likelihood Axiom: The likelihood function contains all
Information about the unknown parameters

« LP: Two proportional likelihood functions for 8, from the
same or different experiments, should give identically the same

statistical inference



« Maximum likelihood estimation satisfies LP, using the
curvature of the likelihood as a measure of precision
(Fisher)

 LP is controversial, but hard to argue against because
of the fundamental result by Birnbaum, 1962 (Theorem)

» LP follows from sufficiency (SP) and conditionality
principles (CP) that are found to be intuitive:

o SP: Statistical inference should be based on sufficient
statistics

o CP: If you have 2 possible experiments and choose one
at random, the inference should depend only on the
chosen experiment [NB. There exits other formulations.]



Illustration of CP

* A choice is to be made between a census og taking a sample
of size 1. Each with probability %-.

e Census IS chosen

« Unconditional approach:

7; = P(census) + P(sample of size1andi is selected)
=1/2 + P(sample of size 1) P(i is selected|sample of size 1)
1 1 1

—12+ S
2 N 2



The Horvitz-Thompson estimator:
tyr 20, Y, =2t!

Conditional approach: p; =1 and HT estimate is t



LP, SP and CP

Model: X ~ f,(x), 8 € Q; 8 are the unknown parameters in the model

Experiment is atriple E ={X,0{f,},6 O}
| (E,X) : Inferenceabout @ in the experiment E with observation x

Likelthood principle:
Let E, ={X,,0{f,}} andE, ={X,,0{f;/}}. Assume
l,,. (0)=cl,, (6),cindependertof 0. (f;(x)=cf;(x,))

Then:1(E;,x)=1(E,,X,)

This includes the case where E, = E, and x, and x, are
two different observations from the same experiment
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Sufficiency principle: Let T be a sufficient statistics for &in the
experiment E. Assume T(x,) = T(x,). Then I(E, x,) = I(E, Xx,).

Conditionality principle:

Let E, ={X,,0{f,}} andE, ={X,,0{f;}}.

Consider the mixture experiment E* where E, Is chosen with
probability 1/2 and x, is observedand E, is chosen with
probability 1/2 and X, is observed. The observation in E* is then

thevalueof X*=(J,X;),J &2
E*={X",60{f,}} where f;(j,xj) =% 1‘(9j (xj)
CP 1 I(E™(j,x)) = I (E; ;)

Theorem:CP andSP < LP
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Consequences for statistical analysis

« Statistical analysis given the observed data: the sampling
distribution p(s) is irrelevant if it does not depend on 6.

 Standard inference procedures such as confidence intervals
and P-values may be inflict with the LP

 History and dicussion after Birnbaum, 1962: An
overview in ’Breakthroughs in Statistics,1890-1989,
Springer 1991~
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[llustration- Bernoulli trials

) ST C

X. =1 (success)with probability &

Two experiments to gain information abouté :

E, : n =12 observatims and observeY, = 3% X.
E, : Continue trials until we get3failures (0's)and
observeY, = number of successes

Supposetheresultsare y, =y, =9

13



The likelihood functions:
1M(6)=(5)6°1-6)°  binomial
117(6) =50’ (1-6)°  negativebinomial
Proportional likelihoods:  157(8) = (1/4)17(6)

LP: Inference about g should be identical in the two cases

Frequentistic procedures give different results:

F.ex testH,:0=1/2 againstH,: 6 >1/2
(E;,9):P-value=0.0730 (E,,9):P-value=0.0327

because different sample spaces: (0,1,..,12) and (0,1,...)

14



Likelihood function in design-based inference

» Unknown parameter: Y = (Y, Y,....Yy)
* Data: x={(i, Yy;):1 €5}
« Likelihood of parameter Yy =(Y,, ¥,---,Yy)

« Compatible parameters with the observed sample:
Qx :{y: yi — yobs,i fOri < S}
« Sampling design: p(s)

p(s)if yeQ,

 Likelihood function: I (y) ={ .
0 otherwise

* All compatible y equally likely !

15



 Likehood principle, LP : The likelihood function contains
all information about the unknown parameters

« According to LP:

— The design-model is such that the data contains no
Information about the unobserved part of v, ¥, nqps

— One has to assume in advance that there i1s a relation
between the data and y s :

 As a consequence of LP: Necessary to assume a
model

— The sampling design is irrelevant for statistical
Inference, because two sampling designs leading to the
same s will have proportional likelihoods

16



Let p, and p, be two sampling designs. Assume we get the same
sample s in either case. Then the data x are the same and W, is

the same for both experiments.

The likelihood function for sampling design p; , 1 = 0,1:

L (y)= pi(s)if yeQ,
Y10 otherwise

=1, (Y) o x(¥) = Pu(8)/ P (s) Ty e,
and thenforall y:
p.(S)

IOx
Po(S) W)

I1,x (y) -

17



« Same inference under the two different designs. This is in direct
opposition to usual design-based inference, where the only
stochastic evaluation is with respect to the sampling design, for
example the Horvitz-Thompson estimator.

« Concepts like design unbiasedness and design variance are
irrelevant for inference under the LP.

» This does not mean the sampling design is not important.
— After all the likelihood depends on the sample datal!
— Are there especially good or bad samples?

— Sampling needs to be non-informative for inference to be
valid under the (correct) population model [an example;
more later in connection with treatment of missing data]

18



Model-based inference

Assumes a model for the y vector

Conditioning on the actual sample

Use model as the basis of statistical inference
Problem: dependence on model

— Introduces a subjective element

— Impractical to model all variables in a survey

Design approach 1s “objective” in a perfect world
without nonsampling errors

19



[11. Model-based and model-assisted
approaches in survey sampling

Model-based approach. Also called the prediction
approach

— Assumes a model for the y vector
— Use modeling to construct estimator

— EX: ratio estimator

Model-based inference given non-informative sampling
— Inference is based on the assumed model
— Treating the sample s as fixed, conditioning on the actual sample

Best linear unbiased predictors
Uncertainty assessment: mean squared error of prediction

20



Model-based approach

Yir ¥o,---, Yy @re realized values of
random variables Y,,Y,,..Y

Two stochastic elements:

1) sample s ~ p(-) 2) (Y, Y,,..Yy)~ £,
Treat the sample s as fixed

We can decompose the total t as follows:

L= Zilil Yi = Zies Yit Ziezs Yi

21



Since Zies y. IS known, the problem is to estimate

z=) Y, therealized valueof Z=5 Y,

 The unobserved z is a realized value of the random
variable Z, so the problem is actually to predict the
value z of Z.

Can be done by predicting each unobserved y;: V.,1 ¢S

Estimator: €., => . i+ . $i=>. Vi+1Z
2 1s a predictor for z

» The prediction approach: | Determine y; by modeling

22



Remarks:

1. Any estimator can be expressed on the “prediction form:

f = Zies yi + 2f
letting 2, =f-> ",

2. Can then use this form to see if the estimator
makes any sense

23



Ex 1, f - Nys - ZIES y| + (N n) yS Zies yi + Zigs ys
Hence, 2=> y, and §, =y, forall ies

1£S

Ex2 .= yilm, and m =nx/t, t =" x

ies XT =X i=1

Reasonable sampling design when y and x are positively correlated

~ t
tHT ZIES n))(/l ZIGS it ZIES Yi ( ]
1 L, —
- Zies yi +HZies 3:' (( ; nf )jz X - Zles y' + ZHT

tx —NX igs

Vv
~

= Zigs /éHT i — Ziés 9i

.+ Is a rather unusual regression coefficient

o

24



Three common models

. A model for business surveys, the ratio model:

« assume the existence of a positive auxiliary variable x
for all units in the population.

Y, =px +& WithE(g)=0,Var(g) =0’ and Cov(g;, &) =0
< E(Y,) = g% Var(Y;) =0’ and Cov(Y;,Y;)=0

25



I1. A model for social surveys, simple linear regression:
Y. =B+ B.% +¢& , E(g)=0, Var(g)=0" and Cov(g;,&;,) =0

« EX: X; is a measure of the “size” of unit I, and y; tends to
Increase with increasing x; — allow for negative x-values

I1l. Common mean model:

E(Y,)=2, Var(Y,)=c’ and theY;'s areuncorrelated

26



Model-based estimators (predictors)
1. Predictor: T=) Y, +Z

ies |

2. Model parameters: 6

3. T is model - unbiased if E,(T —T|s)=0 VO, T = z

4. Model variance of model-unbiased predictor is the
variance of the prediction error, or prediction variance
or mean squared error of prediction

Var, (T =T |s)=E,((T ~T)*|s)
5. From now on, skip s in the notation: all

expectations and variances are given the selected
sample s, for example

E(T-T)=E( -T|s)
Var(T —T) =Var(T —T|s) .’

_1I



Prediction variance as a variance measure for the
actual observed sample

N +1 possible samples: {1}, {2},...,{N}, {1,2,...N}

Use T = NY, as the estimator for the population total T

Assume we select the “sample™ {1,2,...,N}.
ThenT =NY =T

Prediction variance: Var(T —T)=Var(0) =0

28



Linear predictor: T = Zies 3, (S)Y,

6. Definition:
T, is the best linear unbiased (BLU) predictor for T if
1) T, is model - unbiased

2) 'fo has uniformly minimum prediction variance among all
model - unbiased linear predictors :

For any model - unbiased linear predictor T

Var, (T, —T) <Var,(T -T) forall 6

29



Ratio Model

Y. = px. + & , E(s;) =0andVar(s;) = o°v(x,)
Y,,..., Yy are uncorrelated, Cov(s;,&;) =0
Usually, v(x)=x%, 0<g<2

Suggested Predictor:

pred ZIES I+ZI§£S opt X

where ,Bopt IS the best linear unbiased estimator (BLUE) of S

LX)
SIS

30



B = Zies C; ()Y,
E(A)=B, &%=V ()X =1

ies |

Var(p)=c?>" civ(x)

Minimize » . c’v(x) subject 0> cx =1
using Lagrange method

Q=Y clv(x)+A(Q._cx—1)
0Q/oc; =2¢cv(x;) + A% =0

<:>ci:(—/1/2)$

31



Determine (-A/2) such that > ¢,x; =1:
—212) . x1v(x)=1

= (-A12)=1/>. X
X [v(X;)

I,opt Zjes J/V(X )

Zies | /V(X)
and Sy =2 ConY YL XEI(x)

This is the least squares estimate based on Y. /\/V(X.)

/v(X)

and ¢

32



fpred IS the best linear unbiased (BLU) predictor for T

LetT be a model - unbiased and linear predictor

LetZ=T-> Y, andp=2/) x.
:>T ZIES |+ﬂZI§ES |

T linear predictor < fis linear in (Y,,i €s)

and T model - unbiased < E(f) = A

33



since E(T -T) = E(ﬁz,gs i Zlgs'
=E[ﬂz.¢s |] Zmﬂx —[E(IB) ﬂ]zles |

such thatE(T -T)=0<= E(8) =

The prediction variance of model-unbiased predictor:

Var(T -T) = Var(,BZIeS, Zlgs,
_Var(,BZ ) +var(y) )
= (Z,gs x,)’Var(f) + o’ Z,@V(Xi)

To minimize the prediction variance Is equivalent to
minimizing Var(5)

Giving us T, as the BLU predictor

34



The prediction variance of the BLU predictor (BLUP):

Var(T,., —T) =0 x)?Var(B,)+o) v(x)

2 o 2
:(Ziesxi) Z x2 [V (X) to Ziesv(xi)

jes

(Zlgs |
(Zies |/V(X) Zia—‘sv(xi)]

A variance estimate is obtained by using the model-
unbiased estimator for s?

6= LV -p )

n—1<=v(x.)

35



SOOIV

ies |

v(fpred _T) = &2[ (Zigzs - Zies V(Xi))

The central limit theorem applies such that for
large n, N-n we have that

(Toes —T)/ \/\7 (T,es —T) is approximately N(0,1)

Approximate 95% prediction interval for T:

€eg TLIBV (T —T)

36



Three special cases: 1) v(x) = X, the ratio model, 2) v(x)= x?
and 3) x; =1 for all 1, the common mean model

1. v(x) =X

/é :Zies ' /V(X) ZIES'
" Zies '/V(X) Z|es |

fpred - ZIESYI + igs RX

=R, the usual sample ratio

_ RZ.es . RZlgs — the usual ratio estimator
Var (T ~T) =02(<Z,gs K IE% )+, %)
N21—f .>—<_r>—<02’
n X

N

f=n/N,X,=>. %x/(N-n) andx=> " x/N

37



2. V(X) =x?

ﬁ _Zies ' '/V(X) ZIGS '
o D xIv(x) N

pred Z|es '+Z|¢s Aothi
- ZIES ' +( Z|es XI )Zlezs '

- ( igs i
Var(Tpred _T) o [ZI§ /V(X) Zigsv(xi)]

AB2

, thesample mean of the ratios

38



Resemblesthe H- T estimator when z, =nx /t, :
Let R =Y;/x and R =) R//n

A tY. __
THT - Zies r)](x_l =1, RS

pred ZIES it ﬁs Zlgs X; _t RS + Zies (Y' B ﬁsxi)

When the sampling fraction f is small or when the x;
values vary little, these two estimators are
approximately the same. In the latter case:

_Zles i Y; and Zies X' NZIES '

39



3. ;=1  Model :
Y. =fB+¢ ,E(g)=0 and Var(g) =o°
Yi,...,Yy are uncorrelated , Cov(s;, &) =0

5 e XV IVOG) 1

Popt = =) Y. =Y, thesample mean

> K s
pred ZIES ' Zles S

Var(N-Y.-T) = O'[ (Z'ﬁ‘ Ziesv(xi)]

2% V()
202(('\' "L (N —n)j: N2 (1 f)%2

n

This is also the usual, design-based variance
formula under SRS 40



We see that the variance estimate is given by

A2

NZ(@1— f) 2
n
A2 1 VY
& —nTZiES(yi—ys)
the sample variance

Exactly the same as in the design-approach, but the
Interpretation is different!!

41



Simple Linear regression model

Y. =B+ px +s, E(g)=0, Var(s) =0c"
Y,...,Yy areuncorrelated

BLUP:
pred Z|es [ T Zies (/él +182Xi)
where

S, and 3, are the LS estimators,

7 = 2 (6 =X Y 2 (6 XY,
EDYECES TS (% -x)

B, =Y, - B,X,

42



pred Z|es '+Z|¢s (ﬂAl_FﬁAZX')
=nY, +(N =n)Y, +,82(Z x. — (N —n)X,)
= NY, + 53, (t, — NX,)

igs

:fpred — N[Y_s +ﬂA2()—(_)—(s)]
Clearly, T ,.q is model - unbiased :

E(T) =" (B, + Box) = N(B, + 5,X)

and

E(T,) = N{%Z@ (B, + Box) + Bo(R =)} = N(B, + £,)

43



We shall now show that this is BLUP.

Assume first that X = X_. Let T be a linear,

model - unbiased predictor, and let b= (T /N ~Y ) /(X—X)).

%T\ _Y_s :b(_—)_(s)jf = N[Y_S +b()—(_)—(s)]

Hence, any predictor can be expressed on this form and
the predictor is linear if and only if b is linear in the Y;’s

Also, T is model - unbiased < E(b) = 3, :
E(T) = E(T) =N(B,+ %)

<~ N[ﬂl_l_ﬂZ)—(s +()—(_)—(S)E(b)] — N(ﬂl +ﬁ2)—()
< ()—(_)—(S)E(b) ::Bz)_(_ﬂz)_(s 2182()_(_)_(3)-
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Prediction variance:

Var(T =T) =Var((N —n)Y, + Nb(X = %.))+ (N —n)o?

b= Zies C.(S)Y;, unbiased estimator of g, :

ED) =4, < Zles Ci(L+ BoX) =15,
<:>'Blz|esc' +ﬁ22|esc'x' -

Eb)=8,< @)D ¢ =0and (Z)Z CX =

ics I ies 11

So we need to minimize the prediction variance with
respect to the ¢;’s under (1) and (2)
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l.e. minimize

Var((N —n)Y, + Nb(x—%,))=Var>_ Y (

ZJZZiES(N —n, N()_(—)_(S)Ci)

n

N —n

+ N()_(—)_(S)Ci)

=’ N2 (X-%,)* Y c+2N INE=-%)Y 6+ (N;”)Z]

ies |
Since > ¢ =
it is enough to minimize » ¢’ under conditions (1) and (2)
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ZIES | 2A1(Z|es ') 2/12(Z|es |

0Q/doc, =2¢c, —24, —-24,x =0< ¢, :21+12xi

O ¢ =0=4+4% =0
2 Y. cx=1=AnX.+4,) x =1

ies 11 ies |

1) =>4, =-4X
from (2): 4,> X' —24,nx{ =1

ies |

A =11 (% —%)°



X; — X,
Zjes (Xj _)—(5)2
X —)_( Zies (Xi _)—(S)Yi ;
and b= ZIGS 'Z (X —X) Zjes(xj_)—(s)z

jes

C =4+ 4% =4(X—X)=

The prediction variance Is given by

-T) _NTG (1—_)+ ZHO_((X iz( )

and variance estimate Is obtalned by estimating o> with

- %Zies (Yi _Y—s _,éz (Xi _)_(s))2

Var(T

pred

:,82
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Sofar, X = X,. Whatif X=X_7?

Then T_., = NY, and is the BLU predictor.

pred

For any linear predictor, T =

IeSII

Var(T -T) =Vvar[)__(a-1)Y,]+(N-n)o*

=’[Y, (8 -1 + (N —n)]
LetT, =a _Y,a= > aln=a

Var(T,-T)=0’[>. (@a-1)*+(N-n)]

=o’[n(@a-1)°+(N-n)]

49



Y. (a-1D*=n(@-1)°

—Var(T -T)>Var(T, -T)
and T model - unbiased = > a=Nanda=N/n:

T =NY. =T

a S pred *



Anticipated variance

A variance measure that tells us about the expected
uncertainty over repeated surveys

1. Conditiona | on the sample s, with model - unbiased T :

Var (T —T) measures the uncertainty for this particular sample s

2. The expecteduncertainty for repeatedsurveys:
E {Var(T —-T)}, over the sampling distribution p(-)
3. This iIs called the anticipated variance.

4. It evaluates the uncertainty of the strategy consisting of
a sampling design and an associated estimator

o1



If T is not model - unbiased, we use
- 2
EAE(T-T)}
as a criterion for uncertainty, the anticipate d mean square error

Note : If T is design - unbiased then
E{ET-T)}=E{E,(T-T)*|Y)}

and

E,(T-T)*|Y=y)=E,(f-t)* =Var,({)

And the anticipated MSE becomes the expected design-
variance, also called the anticipated design variance

E{E( -T)*}=E{Var,(T)}
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Example: Simple linear regression and simple
random sample

If sample mean N .Y, is used : It is not model - unbiased,

but Is design - unbiased :

BNV, ~T)}= EVar, (N} = NP2 B3 (1))

Z_l(ﬂ. 1)’}

— E(Yi) :ﬂl_l_ﬂzxi’ H :ﬂl_l_ﬂZ)—(

21f

EqVar, (N -Y,)}= N> =—{o? + 525}

1 N _
S = N_1 D> (- X)2
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Let us now study the BLUP. (It can be shown that it is
approximately design-unbiased )

Var(t,,, ~T) —N7a -+ Z”(X(X s ¥

= E {\/ar(Tpred —T)}—NTZJ (1——)+E N(X %)’

; Zies (Xi B )—(5)2 _

zN—ZGZ i n) E {n(X- x)}

n pZIES(X _X)

E n(X, —X)* =nVar, (X,) =(1- f)S;
E, D (6 =X)" =(n-1)S;




2 —_
Ep{Var(fpred _T)}ZN?O'Z{(l— f)+%
2 2
N 1-f)o® ~ N
n-1

—(@1- f)o?
n

compared to

EQVar, (N V)= N2 o + 3S)

N

T, eliminates the term ;S

and is much more efficient than N -Y,

:
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Remarks

» From a design-based perspective, the sample mean
IS unbiased, the linear regression estimator is not

 Considering only the design-bias, we might
choose the sample mean based estimator

 The linear regression estimator could be selected
over the sample mean estimator because the
strategy of (SRS, BLUP) has smaller anticipated
variance, I.e. than (SRS, HT), over all possible
samples and populations (under the model)
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Robust variance estimation

The assumed model is really a prediction “tool”
Often, the variance assumption is somewhat
misspecified

— like constant variance

— variance proportional to size measure X;

Standard least squares variance estimates IS
sensitive to misspecification of variance
assumption

Concerned with robust variance estimators

S7



Variance estimation for the ratio estimator

Working model:
Y. = px +¢& ,E(g)=0 and Var(g,) = o°x,
Yi..., Yy @areuncorrelated, Cov(g;,s;) =0

Under this working model, the unbiased estimator of
the prediction variance of the ratio estimator is

2

o

VR(Fi.tX—T)zNzl_f A
N xS
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This variance estimator is non-robust to misspecification
of the variance model.

Suppose the true model has

E(Y;)= /X and Var(Y;) = GZV(Xi)

Ratio estimator iIs still model-unbiased but
prediction variance IS now

Var(R-t,-T)=(3__x)Var(R)+o?)

- (Zigs Xi)z G(ZZI:S |( ) + GZZigs V(Xi)

— GZ(U\I _2r1)2 Xr Ziesv(xi) + Ziesv(xi)j

v(X)

I£S

n-X

S
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252
T X vs+(N—n)vrj
NX

S

Var(ﬁ-tX—T)zaz[

J1— f
N

V,=> . v(x)/n and v, =>" v(x)/(N-n)

(- F)v.(x, /%)2+ V)

=o°N

Moreover, E(6°)=0o°:

iE(Yi—fa-xi)2

ies

1
E(6%)=—
(%) ="—7

= az[(v/x)S +ni_1{(v/x)S —V, /7(3}} L (V/X), = %Ziesv(xi)/xi
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Robust variance estimator for the ratio
estimator

Var(R-t, —T)=o?N? 12" f((1 WV, (X /X,)2+ f -, )

Nzlnf(v(x/x) + 1V, —V,(X. /%))

~ oV, - Nzu(x /X)),
the leading term in the prediction variance

and: o°V, = %Z oV(X) = %ZieSVar(Yi)

€S

62\75 - %Zies E(Y, _IBXi)Z = E{% Zies (Y, _,Bxi)z}
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Suggests we may use:
1 .
AD 2
OropVs = E Zies (Y| o RXi)

Leading to the robust variance estimator:

Vrob(Fi-tx—T):(>—<r/>—<s)2-N21_f- 112 (Y, - Rx,)’
n n— ies

Compared to the design variance estimator in SRS:

VSRS(IQ'tx):()_(/)_(s)Z'NZJ-_f. 112- (Yi_éxi)z
n n— ies
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General approach to robust variance
estimation

1. Find robust estimators of Var(Y;), that does not depend
on model assumptions about the variance

2. T=Y wyY,

Var(T-T)=>" (W, —1)*Var(Y,)+ >
3. Fories:V(Y,)=(Y, - i)’
L. estimate E(Y;)

Var(Y.)

¢S

4. Estimate only leading term in the prediction variance,
typically dominating, or estimate the second term from
the more general model
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e Reference to robust variance estimation:
 Valliant, Dorfman and Royall (2000):

Finite Population Sampling and Inference.
A Prediction Approach, ch. 5

However, even more importantly, what if the
(linear, model) predictor is misspecified?
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Model-assisted approach

* Design-based perspective to inference

» Assume the existence of relevant auxiliary variables,
known for all units in the population

» Use modeling to motivate efficiency improvement of the
basic HT-estimator.

» Design consistency remains an estimation criterion
» Basic idea:

A

Suppose Y. = £X. Is a regression - based"estimate'for each
y. In the population . Here, x. is known for the whole population

= 2:11 yi +Zilil(3’i - yl) and e = Z:ilew where € = (Yi - yl)
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€t = Qs
Final estimator, the generalised regression estimator:
Vo N ~ A

treg — Zizllgxi +eHT

Alternative expression:

ZIES +ﬂ(t _Zies %) : tX - Zilil Xi

tre yHT+ﬂ(t _txHT)

e
7T;
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Robustness against predictor misspecification

Assume Xx; 5 to be conditional expectation of Y;
It is misspecified if E(Y; — x;8) + 0
Lete; = y; —x; and ethe corresponding population total
Let B be an estimator of 8,and é; = y; —x; 8
We have é; — e;,as - E,(B) = B, in probability
Can write t = X + e and X the population total of x;
such that ., g =X B + éyr — t, in probability
evenif E(Y; —x;8) # 0
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Simple random sample

te = NV, + S(t, — NX,)
Model : TheY,'s are independen t and
Y. = px. +&, E(5)=0 andVar(g) = o°x,

— Best linear unbiased estimator : 3=V, /X,

Yot Ny =t X

S S

=ty = NV, + , the ratio estimator
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In general with this “ratio model”, in order to get

approximately design-unbiased estimators:

Can regard /3 - estimate as an estimate of Z._ y. / Z
Numerator is estimated by f, .. =>" vy, /7,

Denominato r is estimated by f, ., => X /7,

0 A Zies Y, /72-'

= use f_= It =
yHT X, HT Ziesxllﬂ'

= th;; = Z:il yi

where §. = 4 x.

_1I
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Variance and variance estimation

Reference: Sarndal, Swensson and Wretman : Model
Assisted Survey Sampling (1992, ch. 6), Springer

 Regression estimator Is approximately unbiased
e Variance estimation:

The sample residuals: e, =y, -y, ,ies
where §; = X, 3,
If |[s|=n, fixed in advance:

2
RIS WD RER [ei E j

J>i 72-“
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Approximate 95% CI, for large n, N-n:

fe, +1.96./V (g

« Remark: In SSW (1992,ch.6), an alternative variance
estimator is mentioned that may be preferable in many cases
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Common mean model

E(Y,)=p, Var(Y,)=c° and theY,'s areuncorrelated

The ratio model with x; =1.

This Is the modified H-T estimator
Typically much more efficient than the H-T estimator
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ei:yi_ys

V(Nys) Zleszj >

] >i

Alternatively,

V (Nys) (N/N) ZI€SZJES

J>i
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Remarks:

1. The model-assisted regression estimator has often the form

freg — Zilil yi

2. The prediction approach makes it clear: no need to
estimate the observed y;

3. Any estimator can be expressed on the “prediction
form: A
t= Zies yi t 2f
letting 2, =t->" v,

4. Can then use this form to see If the estimator
makes any sense
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