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IV. Missing data-nonresponse

• Occurs in almost all surveys, even “compulsory” ones

– Labor Force survey in Norway, quarterly, 20% 
nonresponse

• Perceived to have increased in recent years

• Besides sampling error, the most important source of 
error in sample survey

• Nonresponse is important to consider because of

– Bias (will almost always result in bias) 

– Increased uncertainty in the estimates

– Increased cost 
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• Nonresponse is the failure to obtain complete 
observations on the survey sample

• Unit nonresponse: unit (person or household) in the 
sample does not respond

– Can be very high proportion, can be as much as 70% in 
postal surveys

– 30% is not uncommon in telephone surveys

– 50% in the Norwegian Consumer Expenditure survey, up 
from about 30% twenty years ago 

• Item nonresponse: observations on some items are 
missing for unit in sample

• Standard treatment: Weighting for unit nonresponse, 
imputation for item nonresponse
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Sources of unit nonresponse

• Non-contact: failure to locate/identify sample unit or 

to contact sample unit

• Refusal: sample unit refuses to participate

• Inability to respond: sample unit unable to participate, 

e.g. due to ill health, language problems

• Other: e.g. accidental loss of data/questionnaire
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Sources of item nonresponse

• Respondent:

– answer not known

– refusal (sensitive or irrelevant question)

– accidental skip

• Interviewer:

- does not ask the question

- does not record response

• Processing

– (Illogical) response rejected at editing

• Amounts

– some variables only 1-2%

– Often highest for financial variables, e.g. total household 
income may have 20% missing data
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Missing data mechanisms

• Basic question about missing data mechanism (response 

mechanism): Does the probability that data are missing 

depend on observed and/or unobserved data values ?

• Different models for analysis with missing data rely on 

different assumptions about the missing data mechanism

• Let for a unit (person or household) in the population:

– Y : the study variable with value y

– x : the values of the auxiliary variables

– R = 1 if unit responds when selected in the sample and 

R= 0 if nonresponse

• Assume the units respond independently of each other
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3 types of missing data mechanism

• MCAR. Missing completely at random. Probability of 
nonresponse is independent of Y and x

– P(R = 0| y,x) = P(R = 0)

– The observed values of Y form a random subsample of the sampled 
values of Y

• MAR. Missing at random. Probability of nonresponse depends 
on x, but not on Y.

– P(R = 0| y,x) = P(R = 0|x) 

– The observed values of Y form random samples within subclasses 
defined by x

• MNAR. Missing not at random. Probability of nonresponse 
depends on Y and possibly x as well. 

In this case the response mechanism is nonignorable.
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General definition of missing data mechanisms

• Suppose we have p Y variables with values for the whole

population denoted by y

• Let x be the values of auxiliary variables known for the whole

population. 

• Let yobs be the observed values of y, yunob be the y-values in the

sample that are unobserved including missing values and Y 

values outside the sample. 

• Let R be the set of all response indicators for all p Y variables 

in the sample.

• MCAR: P(R = r| y, x) = P(R = r) 

• MAR: P(R = r| y, x) = P(R = r| x, yobs)

• MNAR: P(R = r| y, x) = P(R = r| yobs, yunob, x) 



8

• The response rate is the most widely reported quality 

indicator; does not fully capture the potential bias.

• Three examples to illustrate how nonresponse can 

lead to very misleading statistical analysis, even when 

the response rate is high. 

– In all cases: MNAR response mechanism

• In two of the examples: How to correct for 

nonresponse
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1. Classical example, 

response rates 81-85%

• Political polling before the American 

presidential election in 1948

– Democratic candidate: Truman

– Republican candidate: Dewey

– Instute: Roper

– Surveys : July, August, September, October

– Election: November



10

July August Sept Oct Election

Truman 37.8 37.0 35.2 40.4

Dewey 55.5 52.4 57.0 53.4

Others 6.7 10.5 7.7 6.2

Sample size 3011 3490 3490 3500

responses 2510 2951 2936 2841

Nonresponse

(Percentage)

501

(18.6)

539

(15.4)

554

(15.9)

659

(18.8)

49

45

6
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• Bias: Larger nonresponse rate among the 

economically poorer groups

• Compensating for nonresponse – MNAR model: 

– the probability of response dependent on which candidate 

the person will vote for, within in each socio-economic 

group

• Gives Truman 51%

• Method: Imputation, estimate 93-99% will vote for 

Truman in the nonresponse group

• MAR model on socio-economic groups: 

– estimate = 41%
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2. Election survey in Norway 2009

• Sample: 2944 persons

• Number of responses: 1782

• Estimate the voting proportion

• Of the 1782, 1506 said they voted in Parliament election: 
84.5%

• Margin of error: 1.7%

• True voting proportion = 76.4%

• Estimate 84.5% is biased because higher nonresponse rate 
among nonvoters. The response mechanism is MNAR

• The response sample is not like the nonresponse group 
(typically the case) 

01700085702
1782

15508450
22 :error ofMargin ..

..
SE 



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3. Estimation of the number of households 

in Norway in 1992

• Data from the Consumer Expenditure survey in 1992

• Sample: 1698 persons age 15+, self-weighting

• Estimation of the number of one-person households 

and the total number of households

• Norway has a register of families, know the family 

size for each person 
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Fam

size Household size

Non-

response

1 2 3 4 5+ Total Nr. %

1 83 48 20 9 2 162 153 48.6

2 9 177 37 4 3 230 160 41.0

3 10 25 131 40 6 212 91 30.0

4 2 13 37 231 17 300 123 29.1

5+ 1 4 4 17 181 207 60 22.5

Total 105 267 229 301 209 1111 587 34.6
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Size of population as of 1.1.93: N = 4 131 874

Standard estimate for the number of one-person 

households:

501 390874,131,4
1111

105


A post survey of the census from 1990: 626 000

Underestimates “enormously” the number of one-

person households

Because: Nonresponse among one-person families is 

much higher then for larger family size
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1. Response model-MNAR: Probability of response depends 

on household size and place of residence (rural or urban)

• MAR model on family size removes only about 50% 

of the bias- see later

3. Use this model to derive  

P(Household size =1|family size =x) for x=1,2,3,4,5+, 

and estimate these probabilities

Correcting for nonresponse

4. Estimated number of one-person households = 

function of these estimated probabilities

2. Population model : Probability of household size 

depends only on family size
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• For example, the estimated probability of household size 

1 given family size 1 turns out to be 0.60 while the 

observed  83/162 =0.512 is for respondents only.

• The table on p.14 gives you estimated probability of 

different household sizes given family size for those 

who respond

Standard Model-based

Household size = 1 391,000 595,000

Total 1,599,000 1,765,000

• Standard estimates and model-based estimates
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The model-based method
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Family size

x

Number of 

families

Number of 

persons Nx

1 793,869 793,839

2 408,440 816,880

3 261,527 784,581

4 266,504 1,066,016

5+ 127,653 670,528

Total 1,857,993 4,131,874
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)|1(ˆ xYP  (In parenthesis the observed rate from 

table on p. 14,                               ))1,|1(ˆ  RxYP

In percentages:

Fam. size x 1 2 3 4 5+

60.01

(51.23)

5.27

(3.91)

7.53

(4.72)

1.06

(0.67)

0.84

(0.48)
)|1(ˆ xYP 

Nonignorable nonresponse! Probability of response depends 

on variable of interest, household size

462,595

0084.0528,670...0527.0880,8166001.0869,793

)|1(ˆˆ 5

11








x x xYPNH



22

Effect of nonresponse
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Bias of standard estimator
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Mean square error:

22
2
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We notice that even if there is no bias, the uncertainty 

increases because of smaller sample size

Expected sample size decreases from n to qRn

For example, if we want a sample of 1000 units and we know 

qR: n = 1000/qR

If expected response rate is 60% : need n= 1000/0.60= 1667
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))(1()(  Bias MRRr YYqYyE 

Possible consequenses of nonresponse:

1. Bias is independent of n, can not be reduced by increasing n

2. Bias increases with increasing nonresponse rate (1-qR)

increases || when increases Bias  3. MR YY 

mechanism enonrespons : If   .4 ignorableYY MR 
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,  assume  tocUnrealisti MR YY 

But within smaller subpopulations it may not be 

unreasonable, 

especially if the variable used to partition the 

population is highly correlated with y

Called: poststratification

Widely used tool to correct for nonresponse when 

MAR is a reasonable model for the response 

mechanism
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Estimation methods for reducing the effect 

of nonresponse

• Handling nonresponse:

– Reduce the size of nonresponse, especially by callbacks

– Reduce the effect of nonresponse, by estimating the bias 

and correcting the original estimator designed for a full 

sample

• Estimation methods:

– Weighting, especially for unit nonresponse

– Imputation, especially for item nonresponse
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Weighting

Basic idea:

• Some parts of the population are underrepresented in the 

response sample

• Weigh these parts up to compensate for underrepresentation

• Population-based

– Reduces sampling error

– Adjusts for unit nonresponse
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Example – age standardized mortality

We have a random sample of 10,000 subjects from a population 

of 2,000,000, age 40-69 with 40% nonresponse. It turns out that 

there are different response rates for the age groups 40-49, 50-

59, 60-69. Results:

Age 

group

Population Sample Response

sample

Non-

response

No of 

deaths

Mortality 

rate

40-49 1 200 000 6000 3000 50% 25 0.008333

50-59 600 000 3000 2200 26,7% 90 0.040909

60-69 200 000 1000 800 20% 200 0.2500

Total 2 000 000 10000 6000 40% 315 0.0525
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• Crude mortality rate based on the sample is 315/6000 = 0.0525 
= 52.5 per 1000 subjects

• Direct unweighted estimate of the number of deaths: 
2,000,000x0.0525 = 105000

• Weighted estimate of the number of deaths in the population:

1200000 x 0.008333 + 600000 x 0.040909+200000 x 0.2500 
= 10000 + 24545+50000 = 84545

• Mortality rate, age adjusted: 84545/2000000 = 0.0423 = 42.3 
per 1000 subjects

• Weighted estimate corrects for

– Sample is not representative for age distribution

– Different Nonresponse rates

• Example of poststratification
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Poststratification

1. Stratify using variables that partition the 

population in homogeneous groups

2. Stratify according to varying response rates 

H poststrata. For poststratum h, URh is the responding 

substratum and UMh is the nonresponding substratum 

hY

hY

hNN/NW

hq

Mh

Rh

hhh

h

 stratum enonresponsin mean 

 stratum responsein mean  

 mpoststratu of size  theis   where,

 postratumin  rate response








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Simple random sample and Yyr  estimating 
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1. component: Bias because of different response rates in 

the poststrata, can be estimated

2. component can not be estimated if response and 

nonresponse means are different

Poststratification estimates the first component

Choose poststrata such that most of the bias is in 

the first component

MhRhh YYq   and possible, asmuch  as vary should 
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Estimating no. one-person households

Poststrata:

Fam. size x =h

1 2 3 4 5+

Observed rate 

with household 

size 1, 

0.5123

(.6001)

0.0391

(0.0527)

0.0472

(0.0753)

0.0067

(0.0106)

0.0048

(0.0084)

hz

1 is size household if  1iz

486,032 ˆ
5

1




h hhpost zNt

Compared to 

1) unweighted estimate = 390,501

2) Modelbased estimate = 595,462  (nonignorable nonresponse)

Poststratification reduces the bias about 50%



SE and approximate 95% confidence interval based on 

poststratified estimator
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Simulation of nonresponse and poststratification

• Example: California schools API (Academic performance

index)

• Assume a SRS of n=500 and the following MAR model: For 

schooltypes E, M, H: response rates of 30, 80 and 90 percent

• Simulate nonresponse and derive the poststratified estimator of

the mean of API in 2000, with schooltypes as poststratifier. 

• Compare the poststratified estimator with the sample mean

• SE of the poststratified estimator

• Simulation to estimate coverage of 95% confidence interval

37



R code: Simulation of MAR nonresponse and poststratification

38

> x=apipop$stype

>  y=apipop$api00

>  make123  = function(x)

+ {

+    x=as.factor(x)

+    levels_x = levels(x)

+    x=as.numeric(x)

+    attr(x,"levels") = levels_x

+    x

+ }

> s=sample(1:6194,500)

> pstrata=make123(x[s])

# poststratum 1 = E, poststratum 2 = H, poststratum 3 = M

> s1=s[pstrata==1]

> s2=s[pstrata==2]

> s3=s[pstrata==3]



Simulating nonresponse

39

> length(s1)

[1] 358

> length(s2)

[1] 60

> length(s3)

[1] 82

> n1r=0.3*length(s1)

> n2r=0.9*length(s2)

> n3r=0.8*length(s3)

> s1r=sample(s1,n1r)

> s2r=sample(s2,n2r)

> s3r=sample(s3,n3r)

> length(s1r)

[1] 107

> length(s2r)

[1] 54

> length(s3r)

[1] 65



Poststratified estimator

40

> N1=4421

> N2=755

> N3=1018

Ypost=(y1mean*N1+y2mean*N2+y3mean*N3)/6194

> Ypost

[1] 648.9428

> y1mean=mean(y[s1r])

> y2mean=mean(y[s2r])

> y3mean=mean(y[s3r]) 

> y1mean

[1] 654.5327

> y2mean

[1] 638.3704

> y3mean

[1] 632.5077



SE and 95% CI of poststratified estimator

41

> varest1=N1^2*var(y1r)*(N1-n1)/(N1*n1)

> varest2=N2^2*var(y2r)*(N2-n2)/(N2*n2)

> varest3=N3^2*var(y3r)*(N3n3)/(N3*n3)

> se=sqrt(varest1+varest2+varest3)

> semean=se/6194

> semean

[1] 9.191489

> CI=Ypost+qnorm(c(0.025,0.975))*semean

> CI

[1] 630.9278 666.9578 = (630.9, 667.0), true value =664.7

> n1=length(s1r)

> n2=length(s2r)

> n3=length(s3r)

> n=n1+n2+n3

> y1r=y[s1r]

> y2r=y[s2r]

> y3r=y[s3r] 



Sample mean and CI based on sample mean

42

var(z)

[1] 15857.16

> sesrs=sqrt(var(z)*(6194-n)/(6194*n))

> sesrs

[1] 8.222185

> CIsrs=mean(z)+qnorm(c(0.025,0.975))*sesrs

> CIsrs

[1] 628.2211 660.4515

# misses the true value, because the sample mean is biased

> z=c(y1r,y2r,y3r)

> mean(z)

[1] 644.3363



R-function for simulating MAR nonresponse and for 

estimating true confidence level of approximate 95% CI, 

based on poststratification and sample mean

• R-function: simpostmean=function(b,n,N,N1,N2,N3,r1,r2,r3)

– b = number of simulations

– n = sample size of SRS

– N= population size

– N1= size of postratum 1

– N2= size of postratum 2

– N3 = size of postratum 3

– r1= response rate for poststratum 1 (E)

– r2= response rate for poststratum 2 (H)

– r3 = response rate for poststratum 3 (M)

43
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simpostmean=function(b,n,N,N1,N2,N3,r1,r2,r3)

{

Ypost=numeric(b)

se=numeric(b)

zbar=numeric(b)

sesrs=numeric(b)

for(k in 1:b){

s=sample(1:N,n)

pstrata=make123(x[s])

s1=s[pstrata==1]

s2=s[pstrata==2]

s3=s[pstrata==3]

n1r=r1*length(s1)

n2r=r2*length(s2)

n3r=r3*length(s3)

s1r=sample(s1,n1r)

s2r=sample(s2,n2r)

s3r=sample(s3,n3r)

y1[k]=mean(y[s1r])

y2[k]=mean(y[s2r])

y3[k]=mean(y[s3r])

Ypost[k]=(y1[k]*N1+y2[k]*N2+y3[k]*N3)/N
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n1=length(s1r)

n2=length(s2r)

n3=length(s3r)

m=n1+n2+n3

y1r=y[s1r]

y2r=y[s2r]

y3r=y[s3r]

varest1=N1^2*var(y1r)*(N1-n1)/(N1*n1)

varest2=N2^2*var(y2r)*(N2-n2)/(N2*n2)

varest3=N3^2*var(y3r)*(N3-n3)/(N3*n3)

se[k]=(sqrt(varest1+varest2+varest3))/N

z=c(y1r,y2r,y3r)

zbar[k]=mean(z)

sesrs[k]=sqrt(var(z)*(N-m)/(N*m))

}

covmean=sum(mean(y)<zbar+1.96*sesrs)-sum(mean(y)<zbar-1.96*sesrs)

covmean=covmean/b

covpost=sum(mean(y)<Ypost+1.96*se)-sum(mean(y)<Ypost-1.96*se)

covpost=covpost/b

list(covpost=covpost,covmean=covmean)

}



R-code for simulations to estimate true confidence level of 

95% CI, based on poststratification

46

x=apipop$stype

y=apipop$api00

make123  = function(x)

{

x=as.factor(x)

levels_x = levels(x)

x=as.numeric(x)

attr(x,"levels") = levels_x

x

}

simpostmean=function(b,n,N,N1,N2,N3,r1,r2,r3)

# write out r –code for the function:



Some cases:

47

n=500, r1=0,3, r2=0.9, r3=0.8:

simpostmean(10000,500,6194,4421,755,1018,0.3,0.9,0.8)

$covpost

[1] 0.9514

$covmean

[1] 0.8727

simpostmean(10000,500,6194,4421,755,1018,0.5,0.5,0.5)

$covpost

[1] 0.9436

$covmean

[1] 0.9448

n=500, r1=0,5, r2=0.5, r3=0.5:
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Estimated (design-based) confidence level of the approximate  95% CI for 

poststratification and sample mean, based on 10000 simulations of SRS 

n r1 r2 r3 Conf.level

post

Conf.  

level.mean

200 0.3 0.8 0.9 0.9477 0.9191

200 0.5 0.5 0.5 0.9483 0.9486

500 0.3 0.8 0.9 0.9514 0.8727

500 0.7 0.2 0.5 0.9450 0.9363

500 0.5 0.5 0.5 0.9436 0.9448

1000 0.3 0.8 0.9 0.9498 0.7892

2000 0.3 0.8 0.9 0.9514 0.6025

2000 0.6 0.6 0.6 0.9496 0.9517

Poststratified CI has correct coverage in general. The sample mean 

based CI only works when response rates are the same in all 

poststrata: response sample is a SRS.



49

Calibration methods

rii

si iiHT

sd

yt

 sample Response  ./1  :ghtsDesign wei

)/1(ˆ  estimator  T-H Start with :approach based-Design









 


N

i ix

N

i ix

N

i ix xtxtxt
1 kk1 221 11 ,...,,

kk2211 ,...,, xsi iixsi iixsi ii txwtxwtxw
rrr

  

Consider weighting methods which satisfy calibration constraints

Auxiliary information with known totals: 

Final survey weights wi satisfy the calibration constraints:

Calibrated estimator of y-total:  


rsi iical ywt̂

Choose the calibrated weights such that the “distance” 

between di and wi is minimized
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Poststratification is an example of calibration

H poststrata with sizes Nh, h= 1,…,H

Define auxiliary variable xh

h

N

i hih

hi

Nxt

hi
x





 



 1

otherwise  0

 mpoststratu  unit  if 1

Final calibrated estimator:   


H

h si iical
rh

ywt
1

ˆ

H calibration constraints:

HhNxw
rsi hhii ,...,1  ,  

Response sample in poststratum h: srh of size nrh
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)(     ,...,1  ,  
HhNw

rhsi hi

Poststratified estimator:

 

 

 

 





H

h si i

rh

h

H

h si i

rh

h

H

h hhpost

rh

rh

y
n

N

y
n

NyNt

1

11

1
ˆ 

rhrhhi sinNw  for    /  are  weightsThe

Satisfy the calibration constraints (*)

Other weights may also.
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Why calibrate?

• Ensures that weighted estimates agree with given 

“benchmarks”, e.g. Nh

• Typically reduces nonreponse bias if nonresponse is 

related to the calibration variables

• Improve efficiency for variables related to the 

calibration variables
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Imputation

• Mostly used for item nonresponse, but can also be used for 
unit nonresponse

• Item nonresponse creates problem even when the nonresponse 
happens at random, leaves us with few complete cases

• Imputation: filling in for each missing data value by predicting 
the missing values

• For a given variable y, for estimating population total or mean, 
use estimator constructed for the full sample,  based on the 
observed and imputed data:

• Imputation based estimator

• Need proper variance estimates

• Also want to produce complete data sets that allow for 
standard statistical analysis

– right variation in the data vs. variance estimation
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Regression-based imputation methods

iri

i

si isi ir

r

xβ̂y

yi

xYβ̂

s

xσx|YVar,βxx|YE

x

,xY

rr













 
 withpredict  group, enonrespons  allfor  and

,/ 

 with  sample response  thefrom   Estimate

)(  )(  f.ex.

group enonrespons for the also available is  where

 given  for  model regression a  Assume 

2

Regression imputation

Problem: Not enough variation to account for the 

variability in the nonresponse group
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Residual regression imputation

iirii

iii

x/xˆye

x/xYVar

)( :residuals observed edStandardiz

}){(  Since 2









}:{  sample response in the  residuals   observed

edstandardiz ofset   thefrom randomat      value thedraw ,For  

rj

ir

sje

essi



 

Imputed y-value is given by:

iiiri xexˆy   
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If the model assumption also includes a distributional 

assumption, say normality:

)ˆ,ˆ( estimated  thefrom  valuesimputed Draw 2
irir xxN 

Underlying assumption on the response mechanism:

Missing at random (MAR): Probability of response 

for unit i may depend on xi , while independent of yi
















s i

ss is i

IR

s i

s i

R

x

YY
XT

x

Y
XT

rr

,
ˆ

becomesestimator  based-imputation then the

,ˆ

estimator, ratio  theisestimator  sample full basic If



57

Standard imputation methods, much used in National 

Statistical Institutes

ri yy 
(i) Mean imputation:

Within poststrata: poststratification

treplacemenwith 

  values,  observed   thefrom  randomat drawn   is 

 :)poststrata within (typically imputation   (ii)

yy

Hot-deck

i


(iii) Nearest neighbour imputation: Find a donor in the

response sample based on closeness of auxiliary variables



R-code for hot-deck imputation
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California schools, API for 2000

> y=apipop$api00

#SRS of size 200

> s=sample(6194,200)

> #70% response rate

> #response sample

> nr=0.7*200

> sr=sample(s,nr)

> #hot-deck imputation for s-sr

> simp=sample(sr,200-nr,replace=TRUE)
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> simp

[1] 5137 3870 1595 3990 73 3766  477 3873 2253 2758

3906 3339 5774 3002 3339

[16] 1930 1052  471 2253 5932  759 4343  841  890 4508 

1615 3589  749 2758 3747

[31] 3306 1082 3156 1329  544 4465  471 2758 4175 2458 

4569 2109 5183 5183 1919

[46] 1900 2063 5189 5137 2792 5118 974 5442 1796 3990

4343  477 3012  890 5118

> #imputed values

> yimp=y[simp]

> yobs=y[sr]

> #Total imputed sample

> ystar=c(yobs,yimp)

> mean(ystar)

[1] 653.57
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MNAR: Nonignorable nonresponse 

How to proceed

),|( modeled, is  ),|1( iiiiii yxrfyxRP  

)|( ii xyf

),|()|()|,(, iiiiiiii yxrfxyfxryf  

The response probabilities are assumed to depend on 

variable of interest

Population model for Yi given xi:

Joint distribution of Yi and Ri:

Conditional distribution of Yi given nonresponse, Ri=0

)0,|(, iii Rxyf 
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 



iiiiiiii

iiiiiiiiii

dyxyRPxyfxRP

xRPxyRPxyfRxyf

),|0()|()|0(

 where

)|0(/),|0()|()0,|(

,

,,





 ˆˆ, :estimates likelihood Maximum

Likelihood function, independence between (Yi, Ri):

)x|R(P)y,x|R(P)x|y(f),(l ii

ssi

,i.obsiii

si

i,obs

rr

01  




Note: Likelihood function could be quite flat in y, 

numerical difficulties for finding maximum.

)0( : valuesImputed 
iiiˆ,ˆi R,x|YEy



or drawing a value from the estimated conditional 

distribution
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Remarks on MNAR models

• Model assumptions cannot be supported by the data alone.

– Example: If observed y-distribution is skewed it could be 

we have MCAR and a skewed population distribution of Y.

• Assumptions in an MNAR model cannot be verified without a 

specific population model for the Yi’s.

• Must use subject matter knowledge for the missing data 

mechanism
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Illustration of an MNAR model

21   where
 1  if  2

0 if  
1

1

/,
y

y
)y|R(P

)Y(P

i

i

ii

i



















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)1)(1()21(
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)00()0()10()1(

)10()1(

)01(


























iiiiii
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ii

Y|RPYPY|RPYP

Y|RPYP

R|YP

Binomial case

21 if   0)01( that note We /R|YP ii  
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Maximum likelihood estimates
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Likelihood equations:
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
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Estimate the total number of successes  in the population,  


N

i iYT
1

Basic estimator without nonresponse: sYNT ˆ

Imputation-based estimate:
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Variance estimation in the presence of imputed 

values

Consider simplest possible case

• Simple random sample 

• MCAR: Random nonresponse

• No auxiliary information

Two possible imputation methods

treplacemenwith 

  values,  observed   thefrom  randomat drawn   is 

 :imputation   )(

 :imputation    )(

yy

hot-deckii

yymeani

i

ri



 
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• Mean imputation can not be used if the completed data set 

shall reflect expected variation in the nonresponse group

• Look at standard analysis based on the completed 

sample:  observed and imputed data

 
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




si si

s

yy
n

sy
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22 )(
1

1
ˆ

observed is  sample  whole theifmean  sample 

  Estimate :Problem


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With nonresponse:

Standard CI based on the completed data set with 

observed and imputed values:

Nn
ys

11
ˆ96.1 :CI  

 

Nn
ys

11
ˆ96.1 :CI

:interval confidence 95% Standard

 

Large n, N-n

 valuesimputed and observed 

 withsample completed on the based  ˆ, :ˆ, 22  ss yy 


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Coverage with mean imputation
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Coverage with hot-deck imputation
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Confidence levels of CI*:

Nonresponse 

(%)

Mean 

imputation

Hot-deck 

imputation

0 0.95 0.95

10 0.922 0.925

20 0.883 0.896

30 0.830 0.864

40 0.760 0.826

50 0.673 0.785
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One possible solution: Multiple imputation

m repeated hot-deck imputations for each missing value:

m completed samples

 samples completed  on the based  ˆ,

,...,1for  )(ˆ),(

2

2

my
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  

A “direct” standard CI:
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Also too short
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It is necessary to include a measure of variation between the m

samples; to measure the uncertainty due to imputation
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and corresponding  95% CI: 

  Vys 96.1

• If imputations are based on a Bayesian model, drawing 

imputed values from the posterior distribution given 

nonresponse, use 1 instead of 1/(1-fmis) 

fmis  =  the nonresponse rate


