V. Missing data-nonresponse

Occurs 1n almost all surveys, even “compulsory” ones

— Labor Force survey in Norway, quarterly, 20%
nonresponse

Perceived to have increased In recent years

Besides sampling error, the most important source of
error in sample survey

Nonresponse Is important to consider because of
— Bias (will almost always result in bias)

— Increased uncertainty in the estimates
— Increased cost



» Nonresponse is the failure to obtain complete
observations on the survey sample

 Unit nonresponse: unit (person or household) in the

sample does not respond
— Can be very high proportion, can be as much as 70% in
postal surveys
— 30% is not uncommon in telephone surveys
— 50% in the Norwegian Consumer Expenditure survey, up
from about 30% twenty years ago
 [tem nonresponse: observations on some items are
missing for unit in sample

o Standard treatment: Weighting for unit nonresponse,
Imputation for item nonresponse




Sources of unit nonresponse

Non-contact: failure to locate/identify sample unit or

to contact sample unit
Refusal: sample unit refuses to participate

Inability to respond: sample unit unable to participate,
e.g. due to ill health, language problems

Other: e.g. accidental loss of data/questionnaire




Sources of item nonresponse
Respondent:

— answer not known

— refusal (sensitive or irrelevant question)
— accidental skip

Interviewer:

- does not ask the question

- does not record response

Processing

— (Illogical) response rejected at editing
Amounts

— some variables only 1-2%

— Often highest for financial variables, e.g. total household
Income may have 20% missing data




Missing data mechanisms

Basic question about missing data mechanism (response
mechanism): Does the probability that data are missing
depend on observed and/or unobserved data values ?

Different models for analysis with missing data rely on
different assumptions about the missing data mechanism

Let for a unit (person or household) in the population:
— Y :the study variable with value y
— X : the values of the auxiliary variables

— R =11f unit responds when selected in the sample and
R= 0 if nonresponse

Assume the units respond independently of each other



3 types of missing data mechanism

« MCAR. Missing completely at random. Probability of
nonresponse Is independent of Y and x
— P(R=0|yx)=P(R=0)
— The observed values of Y form a random subsample of the sampled
values of Y

* MAR. Missing at random. Probability of nonresponse depends
on x, butnoton Y.
— P(R=0]y,x) =P(R =0|x)
— The observed values of Y form random samples within subclasses
defined by x

 MNAR. Missing not at random. Probability of nonresponse
depends on Y and possibly x as well.
In this case the response mechanism is nonignorable.



General definition of missing data mechanisms

« Suppose we have p Y variables with values for the whole
population denoted by y

 Let x be the values of auxiliary variables known for the whole
population.

« Lety,, be the observed values of y, y ., b€ the y-values in the
sample that are unobserved including missing values and Y
values outside the sample.

» Let R be the set of all response indicators for all p Y variables
In the sample.

« MCAR:P(R=r1]y,x)=P(R=7)
e MAR:P(R=r1]y,X)=PR=1r|X, Vo)
« MNAR:P(R=r1]y, X) =P(R = 1| Yosr Yunon X)



» The response rate Is the most widely reported quality
Indicator; does not fully capture the potential bias.

« Three examples to illustrate how nonresponse can

lead to very misleading statistical analysis, even when
the response rate Is high.

— In all cases: MNAR response mechanism

* |n two of the examples: How to correct for
nonresponse



1. Classical example,
response rates 81-85%

« Political polling before the American
presidential election in 1948
— Democratic candidate: Truman
— Republican candidate: Dewey
— Instute: Roper
— Surveys : July, August, September, October
— Election: November



July | August | Sept Oct Election
Truman 37.8 37.0 35.2| 404 49
Dewey 55.5 52.4 57.0| 534 45
Others 6.7 10.5 7.7 6.2 6
Sample size 3011 3490, 3490| 3500
responses 2510 2951 2936 | 2841
Nonresponse 501 539 554 | 6359
(Percentage) (18.6)| (15.4)| (15.9)| (18.8)
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Bias: Larger nonresponse rate among the
economically poorer groups

Compensati

ng for nonresponse — MNAR model:

— the probability of response dependent on which candidate

the person
group

will vote for, within in each socio-economic

Gives Truman 51%

Method: Im
Truman in t

MAR mode
— estimate =

putation, estimate 93-99% will vote for
Ne nonresponse group

On SOCI0-economic groups:
41%
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2. Election survey in Norway 2009

Sample: 2944 persons
Number of responses: 1782
Estimate the voting proportion

Of the 1782, 1506 said they voted in Parliament election:
84.5%

Margin of error: 1.7%
True voting proportion = 76.4%

Estimate 84.5% is biased because higher nonresponse rate
among nonvoters. The response mechanism is MNAR

The response sample is not like the nonresponse group
(typically the case)

Margin of error;2- SE = 2\/0'845 01 5 .0.00857 =0.017

1782
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3. Estimation of the number of households
In Norway In 1992

Data from the Consumer Expenditure survey in 1992
Sample: 1698 persons age 15+, self-weighting

Estimation of the number of one-person households
and the total number of households

Norway has a register of families, know the family
size for each person
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Fam Non-
size Household size response

1 2 3 41 5+ | Total| Nr. %
1 83| 48| 20 9 2| 162| 153| 48.6
2 9| 177| 37 4 3| 230| 160| 41.0
3 10 25| 131| 40 6| 212 91| 30.0
4 2| 13| 37| 231 17| 300| 123| 29.1
5+ 1 4 4, 17| 181 207| 60| 225
Total | 105| 267| 229| 301| 209| 1111| 587| 34.6
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Size of population as of 1.1.93: N =4 131 874

Standard estimate for the number of one-person
households:

105 4131,874 =390 501
1111

A post survey of the census from 1990: 626 000

Underestimates “enormously” the number of one-
person households

Because: Nonresponse among one-person families is
much higher then for larger family size
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Correcting for nonresponse

1. Response model-MNAR: Probability of response depends
on household size and place of residence (rural or urban)

 MAR model on family size removes only about 50%
of the bias- see later

2. Population model : Probability of household size
depends only on family size

3. Use this model to derive
P(Household size =1|family size =x) for x=1,2,3,4,5+,
and estimate these probabilities

4. Estimated number of one-person households =
function of these estimated probabilities
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 The table on p.14 gives you estimated probability of
different household sizes given family size for those
who respond

 For example, the estimated probability of household size
1 given family size 1 turns out to be 0.60 while the
observed 83/162 =0.512 is for respondents only.

» Standard estimates and model-based estimates

Standard Model-based

Household size = 1 391,000 595,000

Total 1,599,000 1,765,000
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The model-based method

Y. =size of the household for person 1,1=1,...,N
X. =size of the family for person 1,1=1,...,N
Population model : P(Y; = y) depends only on x; : P(Y: =y | X;)

R =1/01f person i respond/does not respond

Logistic response model dependent on y. and place of resident
P(Y, = y|x)
=P =y|x,R =DP(R =1| x;)
+P(Y; =y X, R =0)P(R; =0] )
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H, = total number of one - person households

LetZ, =1if personi"belongs" toa one - person household
H =" Z,=
N N
E(H) =D P(Z =1%)=)_ P(Y;=1|x)
A N & 5+ A
H =Y P(Y=1]x)=>" NP( =1|x)

N, = number of persons in the population with registered
family size x

19



Family size Number of Number of
X families persons N,
1 793,869 793,839
2 408,440 816,880
3 261,527 784,581
4 266,504 1,066,016
5+ 127,653 670,528
Total 1,857,993 4,131,874
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P(Y =1|x) (In parenthesis the observed rate from
table on p. 14, P(Y =1| x,R=1) )

In percentages:

Fam. size X 1 2 3 4 5+
|5(y =1 x) 60.01 | 5.27 7.53 1.06 0.84
(51.23) | (3.91) | (4.72) | (0.67) | (0.48)

Nonignorable nonresponse! Probability of response depends
on variable of interest, household size

H, =" N,P(Y =1]x)
— 793,869 -0.6001 + 816,880 -0.0527 ...+ 670,528 - 0.0084

= 595,462
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Effect of nonresponse

Fixed population model of nonresponse:

U = finite population of N units

" 10 if not
1=1...,N

o _ {1 if unit i does/would respond

R.'s are fixed, not random

U, ={ieU R =1}=responding subpopulat ion

U,, = {i €U :R =0}=nonresponding subpopulat ion
N, =size of U,

N,, =size of U,,



Bias of standard estimator

Simple random sample of size n

Response sample :s, =snU_, size n,

Estimate the population mean V:%Zi:yi

Population meansof U, andU,, :Y, andY,,

NMYM — qRY_R T (1_ qR)Y_M

0z = Ny / N =expected response rate
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Standard estimator :

observed sample mean : y, = iz_ Y.
n ies,

Given n_ :the response sample s, is a random sample fromU
= E(¥,) =Yg
= Bias=E(y,)-Y =Y, -Y
=Yg = 0rYr =~ (1= 0g)Vy = (1= 0g)(Yg —Yy)
No bias if either q, =1 orY, =V,,

Nonresponse unrelated to y
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Mean square error:
E(y, -Y)* =Var(y,)+[E(¥,)-Y]’

ggrN Uer N VERRVARY.
~|1- F(1-q.)3(Y, —Y
[ NquRn 1-9z) (Y =Yu)

We notice that even if there is no bias, the uncertainty
Increases because of smaller sample size

Expected sample size decreases from n to ggzn

For example, if we want a sample of 1000 units and we know
Jr: N = 1000/gg

If expected response rate is 60% : need n= 1000/0.60= 1667
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Blias=E(Y,) -Y = (1—CIR)(VR —Y_M)

Possible consequenses of nonresponse:

1. Bias is independent of n, can not be reduced by increasing n
2. Bias increases with increasing nonresponse rate (1-gg)

3. Biasincreaseswhen|Y, —Y,, |increases

4. If Y, =Y,, :ignorablenonresponse mechanism
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Unrealistic toassume Y, =Y,,,

But within smaller subpopulations it may not be
unreasonable,

especially if the variable used to partition the
population is highly correlated with y

Called: poststratification

Widely used tool to correct for nonresponse when
MAR is a reasonable model for the response
mechanism
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Estimation methods for reducing the effect
of nonresponse

« Handling nonresponse:
— Reduce the size of nonresponse, especially by callbacks

— Reduce the effect of nonresponse, by estimating the bias
and correcting the original estimator designed for a full
sample

 Estimation methods:
— Weighting, especially for unit nonresponse
— Imputation, especially for item nonresponse
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Weighting

Basic 1dea:

« Some parts of the population are underrepresented in the
response sample

« \Weigh these parts up to compensate for underrepresentation

» Population-based

— Reduces sampling error
— Adjusts for unit nonresponse
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Example — age standardized mortality

We have a random sample of 10,000 subjects from a population
of 2,000,000, age 40-69 with 40% nonresponse. It turns out that
there are different response rates for the age groups 40-49, 50-

59, 60-69. Results:

Age Population Sample | Response Non-| Noof| Mortality
group sample | response | deaths rate
40-49 1200 000 6000 3000 50% 25| 0.008333
50-59 600 000 3000 2200 26,7% 90| 0.040909
60-69 200 000 1000 800 20% | 200 0.2500
Total 2 000 000 10000 6000 40% | 315 0.0525
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Crude mortality rate based on the sample is 315/6000 = 0.0525
= 52.5 per 1000 subjects

Direct unweighted estimate of the number of deaths:
2,000,000x0.0525 = 105000

Weighted estimate of the number of deaths in the population:

1200000 x 0.008333 + 600000 x 0.040909+200000 x 0.2500
= 10000 + 24545+50000 = 84545

Mortality rate, age adjusted: 84545/2000000 = 0.0423 = 42.3
per 1000 subjects

Weighted estimate corrects for
— Sample is not representative for age distribution
— Different Nonresponse rates

Example of poststratification
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Poststratification

1. Stratify using variables that partition the
population in homogeneous groups

2. Stratify according to varying response rates

H poststrata. For poststratum h, U, Is the responding
substratum and U, Is the nonresponding substratum

g, = responserate in postratumh
W, =N, / N, where N, Is thesize of poststratum h

YRh

Y,,;, =Mean in nonrespong stratumh

mean In responsestratumh
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Simple random sample and ¥, estimating Y

E(yr) _Y_

1 B _
) CI_ Z:zlYRhWh (9, —9g)+ Z::l (L= G0 Wa (Yen =Yo)

R

1. component: Bias because of different response rates in
the poststrata, can be estimated

2. component can not be estimated if response and
nonresponse means are different

Poststratification estimates the first component

Choose poststrata such that most of the bias is in
the first component

— @, should varyas much as possible, and Y, ~Y,,,
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First component : Y, — ::1Wh\7Rh
Observed mean from poststratumh:y,

= unbiased estimator for this component :y, — Z::lwh Yh

—> adjusted estimator :
2~ _ _ _ H _
Yoo = ¥r = (¥, — ZhWh Yn) = thlwh Yh

1l <« H -
=N 2 N, ¥, and for the total t_, = NV
The poststratified estimator

Weights for each observation in poststraum h:
N, /n.,n.Is thesize of the response sample in postratum h
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Estimating no. one-person households

Poststrata: 1 2 3 4 5+
Fam. size X =h

Observed rate | 0.5123 | 0.0391 | 0.0472 | 0.0067 | 0.0048
with household | (.6001) | (0.0527) | (0.0753) | (0.0106) | (0.0084)
size 1, Zh

z. =1 1f household size iIs1
€osc= . Ny Z, =486,032

Compared to
1) unweighted estimate = 390,501
2) Modelbased estimate = 595,462 (nonignorable nonresponse)

Poststratification reduces the bias about 50%
35



SE and approximate 95% confidence interval based on
poststratified estimator

fpostzzh |\Ihyh

_ 1 . .
A =—Zi . Vi the mean in poststratum h in responsesample
S35

n

rh

1 _
The sample variance in poststratum h: Sy = - 1Zies (Yi = V)
rh — "

Conditional on the sample sizes of the respondents in the
poststrata, n.,,, design-based SE (use SE from stratified estimator)

2
~N A n S n ~ 0
V(tpost) = z h Nﬁ(l_ th ) nh and SEpOSt — SE(tpOSt) = \/V(tpost)
h rh

Approximate 95% ClI for t: fpost +1.96 - SE
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Simulation of nonresponse and poststratification

Example: California schools API (Academic performance
Index)

Assume a SRS of n=500 and the following MAR model: For
schooltypes E, M, H: response rates of 30, 80 and 90 percent

Simulate nonresponse and derive the poststratified estimator of
the mean of API in 2000, with schooltypes as poststratifier.

Compare the poststratified estimator with the sample mean
SE of the poststratified estimator
Simulation to estimate coverage of 95% confidence interval
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R code: Simulation of MAR nonresponse and poststratification

> x=apipop$stype

> y=apipop$api00

> makel23 = function(x)
+{

+ x=as.factor(x)

+ levels_x = levels(x)

+  X=as.numeric(X)

+ attr(x,"levels") = levels_x
+ X

+}

> s=sample(1:6194,500)

> pstrata=makel123(x[s])

# poststratum 1 = E, poststratum 2 = H, poststratum 3 = M

> s1=s[pstrata==1]
> s2=s[pstrata==2]
> s3=s[pstrata==3]
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Simulating nonresponse

> length(sl)
1] 358

> length(s2)
1] 60

> length(s3)
1] 82

> n1r=0.3*length(sl)
> n2r=0.9*length(s2)
> n3r=0.8*length(s3)
> slr=sample(s1,nlr)
> s2r=sample(s2,n2r)
> s3r=sample(s3,n3r)
> length(s1r)

1] 107

> length(s2r)

1] 54

> length(s3r)

1] 65
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Poststratified estimator

> y1lmean=mean(y[slr])
> y2mean=mean(y[s2r])
> y3mean=mean(y[s3r])
> ylmean

1] 654.5327

> y2mean

1] 638.3704

> y3mean

1] 632.5077

> N1=4421

> N2=755

> N3=1018
Ypost=(ylmean*N1+y2mean*N2+y3mean*N3)/6194
> Ypost

[1] 648.9428




SE and 95% CI of poststratified estimator

> nl=length(slr)
> n2=length(s2r)
> n3=length(s3r)
> n=nl+n2+n3

> ylr=y[slr]
> y2r=y[s2r]
> y3r=y[s3r]

> varest1=N1"2*var(y1lr)*(N1-n1)/(N1*nl)

> varest2=N2"2*var(y2r)*(N2-n2)/(N2*n2)

> varest3=N3"2*var(y3r)*(N3n3)/(N3*n3)

> se=sqrt(varestl+varest2+varest3)

> semean=se/6194

> semean

[1] 9.191489

> Cl=Ypost+gnorm(c(0.025,0.975))*semean

> Cl

[1] 630.9278 666.9578 = (630.9, 667.0), true value =664.7
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Sample mean and CI based on sample mean

> z=c(y1r,y2r,y3r)
> mean(z)
[1] 644.3363

var(z)

[1] 15857.16

> sesrs=sqrt(var(z)*(6194-n)/(6194*n))

> Sesrs

[1] 8.222185

> Clsrs=mean(z)+gnorm(c(0.025,0.975))*sesrs
> Clsrs

[1] 628.2211 660.4515

# misses the true value, because the sample mean is biased
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R-function for simulating MAR nonresponse and for
estimating true confidence level of approximate 95% ClI,
based on poststratification and sample mean

« R-function: simpostmean=function(b,n,N,N1,N2,N3,r1,r2,r3)
— b = number of simulations
— n =sample size of SRS
— N= population size
— N1=size of postratum 1
— N2=size of postratum 2
— N3 = size of postratum 3
— rl=response rate for poststratum 1 (E)
— r2=response rate for poststratum 2 (H)
— 13 = response rate for poststratum 3 (M)



simpostmean=function(b,n,N,N1,N2,N3,r1,r2,r3)
{

Ypost=numeric(b)
se=numeric(b)
zbar=numeric(b)
sesrs=numeric(b)
for(k in 1:b){
s=sample(1:N,n)
pstrata=make123(x[s])
sl=s[pstrata==1]
s2=s[pstrata==2]
s3=s[pstrata==3]
nlr=r1*length(sl)
n2r=r2*length(s2)
n3r=r3*length(s3)
slr=sample(sl,nlr)
s2r=sample(s2,n2r)
s3r=sample(s3,n3r)
y1[K]=mean(y[slr])
y2[k]=mean(y[s2r])
y3[Kk]=mean(y[s3r])
Ypost[K]=(y1[k]*N1+y2[k]*N2+y3[K]*N3)/N
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nl=length(slr)

n2=length(s2r)

n3=length(s3r)

m=nl+n2+n3

ylr=y[slr]

y2r=y[s2r]

y3r=y[s3r]

varestl=N1"2*var(y1r)*(N1-n1)/(N1*nl)
varest2=N2"2*var(y2r)*(N2-n2)/(N2*n2)
varest3=N3"2*var(y3r)*(N3-n3)/(N3*n3)
se[k]=(sqrt(varestl+varest2+varest3))/N

z=c(y1r,y2r,y3r)

zbar[k]=mean(z)

sesrs[k]=sqrt(var(z)*(N-m)/(N*m))

¥
covmean=sum(mean(y)<zbar+1.96*sesrs)-sum(mean(y)<zbar-1.96*sesrs)
covmean=covmean/b
covpost=sum(mean(y)<Ypost+1.96*se)-sum(mean(y)<Ypost-1.96*se)
covpost=covpost/b

list(covpost=covpost,covmean=covmean)

}
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R-code for simulations to estimate true confidence level of
95% CI, based on poststratification

X=apipopPstype
y=apipop$api00

makel23 = function(x)

{
x=as.factor(x)
levels x = levels(x)
X=as.numeric(x)
attr(x,"levels") = levels_x
X

}

# write out r —code for the function:
simpostmean=function(b,n,N,N1,N2,N3,r1,r2,r3)
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Some cases:

n=500, r1=0,3, r2=0.9, r3=0.8:

simpostmean(10000,500,6194,4421,755,1018,0.3,0.9,0.8)
$covpost
[1] 0.9514

$covmean
[1] 0.8727

n=500, r1=0,5, r2=0.5, r3=0.5.

simpostmean(10000,500,6194,4421,755,1018,0.5,0.5,0.5)
$covpost
[1] 0.9436

$covmean
[1] 0.9448
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Estimated (design-based) confidence level of the approximate 95% CI for
poststratification and sample mean, based on 10000 simulations of SRS

200
200
500
500
500
1000
2000
2000

Poststratified CI has correct coverage in general. The sample mean
based CI only works when response rates are the same in all

0.3
0.5
0.3
0.7
0.5
0.3
0.3
0.6

0.8
0.5
0.8
0.2
0.5
0.8
0.8
0.6

0.9
0.5
0.9
0.5
0.5
0.9
0.9
0.6

0.9477
0.9483
0.9514
0.9450
0.9436
0.9498
0.9514
0.9496

poststrata: response sample is a SRS.

0.9191
0.9486
0.8727
0.9363
0.9448
0.7892
0.6025
0.9517

48



Calibration methods

Consider weighting methods which satisfy calibration constraints
Design - basedapproach: Start with H - T estimator t,; = Zies /)y,

Design weights: d. =1/z,. Responsesample s,

Auxiliary information with known totals:

N N N
txl :Z Xutxz i:1X2i""’txk :Zizlxki

Final survey weights w; satisfy the calibration constraints:

Wi Xy =T, Wi Xy, :txzv-wZ- Wi X, =Ty
ies,

Ies, Ies,

Calibrated estimator of y-total: Lo = Ziesr WY

Choose the calibrated weights such that the “distance”
between d; and w; Is minimized 49



Poststratification is an example of calibration

H poststrata with sizes N,, h=1,...,H

Define auxiliary variable x,,

. 11f unit 1 € poststratum h
"0 otherwise

t, = Z:\ilxhi =N,

Response sample in poststratum h: s, of size n,

- - = o H
Final calibrated estimator: t., = thlziesh W;Y;

H calibration constraints:
Ziesr Wixhi — Nh1 h :1,...,H
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W.=N,, h=1....H (%)
Poststratified estimator:

- H _ H 1
tpOS'[ — h=1 N h yh — h=1 N h Ziesm yi

nrh
N
- Z:zl Zies — yi

" nrh

The weightsare w. =N, /n, for ies_,

Satisfy the calibration constraints (*)

Other weights may also.
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Why calibrate?

» Ensures that weighted estimates agree with given
“benchmarks”, e.g. N,

 Typically reduces nonreponse bias if nonresponse is
related to the calibration variables

 Improve efficiency for variables related to the
calibration variables

52



Imputation

Mostly used for item nonresponse, but can also be used for
unit nonresponse

Item nonresponse creates problem even when the nonresponse
happens at random, leaves us with few complete cases

Imputation: filling in for each missing data value by predicting
the missing values

For a given variable y, for estimating population total or mean,
use estimator constructed for the full sample, based on the
observed and imputed data:

Imputation based estimator
Need proper variance estimates

Also want to produce complete data sets that allow for
standard statistical analysis

— right variation in the data vs. variance estimation
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Regression-based imputation methods

Regression imputation

Assume a regressionmodel for Y given x,

where x Is available also for the nonrespong group
fex E(Y|x)=px, Var(Y|X)=o°x

Estimate 3 from the responsesample s, with

'Br - Ziesr Yi/Z‘lieSIr Xi

and for all i e nonrespon® group, predict y; with
yl>X< = /‘;rxi

Problem: Not enough variation to account for the
variability in the nonresponse group
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Residual regression imputation
Since Var{(Y, — %)/ /% }=0"
Standardized observedresiduals:e; = (y; —,ér Xi)/ \R

For ies—s,,draw thevalue € atrandomfrom thesetof standardized
observed residuals in the responsesample {e; : jes,}

Imputed y-value is given by:

yl* :/érxi +ei*\/;i
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If the model assumption also includes a distributional
assumption, say normality:

Draw imputed values from the estimated N (3. x;, 52x;
Underlying assumption on the response mechanism:

Missing at random (MAR): Probability of response
for unit i may depend on Xx;, while independent of y;

If basicfull sample estimator is the ratio estimator,

- Y.
TR:XZS N
s X

then theimputation - basedestimator becomes

— X Zsr Yi + Zs—sr Yi>l<

TR,I
in
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Standard imputation methods, much used in National
Statistical Institutes

(i) Mean imputation: y; =V,

Within poststrata: poststratification
(i) Hot-deck imputation (typically within poststratg:
y: is drawn at random from the observed y values,
with replacement

(i11) Nearest neighbour imputation: Find a donor in the
response sample based on closeness of auxiliary variables
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R-code for hot-deck imputation

California schools, API for 2000

> y=apipop$api00

#SRS of size 200

> s=sample(6194,200)

> #70% response rate

> #response sample

> nr=0.7*200

> sr=sample(s,nr)

> #hot-deck imputation for s-sr

> simp=sample(sr,200-nr,replace=TRUE)

58



> simp

[1] 5137 3870 1595 3990 73 3766 477 3873 2253 2758
3906 3339 5774 3002 3339

[16] 1930 1052 471 2253 5932 759 4343 841 890 4508
1615 3589 749 2758 3747

[31] 3306 1082 3156 1329 544 4465 471 2758 4175 2458
4569 2109 5183 5183 1919

[46] 1900 2063 5189 5137 2792 5118 974 5442 1796 3990
4343 477 3012 890 5118

> #imputed values

> yimp=y[simp]

> yobs=y[sr]

> #Total imputed sample

> ystar=c(yobs,yimp)

> mean(ystar)

[1] 653.57

59



MNAR: Nonignorable nonresponse
How to proceed

The response probabilities are assumed to depend on
variable of interest

P, (R =1]x,Y;) i1smodeled, f_(r; | x;,Y;)
Population model for Y; givenx;:  f,(y. | x)
Joint distribution of Y; and R;:
Fo., Vil [ %) =To(yi %) T, (5 1%, Y;)
Conditional distribution of Y; given nonresponse, R;=0

fo, (¥i | %, Ry =0)
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fo., (Vi X, Ri =0)=T,(yi | %)P, (R =0] yi, %)/ By, (Ri =01 x;)
where

Py, (R =0]x) ZI fo (Vi IX)P, (R =0]y;,%)dy,

Maximum likelihood estimates: 8,y

Likelihood function, independence between (Y;, R;):

|(‘9,W)=Hf (Yoosi 1% )P, (R; :1|Xi’yobs.i)HP6?,¢//(Ri =0[x;)

Note: Likelihood function could be quite flat in y,
numerical difficulties for finding maximum.

Imputed values: y; = E;, (YilX,R =0)

or drawing a value from the estimated conditional
distribution
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Remarks on MNAR models

« Model assumptions cannot be supported by the data alone.

— Example: If observed y-distribution is skewed it could be
we have MCAR and a skewed population distribution of .

« Assumptions in an MNAR model cannot be verified without a
specific population model for the Y;’s.

» Must use subject matter knowledge for the missing data
mechanism
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lHlustration of an MNAR model

Binomial case pry —1)-¢

if y.=0
v .y, , Where y <1/ 2
2p if y, =1

P(R =1|yi>={
P(Y; =1| R, =0)

P(Y; =1)P(R, =0|Y, =1)
" P(Y, =DP(R, =0]Y; =) + P(Y, =0)P(R, =0, =0)
_ O(1-2y) _ 0(1-2y)
C0(1-2p)+(1L-0)1-y) 1-y(1+0)

Wenotethat P(Y; =1|R, =0)=0 if w=1/2
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Maximum likelihood estimates
Letv:zS y,, the number of "successes'ln the responsesample

andn, is thesize of s, .
Proportion of successesin responsesample: p=v/n,

A

In caseof nomissing data: p =6
Let the responserateber=n_/n

Likelihood function

1(0.w)=]1 fH(yobs,i)HPw(Ri =1| Yops.i) HPH,l// (R, =0)

les, I€s, les—s,

=0"(1-0)"" () 'y (L-y - Op)"
and
logl(6,y)=vlogé&+(n, —v)logd—6) +vlog2+n, logy

+(n—n,)log(L—y —Oy)
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Likelihood equations:

n n—-n
) dlogl/oy =0 —+——-(1+6 L=
() dlogl/oy =0 &~ (A+0) 7= "o
n, r
Sy = =
nl+60) 1+6
Vv n -—v n—-n
II)dlogllof =0 ———F—— — =
(Il)dlog 0 1-0 1-p@1+0)
ORY, n,—v n, n-n, v n.-v n,
& —— - : =0 —— - =
0 1-0 n(l+60) 1-(n/n) 0 1-60 1+6
< 0= v __P

N\

2n, -v  2-p



bGP
2-p

Lo p)if 2 )<t

1+6) 2

1/ 2 otherwise

Y

<>
Il

Note: E(p)=E(Y,)=E(Y,|R, =1)=P(Y, =1|R, =1)

_ 0 -2y _ 20 (< 6)
w+0y) 6+1

A reasonable estimate would satisfy

A

p= AZH ,thatis:éziAzl\/ll_E
0+1 2—-p
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A

_ é(l—zm _0-
1—y(1+0) 1-
y; =0 otherwise

rp if f(2—p)<1

Estimate the total number of successes in the population, T = 2_1 ,

Basic estimator without nonresponse: T =N -Y,

Imputation-based estimate:
. 1 5
tl =N _(Zies yi + Zies—s yi )

_N—{n b+(n—n) ‘rp} N{FD + (1— r)e rp} N -
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Variance estimation in the presence of imputed
values

Consider simplest possible case

 Simple random sample
« MCAR: Random nonresponse
 No auxiliary information

Two possible imputation methods

(i) mean imputation 1y =Y,

(1) hot-deck Imputation :

y: is drawn at random from the observed y values,
with replacement
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« Mean imputation can not be used if the completed data set
shall reflect expected variation in the nonresponse group

 Look at standard analysis based on the completed
sample: observed and imputed data

Problem : Estimate Y
Y. =sample mean if the whole sample s is observed

. 1 _
6° = rzies(yi -V,
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Large n, N-n

Standard 95% confidence interval :

Cl:y, J_r1.96&1/1—i
n N

With nonresponse:

Standard Cl based on the completed data set with
observed and imputed values:

Cl":y. £1.965, l—%
n
y.,67:Y.,6° based on the completed sample with

observed and imputed values
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Coverage with mean imputation

W, = Ve oY N(0,)) approximately
s [L 1
n. N
Gl = L _1&f suchthat CI"~y, £1.96f0, 1 4
n-1 n. N
Confidence level: c, =P(Y eCl, )=P(|W, |<1.96)
Nonresponse (%) |0 10 20 30 40 50
Confidence level |0.95 |0.922 |0.883 |0.830 |0.760|0.673
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Coverage with hot-deck imputation
E(Ys)=Y
Var( y:)z021|:(1_f)+%}
n r
E(6%) =~ o*
_ Y, -Y
&*\/1«1— i)+ )
n r

W, ~N(01) approximately

Confidence level:

C, ~ P(|W, | 1.96\/1/ \/3{(1— f)+%}
n n I

~P(W, |31.96/\/1+§—f)
r
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Confidence levels of CI*:

Nonresponse | Mean Hot-deck
(%) Imputation Imputation
0 0.95 0.95

10 0.922 0.925

20 0.883 0.896

30 0.830 0.864

40 0.760 0.826

50 0.673 0.785
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One possible solution: Multiple imputation
m repeated hot-deck imputations for each missing value:

m completed samples

y.(i),62() fori=1....m
y.,6° basedon the m completed samples
Averages:y; = > y:(i)/m and &2 =>"" &%(i)/m
A “direct” standard CI:
1 1

Cl":y: +1.965,,|— ——
n N

Also too short
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/1 1 - i
o, P measures the variation only within the samples
n

It IS necessary to include a measure of variation between the m
samples; to measure the uncertainty due to imputation

_—ZI 1(ys (I) y:

f .. = the nonresponse rate .

Replace 67 with: V, = (———) ( = m)B*

and corresponding 95% CI: A i1-96\/\7*

« |f Imputations are based on a Bayesian model, drawing
Imputed values from the posterior distribution given
nonresponse, use 1 instead of 1/(1-f ;)
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