## V. Statistical Demography

- Demography: Statistical study of human populations
- By *statistical:* using the language of probability and statistical modeling for the population processes involved: mortality, fertility, population projections
- In this course, the topics:
  - Mortality
  - Life expectancy
  - Population projections

## **Mortality topics**

- Crude Death Rate
  - Annual number of deaths per 1000
- Standardized crude death rate
- Age- and gender specific death rates
- Probability of death
- Mortality table, life table (dødelighetstabell)
- Modeling mortality rates (population projections)

### Crude death rate, CDR

- D = number of deaths during one given year
- $P_0$  = population size at January 1
- $P_1$  = population size at December 31
- A measure of mortality: Annual number of deaths pr. 1000

$$CDR = \frac{D}{\frac{1}{2}(P_0 + P_1)} \cdot 1000$$

Mortality in the whole population regardless of age

*CDR* can be misleading with comparisons in time and space, because it does not take into account the age structure in the population

#### Standardize *CDR* for age and gender

- Example:
  - Norway 1950: *CDR* = 9,13
  - Norway 1987: *CDR* = 11,14
- *CDR* has increased by 2 per 1000, but has really the mortality increased?
- Age specific death rates in 1987 < 1950 for all ages
- Explanation: Population is older in 1987!

Age specific death or mortality rate:

Agegroup x, 
$$m(x) = \frac{D_x}{\frac{1}{2}(P_{0,x} + P_{1,x})}$$

 $D_x$  = number of deaths for agegroup x

 $P_{0,x}$  and  $P_{1,x}$ :

Size of population for agegroup *x* at the start- and end-population for age *x* 

## Standardized (hypothetical) CDR

• *CDR* in a hypothetical population with 1950 age structure and 1987 age specific death rates

## $CDR_{50}^{(87)}$

• Alternatively: *CDR* in a hypothetical population with 1987 age structure and 1950 age specific death rates

 $CDR_{87}^{(50)}$ 

 $N_{87,x} = (P_{0,x,87} + P_{1,x,87})/2 \text{ and } N_{50,x} = (P_{0,x,50} + P_{1,x,50})/2$   $D_{87,x} = \text{number of deaths in the age group } x \text{ in } 1987$   $D_{50,x} = \text{number of deaths in the age group } x \text{ in } 1950$ Age specific mortality rates for 1987 and 1950 in age group :  $m(x,87) = D_{87,x} / N_{87,x}, \quad m(x,50) = D_{50,x} / N_{50,x}$ 

Population 1987 with 1950 death rates:

The hypothetical number of deaths in the age group *x*:  $D_{87,x}^{(50)} = N_{87,x}m(x,50)$ 

Total number of deaths:  $D_{87}^{(50)} = \sum D_{87,x}^{(50)}$ 

age groups x

Standardized *CDR*:  $CDR_{87}^{(50)} = D_{87}^{(50)} / N_{87}$ 

Population 1950 with 1987 death rates:

The hypothetical number of deaths in the age group *x*:

$$D_{50,x}^{(87)} = N_{50,x} m(x, 87)$$

Total number of deaths:  $D_{50}^{(87)} = \sum D_{50,x}^{(87)}$ 

Standardized *CDR*:  $CDR_{50}^{(87)} = D_{50}^{(87)} / N_{50}$ We find :

$$D_{87}^{(50)} = 57821$$
 (compared to observed  $D_{87} = 46760$ ):  
 $CDR_{87}^{(50)} = 57821 / 4198 = 13.77$   
 $D_{50}^{(87)} = 23568$  (compared to observed  $D_{50} = 29930$ ):  
 $CDR_{50}^{(87)} = 23568 / 3279 = 7.19$ 

#### Norway 1950 and 1987 standardized CDR

| Alder   | N <sub>50</sub> | $d_{50}$ | D <sub>50</sub> | N87  | d87    | D87   | $N_{87}d_{50}$ | $N_{50}d_{87}$ |
|---------|-----------------|----------|-----------------|------|--------|-------|----------------|----------------|
| 0-4     | 318             | 67,2     | 2137            | 259  | 21,1   | 546   | 1741           | 671            |
| 5 - 9   | 265             | 8,6      | 228             | 260  | 2,0    | 52    | 224            | 53             |
| 10-14   | 213             | 5,0      | 107             | 285  | 1,8    | 51    | 143            | 38             |
| 15 - 19 | 207             | 8,0      | 166             | 333  | 6,1    | 203   | 266            | 126            |
| 20 - 24 | 230             | 12,7     | 292             | 332  | 8,0    | 266   | 422            | 184            |
| 25 - 29 | 262             | 12,1     | 317             | 315  | 7,4    | 233   | 381            | 194            |
| 30-34   | 263             | 14,0     | 368             | 314  | 8,6    | 270   | 440            | 226            |
| 35 - 39 | 250             | 17,8     | 445             | 306  | 10,9   | 334   | 545            | 265            |
| 40-44   | 234             | 24,6     | 576             | 303  | 18,8   | 570   | 745            | 440            |
| 45 - 49 | 216             | 39,4     | 851             | 216  | 29,9   | 646   | 851            | 646            |
| 50 - 54 | 198             | 58,4     | 1156            | 186  | 50,8   | 945   | 1086           | 1006           |
| 55 - 59 | 167             | 89,9     | 1501            | 198  | 82,5   | 1634  | 1780           | 1378           |
| 60-64   | 136             | 141,3    | 1922            | 212  | 132,5  | 2809  | 2996           | 1802           |
| 65-69   | 110             | 228,0    | 2508            | 214  | 213,3  | 4565  | 4879           | 2346           |
| 70-74   | 90              | 393,7    | 3543            | 178  | 351,0  | 6248  | 7998           | 3159           |
| 75 - 79 | 62              | 715,5    | 4436            | 137  | 580,1  | 7947  | 9802           | 3597           |
| 80 —    | 57              | 1645,1   | 9377            | 149  | 1304,8 | 19441 | 24512          | 7437           |
| Sum     | 3279            |          | 29930           | 4198 |        | 46760 | 57821          | 23568          |
| s.d.    |                 |          | 9,13            | l    |        | 11,14 | 13,77          | 7,19           |

N: mean population size in 1000

*D*: number of deaths, d = D/N per 10 000, s.d. = *CDR* 

# Comparison of observed and standardized mortality rates

- Compare the four crude deaths rates (two unstandardized and two standarized)
- How much of the difference between the *CDR* in 1950 and 1987 is due to:
  - Age structure
  - Mortality
- The change in *CDR* of 2 per 1000 is the sum of these two components

#### Standardized CDR

| Alder   | N <sub>50</sub> | $d_{50}$ | $D_{50}$ | N <sub>87</sub> | d <sub>87</sub> | D <sub>87</sub> | $N_{87}d_{50}$ | N <sub>50</sub> d <sub>87</sub> |
|---------|-----------------|----------|----------|-----------------|-----------------|-----------------|----------------|---------------------------------|
| 0-4     | 318             | 67,2     | 2137     | 259             | 21,1            | 546             | 1741           | 671                             |
| 5 - 9   | 265             | 8,6      | 228      | 260             | 2,0             | 52              | 224            | 53                              |
| 10 - 14 | 213             | 5,0      | 107      | 285             | 1,8             | 51              | 143            | 38                              |
| 15 - 19 | 207             | 8,0      | 166      | 333             | 6,1             | 203             | 266            | 126                             |
| 20 - 24 | 230             | 12,7     | 292      | 332             | 8,0             | 266             | 422            | 184                             |
| 25 - 29 | 262             | 12,1     | 317      | 315             | 7,4             | 233             | 381            | 194                             |
| 30-34   | 263             | 14,0     | 368      | 314             | 8,6             | 270             | V 440          | 226                             |
| 35-39   | 250             | 17,8     | 445      | 306             | 10,9            | 334             | 545            | 265                             |
| 10-44   | 234             | 24,6     | 576      | 303             | 18,8            | 570             | 745            | 440                             |
| 15-49   | 216             | 39,4     | 851      | 216             | 29,9            | 646             | 851            | 646                             |
| 50-54   | 198             | 58,4     | 1156     | 186             | 50,8            | 945             | 1086           | 1006                            |
| 55-59   | 167             | 89,9     | 1501     | 198             | 82,5            | 1634            | 1780           | 1378                            |
| 60-64   | 136             | 141,3    | 1922     | 212             | 132,5           | 2809            | 2996           | 1802                            |
| 65-69   | 110             | 228,0    | 2508     | 214             | 213,3           | 4565            | 4879           | 2346                            |
| 70-74   | 90              | 393,7    | 3543     | 178             | 351,0           | 6248            | 7998           | 3159                            |
| 75-79   | 62              | 715,5    | 4436     | 137             | 580,1           | 7947            | 9802           | 3597                            |
| 30 —    | 57              | 1645,1   | 9377     | 149             | 1304,8          | 19441           | 24512          | 7437                            |
| Sum     | 3279            |          | 29930    | 4198            |                 | 46760           | -57821         | 23568                           |
| s.d.    |                 | 1        | 9,13     | 5               | 1               | 11,14           | 13,77          | 7,19                            |

1: CDR (Pop87&mortality50) – CDR(50): due to effect of age structure = 4,64 2: CDR (87) – CDR (Pop87&mortality 50): due to change in age specific mortality rates = - 2,63

| 1. Change in age structure          | 13,77 - 9,13 = +4,64             |
|-------------------------------------|----------------------------------|
| 2. Change in age specific mortality | 11,14 - 13,77 = -2,63            |
| 3. Total = $1+2$                    | 4,64-2,63 = 2,01 ( = 11,14-9,13) |

11

### Effect of changing factors

• *CDR* increased by 2 from 1950 to 1987, but with constant age specific mortality it would have increased by 4,64

- Effect of an aging population

• The reduced age specific mortality has reduced the increase in *CDR* to only 2: 2,6 reduced increase

– Effect of lower age specific mortality

#### Alternative computation

| Alder   | N <sub>50</sub> | $d_{50}$ | $D_{50}$ | N <sub>87</sub> | d <sub>87</sub> | $D_{87}$ | $N_{87}d_{50}$ | N <sub>50</sub> d <sub>87</sub> |
|---------|-----------------|----------|----------|-----------------|-----------------|----------|----------------|---------------------------------|
| 0-4     | 318             | 67,2     | 2137     | 259             | 21,1            | 546      | 1741           | 671                             |
| 5 - 9   | 265             | 8,6      | 228      | 260             | 2,0             | 52       | 224            | 53                              |
| 10 - 14 | 213             | 5,0      | 107      | 285             | 1,8             | 51       | 143            | 38                              |
| 15 - 19 | 207             | 8,0      | 166      | 333             | 6,1             | 203      | 266            | 126                             |
| 20 - 24 | 230             | 12,7     | 292      | 332             | 8,0             | 266      | 422            | 184                             |
| 25 - 29 | 262             | 12,1     | 317      | 315             | 7,4             | 233      | 381            | 194                             |
| 30 - 34 | 263             | 14,0     | 368      | 314             | 8,6             | 270      | V 440          | 226                             |
| 35 - 39 | 250             | 17,8     | 445      | 306             | 10,9            | 334      | 545            | 265                             |
| 40-44   | 234             | 24,6     | 576      | 303             | 18,8            | 570      | 745            | 440                             |
| 45 - 49 | 216             | 39,4     | 851      | 216             | 29,9            | 646      | 851            | 646                             |
| 50 - 54 | 198             | 58,4     | 1156     | 186             | 50,8            | 945      | 1086           | 1006                            |
| 55 - 59 | 167             | 89,9     | 1501     | 198             | 82,5            | 1634     | 1780           | 1378                            |
| 60-64   | 136             | 141,3    | 1922     | 212             | 132,5           | 2809     | 2996           | 1802                            |
| 65 - 69 | 110             | 228,0    | 2508     | 214             | 213,3           | 4565     | 4879           | 2346                            |
| 70 - 74 | 90              | 393,7    | 3543     | 178             | 351,0           | 6248     | 7998           | 3159                            |
| 75-79   | 62              | 715,5    | 4436     | 137             | 580,1           | 7947     | 9802           | 3597                            |
| 80 —    | 57              | 1645,1   | 9377     | 149             | 1304,8          | 19441    | 24512          | 7437                            |
| Sum     | 3279            |          | 29930    | 4198            |                 | 46760    | 57821          | 23568                           |
| s.d.    |                 | /        | 9,13     | 5               | 1               | 11,14    | 13,77          | 7,19                            |

CDR (Pop50&mortality87) – CDR(50): due to change in age specific mortality rates = -1,94
 CDR (87) – CDR (Pop50&mortality 87): due to effect of age structure

| L:CDF | <del>(</del> 87) – | CDR (Pop50 | )&mortality | 87): d | ue to eff | fect of age | e structure = | = 3,95 |
|-------|--------------------|------------|-------------|--------|-----------|-------------|---------------|--------|
|       |                    |            |             |        |           |             |               |        |

| 1. Change in age specific mortality | 7,19-9,13 = -1,94   |
|-------------------------------------|---------------------|
| 2. Change in age structure          | 11,14 - 7,19 = 3,95 |
| 3. Total = 1+2                      | -1,94+3,95 = 2,01   |

#### Some comments

- Standardized rates will vary with the standard use and so will the quantitative conclusion
- Can also control for gender
- When comparing two countries: A third country age structure can be used as standard
- Example:Mauritius vs England and Wales with Japan age structure as standard

|                          |                                          |       |                                                      | Mau       | ritius                                    |          |                                                 | England a | nd Wales                                  |         |
|--------------------------|------------------------------------------|-------|------------------------------------------------------|-----------|-------------------------------------------|----------|-------------------------------------------------|-----------|-------------------------------------------|---------|
|                          | Standard population<br>Japan 1985 ('000) |       | Age-specific death rates<br>1986 (per 1,000)         |           | Expected deaths in<br>standard population |          | Age-specific death rates<br>1987 (per 1,000)    |           | Expected deaths in<br>standard population |         |
|                          | м                                        | F     | M                                                    | F         | M                                         | F        | M                                               | F         | М                                         | F       |
| Under 1                  | 732                                      | 698   | 30.8                                                 | 23.1      | 22,546                                    | 16,124   | 10.4                                            | 7.9       | 7,613                                     | 5,514   |
| 1-4                      | 3,087                                    | 2,942 | 1.2                                                  | 1.3       | 3,704                                     | 3,825    | 0.5                                             | 0.4       | 1,544                                     | 1,177   |
| 5-14                     | 9,520                                    | 9,054 | 0.5                                                  | 0.4       | 4,760                                     | 3,622    | 0.2                                             | 0.1       | 1,904                                     | 905     |
| 15-24                    | 8,766                                    | 8,414 | 1.1                                                  | 1.0       | 9,643                                     | 8,414    | 0.7                                             | 0.3       | 6,136                                     | 2,524   |
| 25-34                    | 8,507                                    | 8,371 | 2.1                                                  | 1.4       | 17,865                                    | 11,719   | 0.9                                             | 0.5       | 7,656                                     | 4,186   |
| 35-44                    | 9,950                                    | 9,923 | 4.5                                                  | 2.3       | 44,775                                    | 22,823   | 1.7                                             | 1.1       | 16,915                                    | 10,915  |
| 45-54                    | 8,019                                    | 8,151 | 11.7                                                 | 5.0       | 93,822                                    | 40,755   | 5.0                                             | 3.2       | 40,095                                    | 26,083  |
| 55-64                    | 5,789                                    | 6,616 | 27.8                                                 | 13.7      | 160,934                                   | 90,639   | 15.7                                            | 9.0       | 90,887                                    | 59,544  |
| 65-74                    | 3,285                                    | 4,472 | 57.3                                                 | 39.6      | 188,231                                   | 177,091  | 41.7                                            | 22.8      | 136,985                                   | 101,962 |
| 75-84                    | 1,560                                    | 2,367 | 123.0                                                | 83.5      | 191,880                                   | 197,645  | 98.8                                            | 60.7      | 154,128                                   | 143,677 |
| 85+                      | 256                                      | 529   | 249.5                                                | 192.5     | 63,872                                    | 101,833  | 212.7                                           | 168.6     | 54,451                                    | 89,189  |
|                          | 121,                                     | 800   |                                                      | _         | 802,032                                   | 674,490  |                                                 | -         | 518,314                                   | 445,676 |
|                          |                                          |       |                                                      | _         |                                           |          |                                                 | 5         | $\leq$                                    |         |
| Standardized death rate: |                                          | -121  | <sup>15</sup><br>2 + 674,490)<br>008,000<br>er 1,000 | × 1,000   |                                           | (518,314 | and Wales<br>4 + 445,676)<br>008,000<br>r 1,000 | × 1,000   |                                           |         |
| Instandardized (CDR)     |                                          |       | 6.7                                                  | per 1,000 |                                           |          | 11.3                                            | per 1,000 | >                                         |         |

Table 3.2 Calculation of standardized death rate, Mauritius and England and Wales

1. All age-specific death rates are higher in Mauritius for both men and women

- 2. Yet, unstandardized CDR is 6.7 compared to 11.3 for England and Wales
- 3. Reason: Population in Mauritius is much younger

4. The standardized *CDR*s are 12.20 for Mauritius and 7.97 for England and Wales, according to the age structure in Japan

#### Direct standardization

- <u>Same</u> age structures
- Different age specific mortality rates
- Here we "control" for age, as in the previous example
- Another example:
  - *CDR* for Kuwait in 1996: 2.18 per 1000
  - *CDR* for United Kingdom (England, Wales, Scotland and Northern Ireland): 10.0 per 1000
  - If we use UK 1996 age structure as standard: Kuwaits CDR is 12.75 per 1000

#### Indirect standardization

- The most common approach in studies of mortality
- A standard of age specific death rates, combined with age structure (f.ex. from censuses)
- 1. Compute expected number of deaths based on actual age structure and standard age specific death rates
- Compute standardized mortality ratio (SMR) =
   observed number of deaths/ expected number of deaths
- SMR > 1: actual (but unknown) age specific death rates are higher than the standard
- SMR < 1: actual (but unknown) age specific death rates are lower than the standard

#### Example UK vs. Kuwait

- UK 1996 *CDR* = 10.0, Kuwait 1996 *CDR* = 2.2
- Standard age specific death rates: UK 1996
- 1. Compute expected number of deaths for Kuwait, based on Kuwaits age structure and standard death rates
- 2. Result: 3459
- 3. Observed number of deaths: 3815
- 4. Standardized mortality ratio SMR = 3815/3459 = 1.10
- 5. SMR >1: Age specific mortality in Kuwait must be higher than the standard UK

#### CDR Norway 1945-1990, number of deaths per 1000



#### Age specific death rates, Norway 1900



20

Dode etter kjønn og alder. 1997 Deaths by sex and age 1997

Ş

Antall Number





Dade pr. 1000 Deaths per 1 000 100 ÷ 10 1 ~ -0.1 0.01 45 35 40 ٥ 5 10 15 20 25 30 50 55 70 75 80 Alder Age Menn Kvinner Males Females Halvlogaritmisk skala Half logaritmic scale

#### Probability of death

 $P_{0,x}$ : number of persons alive at exact age x  $D_x$  = number of deaths for <u>this</u> agegroup x and  $P_{1,x}$ : population size for agegroup x at the end for age x

q(x) = estimated probability of dying before the age of x+1 given that the person is alive at age x, the one year death **probability** 

If we observe  $D_x$ :

$$q(x) = D_x / P_{0,x}$$

Let  $D_{x,total}$  be the <u>total</u> number of deaths for this agegroup

If only aggregated numbers are available: q(x) is the ratio of  $D_{x,total}$  to the "middle" population half-way:

Middle population:

$$P_{0,x} + \frac{1}{2}(P_{1,x} - P_{0,x} + D_{x,total}) = \frac{1}{2}(P_{0,x} + P_{1,x} + D_{x,total})$$
  
and  $q(x) = \frac{D_{x,total}}{\frac{1}{2}(P_{0,x} + P_{1,x} + D_{x,total})}$ 

Age specific mortality rate

Agegroup x, 
$$m(x) = \frac{D_{x,total}}{\frac{1}{2}(P_{0,x} + P_{1,x})}$$

## In either case: $q(x) = \frac{m(x)}{1 + \frac{1}{2}m(x)}$

Proof : a) no immigratio n in this age group,  $D_x = D_{x,total}$ 

$$P_{1,x} = P_{0,x} - D_x$$
  

$$\Rightarrow m(x) = \frac{D_x}{P_{0,x} - \frac{1}{2}D_x}$$
  
and  $\frac{m(x)}{1 + \frac{1}{2}m(x)} = \frac{D_x}{P_{0,x} - \frac{1}{2}D_x + \frac{1}{2}D_x} = q(x)$ 

b) immigration and we do not know  $D_x$ , only the aggregated  $P_{1,x}$  and  $D_{x,total}$ :

Then 
$$q(x) = \frac{D_{x,total}}{(P_{0,x} + P_{1,x} + D_{x,total})/2} = \frac{m(x)}{1 + m(x)/2}$$

#### Example

```
At age 60 : P_{0,60} = 1000 and D_{60} = 20
Direct : q(60) = 20 / 1000 = 0.02
Note : m(60) = 20 / \frac{1}{2}(1000 + 980) = 20/990
and m(60) / (1 + \frac{1}{2}m(60)) = 20/(10+990) = 20/1000 = 0.02
```

With immigratio n of 200 and only aggregated numbers :  

$$P_{1,60} = 1000 + 200 - 20 = 1180$$
 :  
 $m(60) = 20 / \frac{1}{2} (1000 + 1180) = 0.01835 = 18.35$  per 1000  
 $q(60) = 0.01835 / (1 + 0.01835/2) = 0.01818 = 18.18$  per 1000

Individual data: q(60) can be calculated directly

Aggregated data, knows only  $P_0$ ,  $P_1$  and the total number of deaths during one year of this age group: first mortality rate m(x) and then q(x) If m(x) = 0 then q(x) = 0,

While if all die, m(x) = 2 and q(x) = 1

When all die:  $D_x = P_{0,x}$  and  $P_{1,x} = 0$ and  $m(x) = P_{0,x} / (P_{0,x}/2) = 2$ .

Then: q(x) = 2/(1+2/2) = 1.

Otherwise: q(x) < m(x)

## Mortality table (life table)

- First time: John Graunt in 1662
- A method for summarizing age dependent death rates/probabilities for a given year
- A hypothetical cohort (for example 100 000 persons) experience deaths in accordance with the mortality rates: simulate the lifecareer to a table population (life table population)
- Can answer several questions using a standard mortality table:
  - How many are alive after 1, 2, 3, …years?
  - What is the life expectancy (forventet levealder)?
  - What are the chance of dying between two given ages?

## Life expectancy

- The number of years a person born today can be expected to live under the *current* age specific mortality rates.
- Specifically: Given age specific death rates (or death probabilities) for ages 0, 1, 2, 3, ...
- Remaining life expectancy for a certain age x, under the current age specific death rates (death probabilities) for ages x, x + 1, x + 2, ...
- Notation:  $e_x$  for x = 0, 1, 2, ...
- Hence:  $e_0$  is life expectancy at birth

## NB!

- Life expectancy and remaining life expectancy is a hypothetical ( also called synthetical : kunstig) measure of mortality.
- Example: In 2012 in Norway, for male of age 64:
  - $e_{64} = 19.03$  years. So 64 year old Norwegian men can expect to be 83.03 years old
  - But mortality will decrease in the coming years so the true expected age will be higher than 83.03
- There is a difference between remaining life years based on synthetic mortality and actual given age cohort

Let X be the length of life for a person.

Special case of variable *waiting time* until a specific event. Here the event is death. Let the density function of X be f(x). Then Life expectancy is

$$E(X) = \int_{0}^{\infty} xf(x)dx$$

Alternative expression:

Indicator process: I(t) = 1 if X > t, and 0 otherwise. We can represent X as:

$$X = \int_{0}^{\infty} I(t)dt$$

the integral representation of X

$$E(X) = E\left[\int_{0}^{\infty} I(t)dt\right] = \int_{0}^{\infty} \left[\int_{0}^{\infty} I(t)dt\right]f(x)dx$$

$$= \int_{0}^{\infty} \left[ \int_{0}^{\infty} I(t) f(x) dx \right] dt = \int_{0}^{\infty} \left[ \int_{t}^{\infty} f(x) dx \right] dt = \int_{0}^{\infty} \left[ P(X > t) \right] dt$$

Let

$$p(t) = P(X > t)$$

such that

$$e_0 = E(X) = \int_0^\infty p(t)dt$$

Remaining life expectancy at age *x*:

$$e_x = E(X - x/X > x)$$

Conditional probability of surviving age x + t given survival to age x:

$$P(X > x + t / X > x) = \frac{P(X > x + t \cap X > x)}{P(X > x)} = \frac{P(X > x + t)}{P(X > x)}$$

Hence,

$$e_x = \int_0^\infty \frac{p(x+t)}{p(x)} dt$$

Assume p(x) is specified for the ages x = 0, 1, 2, ...

Approximation, assuming linearity of p(t) in each interval [x,x+1):

$$e_x \approx 0.5 + \sum_{t=1}^{\infty} p(x+t) / p(x) = 0.5 + \frac{1}{p(x)} \sum_{t=1}^{\infty} p(x+t)$$

This is the trapezoidal method of numerical integration

#### The trapezoidal method of numerical integration

$$\int_{a}^{b} f(x)dx \approx (b-a) \left[ \frac{f(a) + f(b)}{2} \right]$$

The function (in blue) is approximated by a linear function (in red)

t no it no motory it no usuge crower no usuge

The area under the curve f(x) is approximated by a trapezoid (only two parallell lines), norsk: trapes

#### Applied to $e_x$ :

$$e_{x} = \frac{1}{p(x)} \int_{0}^{\infty} p(x+t) dt = \frac{1}{p(x)} \sum_{k=0}^{\infty} \left[ \int_{k}^{k+1} p(x+t) dt \right]$$
  

$$\approx \frac{1}{p(x)} \sum_{k=0}^{\infty} \left[ 1 \cdot \frac{p(x+k) + p(x+k+1)}{2} \right]$$
  

$$= \frac{1}{p(x)} \left[ \frac{p(x) + p(x+1)}{2} + \frac{p(x+1) + p(x+2)}{2} + \dots \right]$$
  

$$= 0.5 + \frac{1}{p(x)} \left[ p(x+1) + p(x+2) + \dots \right]$$

Estimation of p(x + t) = P(X > x + t), the probability of survival at age x + t.

q(x) is the estimated probability of death at age x, i.e., the probability of death between the ages of x and x + 1 so the probablity of death *before* age x + t is the sum of q(k) for k = 0, ..., x+t-1. Hence an estimate of the probability of survival at age x + t is given by:

$$\hat{p}(x+t) = 1 - \sum_{k=0}^{x+t-1} q(k).$$

Based on these estimates, we can compute the number of persons alive at age x+t based on a hypothetical (synthetic) population of 100 000.

For example, assume q(0) = 2.73 and q(1) = 0.25 per 1000. Then an estimate of P(X>2) = 1 - (q(0) + q(1)) = 0.99702Then the number of persons remaining alive at age 2 will be  $100\ 000 \cdot 0.99702 = 99702$ .

Let  $I_{x+t}$  be the number of survivals at age x + t in the synthetic population of 100 000. Then

$$I_{x+t} = \hat{p}(x+t) \cdot 100000$$

It follows that

$$\hat{p}(x+t)/\hat{p}(x) = I_{x+t}/I_x$$

## **Estimated life expectancy**

$$\hat{e}_x = 0.5 + \frac{1}{I_x} \sum_{t=1}^{K-x} I_{x+t}$$

where *K* is the highest age recorded in the mortality table.

This is obtained from a life table or mortality table

### Mortality table 2008 Norway

|      | Lever                       | ide ved | alder x  | Døde i                      | alder | x til x+1 | gjens                       | Forven<br>tående<br>ed alde | levetid                                 | Dødssannsynlighet<br>for alder x, Promille |      |             |  |
|------|-----------------------------|---------|----------|-----------------------------|-------|-----------|-----------------------------|-----------------------------|-----------------------------------------|--------------------------------------------|------|-------------|--|
| lder |                             | lx      |          |                             | dx    |           |                             | ex                          |                                         |                                            | qx   |             |  |
| aliv | Begge<br>kjønn <sup>2</sup> | Menn    | Kvinner  | Begge<br>kjønn <sup>2</sup> | Menn  | Kvinner   | Begge<br>kjønn <sup>2</sup> | Menn                        | Kvinner                                 | Begge<br>kjønn <sup>2</sup>                | Menn | Kvinne<br>r |  |
| dix  |                             |         | $\frown$ |                             |       |           |                             |                             |                                         | 1                                          |      | $\bigcirc$  |  |
|      |                             |         | 100 000  |                             | 330   | 214       |                             | 78,31                       | 82,95                                   |                                            | 3,30 | 2,14        |  |
| 1    | 99 727                      |         |          |                             | 29    | 21        |                             | 77,57                       |                                         |                                            | 0,30 | 0,21        |  |
| 2    | 99 702                      |         |          |                             | 33    | 21        | -                           | 76,59                       |                                         |                                            | 0,33 | 0,21        |  |
| 3    | 99 675                      |         |          |                             | 10    | 7         |                             | 75,62                       | 1 A A A A A A A A A A A A A A A A A A A |                                            | 0,10 | 0,07        |  |
| 4    | 99 666                      |         |          |                             | 3     | 10        |                             | 74,62                       | · · · · ·                               | 1 A A                                      | 0,03 | 0,10        |  |
| 5    | 99 659                      |         |          |                             | 13    | 10        |                             | 73,63                       |                                         |                                            | 0,13 | 0,11        |  |
| 6    | 99 647                      |         |          |                             | 10    | 7         | -                           | 72,64                       |                                         | -                                          | 0,10 | 0,07        |  |
| 7    | 99 639                      |         |          |                             | 16    | 7         |                             | 71,64                       | 1 A A A A A A A A A A A A A A A A A A A |                                            | 0,16 | 0,07        |  |
| 8    | 99 627                      |         |          | 8                           | 9     | 7         | 72,97                       | 70,66                       |                                         |                                            | 0,10 | 0,07        |  |
| 9    | 99 619                      | 99 546  | 99 697   | 8                           | 3     | 13        | 71,97                       | 69,66                       | 74,20                                   | 0,08                                       | 0,03 | 0,13        |  |
| 10   |                             |         |          | 6                           | 6     | 7         | 70,98                       | 68,66                       | 73,21                                   | 0,06                                       | 0,06 | 0,07        |  |
| 11   | 99 605                      | 99 536  | 99 677   | 6                           | 9     | 3         | 69,98                       | 67,67                       | 72,21                                   | 0,06                                       | 0,09 | 0,03        |  |
| 12   | 99 598                      | 99 527  | 99 673   | 11                          | 9     | 13        | 68,99                       | 66,67                       | 71,21                                   | 0,11                                       | 0,09 | 0,13        |  |
| 13   | 99 587                      | 99 518  | 99 661   | 8                           | 6     | 10        | 68,00                       | 65,68                       | 70,22                                   | 0,08                                       | 0,06 | 0,10        |  |
| 14   | 99 579                      | 99 512  | 99 651   | 17                          | 22    | 13        | 67,00                       | 64,69                       | 69,23                                   | 0,17                                       | 0,22 | 0,13        |  |
| 15   | 99 562                      | 99 490  | 99 638   | 20                          | 25    | 16        | 66,01                       | 63,70                       | 68,24                                   | 0,21                                       | 0,25 | 0,16        |  |
| 16   | 99 542                      | 99 466  | 99 622   | 16                          | 21    | 10        | 65,03                       | 62,71                       | 67,25                                   | 0,16                                       | 0,21 | 0,10        |  |
| 17   | 99 526                      | 99 445  | 99 612   | 39                          | 51    | 25        | 64,04                       | 61,73                       | 66,26                                   | 0,39                                       | 0,51 | 0,26        |  |
| 18   | 99 487                      | 99 394  | 99 587   | 53                          | 73    | 32        | 63,06                       | 60,76                       | 65,27                                   | 0,53                                       | 0,73 | 0,32        |  |
| 19   | 99 434                      | 99 320  | 99 554   | 53                          | 75    | 30        | 62,09                       | 59,80                       | 64,29                                   | 0,53                                       | 0,75 | 0,30        |  |
| 20   | 99 381                      | 99 246  | 99 525   | 68                          | 117   | 17        | 61,13                       | 58,85                       | 63,31                                   | 0,68                                       | 1,18 | 0,17        |  |
| 21   | 99 314                      | 99 129  | 99 508   | 38                          | 60    | 14        | 60,17                       | 57,92                       | 62,32                                   | 0,38                                       | 0,61 | 0,14        |  |
| 22   | 99 276                      | 99 069  | 99 494   | 66                          | 88    | 43        | 59,19                       | 56,95                       | 61,33                                   | 0,66                                       | 0,88 | 0,43        |  |
| 23   | 99 210                      | 98 981  | 99 451   | 57                          | 78    | 36        | 58,23                       | 56,00                       | 60,36                                   | 0,58                                       | 0,79 | 0,36        |  |

|      | Leven          | ide ved | l alde | rx D  | )øde i a                  | lder x t | il x+1  | gjens          | Forve<br>ståend<br>red ald | e leve | na –                          | lssannsyn<br>Ilder x, Pi |         |
|------|----------------|---------|--------|-------|---------------------------|----------|---------|----------------|----------------------------|--------|-------------------------------|--------------------------|---------|
| Alde | r              | lx      |        |       |                           | dx       |         |                | ex                         |        |                               | qx                       |         |
| x    | Begge<br>kjønn | Menn    | Kvin   | ner   | <sup>egge</sup> M<br>jønn | lenn Kv  | inner   | Begge<br>kjønn | Menn                       | ı Kvin | ner <mark>Begg</mark><br>kjøn | vienn r                  | Zvinner |
| 82   | 55 923         | 47 68   | 85 63  | 897   | 3 630                     | 4 096    | 3 255   | 5 7,53         | 6,46                       | 8,19   | 64,91                         | 85,90                    | 50,94   |
| 83   | 52 293         | 43 58   | 88 60  | 642   | 3 785                     | 3 872    | 3 758   | 3 7,02         | 6,02                       | 7,60   | 72,39                         | 88,84                    | 61,98   |
| 84   | 48 507         | 39 7    | 16 56  | 884   | 4 066                     | 4 1 2 1  | 4 091   | 6,53           | 5,55                       | 7,07   | 83,82                         | 103,77                   | 71,93   |
| 85   | 44 441         | 35 59   | 95 52  | 793   | 3 937                     | 4 0 3 2  | 3 954   | 4 6,08         | 5,14                       | 6,58   | 88,59                         | 113,27                   | 74,89   |
| 86   | 40 505         | 31.50   | 53 48  | 839   | 4 330                     | 4 282    | 4 503   | 3 5,62         | 4,73                       | 6,07   | 106,90                        | 135,68                   | 92,19   |
| 87   | 36 175         | 27 28   | 81 44  | 336   | 4 147                     | 4 1 2 2  | 4 307   | 7 5,23         | 4,40                       | 5,64   | 114,63                        | 151,08                   | 97,14   |
| 88   | 32 028         | 23 15   | 59(40  | 029   | 4 219                     | 3 763    | 4 703   | 3 4,84         | 4,09                       | 5,19   | 131,71                        | 162,48                   | 117,48  |
| 89   | 27 809         | 19 39   | 96 35  | -327  | 3 654                     | 3 281    | 4 0 5 2 | 2 4,50         | 3,79                       | 4,81   | 131,38                        | 169,15                   | 114,70  |
| 90   | 24 156         | 16 1    | 15 31  | 274   | 3 807                     | 2 982    | 4 585   | 5 4,11         | 3,46                       | 4,37   | 157,58                        | 185,03                   | 146,60  |
| 91   | 20 349         | 13 13   | 33 26  | 690   | 3 796                     | 3 1 4 1  | 4 4 5 2 | 2 3,78         | 3,13                       | 4,04   | 186,53                        | 239,18                   | 166,80  |
| 92   | 16 554         | 9 99    | 92 22  | 238   | 3 279                     | 2 471    | 4 048   | 3,54           | 2,95                       | 3,75   | 198,08                        | 247,29                   | 182,02  |
| 93   | 13 275         | 7 52    | 21 18  | : 190 | 2 772                     | 1 914    | 3 534   | 4 3,29         | 2,76                       | 3,47   | 208,80                        | 254,48                   | 194,27  |
| 94   | 10 503         | 5 60    | 07 14  | 656   | 2 493                     | 1 703    | 3 168   | 3,02           | 2,53                       | 3,18   | 237,35                        | 303,74                   | 216,16  |
| 95   | 8 010          | 3 90    | 04 11  | 488   | 2 038                     | 1 212    | 2 740   | 0 2,81         | 2,42                       | 2,92   | 254,45                        | 310,38                   | 238,51  |
| 96   | 5 972          | 2 69    | 92 8   | 748   | 1 713                     | 895      | 2 398   | 3 2,59         | 2,28                       | 2,68   | 286,86                        | 332,55                   | 274,09  |
| 97   | 4 259          | 1 79    | 97 6   | 350   | 1 205                     | 544      | 1 760   | 5 2,44         | 2,16                       | 2,51   | 282,89                        | 302,93                   | 278,10  |
| 98   | 3 054          | 1 23    | 53 4   | 584   | 1 075                     | 503      | 1 557   | 7 2,20         | 1,89                       | 2,28   | 351,92                        | 401,45                   | 339,65  |
| 99   | 1 979          | 7:      | 50 3   | 027   | 645                       | 300      | 938     | 3 2,12         | 1,81                       | 2,19   | 325,71                        | 399,89                   | 309,85  |
| 100  | 1 335          | 4       | 50 2   | 089   | 521                       | 167      | 824     | 4 1,91         | 1,69                       | 1,95   | 390,21                        | 371,29                   | 394,19  |
| 101  | 814            | - 28    | 83 1   | 266   | 353                       | 176      | 495     | 5 1,81         | 1,39                       | 1,90   | 434,19                        | 623,85                   | 391,04  |
| 102  | 460            | 10      | 06     | 771   | 153                       | 49       | 242     | 2 1,81         | 1,88                       | 1,79   | 333,15                        | 463,25                   | 313,72  |
| 103  | 307            | -       | 57     | 529   | 111                       | 0        | 219     | 9 1,47         | 2,06                       | 1,38   | 361,37                        | 0,00                     | 414,19  |
| 104  | 196            | -       | 57     | 310   | 95                        | 25       | 153     | 3 1,02         | 1,06                       | 1,01   | 483,60                        | 435,28                   | 493,81  |
| 105  | 101            | ŝ       | 32     | 157   | 48                        | 10       | 79      | 9 0,50         | 0,50                       | 0,50   | 475,42                        | 304,86                   | 506,33  |

```
60,6% chance of reaching 83
```

40% chance of reaching 88

For a 90 year old, the chance of reaching the age of 100 = 2089/31274 = 6.7%.

Computation of remaining life expectancy –some examples:

For men and women : 
$$\hat{e}_{99} = 0.5 + \frac{1}{1979}(1335 + 814 + ... + 101)$$

$$= 0.5 + \frac{3213}{1979} = 0.5 + 1.62 = 2.12$$

For women :

$$\hat{e}_{99} = 0.5 + \frac{1}{3027}(2089 + 1266 + ... + 157)$$
  
=  $0.5 + \frac{5122}{3027} = 0.5 + 1.69 = 2.19$ 

## **Construction of life table**

- Compute the age specific mortality rates m(x)
- Compute q(x) = m(x)/[1+m(x)/2]
- Derive the estimated p(x + t)
- Derive  $I_x$  in the synthetic population of 100 000

- Start with  $I_0 = 100\ 000$ 

- Compute the number of deaths  $d_x$  at the same time as  $I_x$
- Finally compute estimated  $e_x$

### Historic development of life expectancy at birth, estimated $e_0$ Women

|         | 1960 | 1970 | 1980 | 1990 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Noreg   | 76,0 | 77,5 | 79,2 | 79,8 | 81,5 | 81,6 | 81,6 | 82,1 | 82,5 | 82,7 | 82,9 | 82,9 | 83,2 | 83,2 | 83,3 | 83,6 |
| Danmark | 74,4 | 75,9 | 77,3 | 77,7 | 79,2 | 79,3 | 79,4 | 79,8 | 80,2 | 80,5 | 80,7 | 80,6 | 81,0 | 81,1 | 81,4 | 81,9 |
| Finland | 72,5 | 75,0 | 77,6 | 78,9 | 81,2 | 81,7 | 81,6 | 81,9 | 82,5 | 82,5 | 83,1 | 83,1 | 83,3 | 83,5 | 83,5 | 83,8 |
| Island  | 76,4 | 77,3 | 80,1 | 80,5 | 81,6 | 83,2 | 82,5 | 82,5 | 83,2 | 83,5 | 82,9 | 83,4 | 83,3 | 83,8 | 84,1 | 84,1 |
| Sverige | 74,9 | 77,1 | 78,8 | 80,4 | 82,0 | 82,2 | 82,1 | 82,5 | 82,8 | 82,9 | 83,1 | 83,1 | 83,3 | 83,5 | 83,6 | 83,8 |

### Men

|         | 1960 | 1970 | 1980 | 1990 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Noreg   | 71,6 | 71,2 | 72,3 | 73,4 | 76,0 | 76,2 | 76,4 | 77,1 | 77,6 | 77,8 | 78,2 | 78,3 | 78,4 | 78,7 | 79,0 | 79,1 |
| Danmark | 70,4 | 70,7 | 71,2 | 72,0 | 74,5 | 74,7 | 74,8 | 75,0 | 75,4 | 76,0 | 76,1 | 76,2 | 76,5 | 76,9 | 77,2 | 77,8 |
| Finland | 65,5 | 66,5 | 69,2 | 70,9 | 74,2 | 74,6 | 74,9 | 75,1 | 75,4 | 75,6 | 75,9 | 76,0 | 76,5 | 76,6 | 76,9 | 77,3 |
| Island  | 71,3 | 71,2 | 73,4 | 75,4 | 77,8 | 78,3 | 78,6 | 79,5 | 78,9 | 79,6 | 79,5 | 79,6 | 80,0 | 79,8 | 79,8 | 80,7 |
| Sverige | 71,2 | 72,2 | 72,8 | 74,8 | 77,4 | 77,6 | 77,7 | 78,0 | 78,4 | 78,5 | 78,8 | 79,0 | 79,2 | 79,4 | 79,6 | 79,9 |

### Increase in life expectancy every decade for Norway

|       | 1960-1970 | 1970-1980 | 1980-1990 | 1990-2000 | 2000-2010 |
|-------|-----------|-----------|-----------|-----------|-----------|
| Women | 1.5       | 1.7       | 0.6       | 1.7       | 2.0       |
| Men   | -0.4      | 1.1       | 1.1       | 2.6       | 3.1       |







### Norway. Difference between men and women in $e_0$ 1850-2000



Record life expectancy: has increased approximately linearly the last 160 years (2,5 year each decade)



Kilde: Oeppen og Vaupel (2002) Science

38

## **Population projections:** forecast life expectancy

•Need to predict mortality rates in the future. Shall describe a method suggested by Lee-Carter (1992), the most used approach

•To model and forecast mortality:

Standard methods for forecasting time series, together with a simple model for the age-time surface of the log of mortality. A forecast is produced for the probability distribution of each future age specific death rate

• We have data of mortality rates for the years  $t = T_0, ..., T_1$ 

## Lee-Carter model

Let m(x,t) be the mortality rate for age x in the year t and a(x) be the average over time  $(T_0, T_1)$  of  $\log m(x,t)$ Standard Lee - Carter model :  $\log m(x,t) = a(x) + b(x)k(t) + \varepsilon(x,t)$ where  $E[\varepsilon(x,t)] = 0$  and  $Var[\varepsilon(x,t)] = \sigma_x^2$ 

Hence,  $e^{a(x)}$  is the geometric mean of m(x,t) over t

a(x): age-specific constants describing the general pattern of mortality for the whole base period

b(x)k(t) is an age(row) by time (column) matrix and the columns are *proportional* 

Hence, the model will fit the data well, if the columns of  $\{\log m(x,t)-a(x)\}$  are close to proportional

k(t): index of the level of mortality capturing the main trend in death rates

b(x): age-specific constants describing the relative speed of change in mortality at each age

We see that 
$$\sum_{t} b(x)k(t) = \sum_{t} \{\log m(x,t) - a(x)\} = 0$$
  
 $\Leftrightarrow \sum_{t=T_0}^{T_1} k(t) = 0$ 

The model is undetermined, e.g. if b(.) and k(.) are one solution, then so are b(.)c and k(.)/c for any constant c.

Normalize 
$$b(x)$$
:  $\sum_{x} b(x) = 1$ 

# Estimation of the parameters in the Lee-Carter model

Unique least squares (LS) estimates :

LS estimates minimizes

$$\sum_{x}\sum_{t}\left[\log m(x,t) - a(x) - b(x)k(t)\right]^{2}$$

Under conditions:

$$\sum_{x} b(x) = 1$$
 and  $\sum_{t} k(t) = 0$ 

## Forecasting

Having fitted the demographic model we need a model for the mortality index k(t)

Typical model, in most applications: random walk with drift fits very well:

 $k(t) = k(t-1) + c + e(t)\sigma$ 

where  $e(t) \sim N(0,1)$  and uncorrelated

The drift term *c* represents an assumed linear trend in the change of k(t) while  $e(t)\sigma$  represents the deviations from this linear trend as random fluctuations

Negative *c* corresponds to a constant rate of decline for m(x,t), reflecting a stable reduction of mortality

Seen as follows:

$$log \frac{m(x,t)}{m(x,t-1)} = log m(x,t) - log m(x,t-1)$$
$$= b(x)k(t) - b(x)k(t-1) = b(x)[k(t) - k(t-1)] = b(x) \cdot c$$
and 
$$\frac{m(x,t)}{m(x,t-1)} = e^{c \cdot b(x)}$$
, independent of t

Estimation of *c*: the average of all observed k(t)-k(t-1)

Since [k(t)-k(t-1)] are i.i.d with mean *c* and standard deviation  $\sigma$ 

$$\hat{c} = \frac{1}{T_1 - T_0} \sum_{t=T_0+1}^{T_1} [k(t) - k(t-1)] = \frac{k(T_1) - k(T_0)}{T_1 - T_0}$$

and

$$\hat{\sigma}^2 = \frac{1}{T_1 - T_0} \sum_{t=T_0+1}^{T_1} [k(t) - k(t-1) - \hat{c}]^2$$

and

$$SE(\hat{c}) = \hat{\sigma} / \sqrt{(T_1 - T_0)}$$

Point forecasts of mortality rates  
For 
$$t > T_1 : k(t) = k(t-1) + \hat{c}$$
  
 $= k(t-2) + \hat{c} + \hat{c} = k(t-2) + 2\hat{c}$   
 $= \dots = k(T_1) + (t-T_1)\hat{c}$   
 $\Rightarrow$   
 $\log m(x,t) - \log m(x,T_1) = b(x)[k(t) - k(T_1)]$   
and hence:

 $logm(x,t) = logm(x,T_1) + b(x)[k(t) - k(T_1)]$ = logm(x,T\_1) + b(x)[t - T\_1]ĉ

Stochastic forecasts of mortality  

$$\hat{c} \sim N(c, \hat{\sigma} / \sqrt{T_1 - T_0}), \quad SE(\hat{c}) = \hat{\sigma} / \sqrt{T_1 - T_0}$$
  
 $\Rightarrow \hat{c} = c + SE(\hat{c})Z \text{ where } Z \sim N(0,1)$   
 $\Rightarrow k(t) = k(T_1) + c(t - T_1) + \hat{\sigma} \sum_{s=T_1+1}^t e(s)$   
 $= k(T_1) + [\hat{c} - SE(\hat{c})Z](t - T_1) + \hat{\sigma} \sum_{s=T_1+1}^t e(s)$ 

and

$$\log m(x,t) = \log m(x,T_1) + b(x)[k(t) - k(T_1)]$$

Usually as basis for prediction intervals, 1000 simulations

## Forecasting life expectancy

For each  $t > T_1$ : Derive life table with  $I_x$  = the number of survivals at age *x* and use the formula for estimating  $e_x$ 

Applied to US data 1900-1989, from Lee-Carter (1992) Was an influenza epidemic in 1918, used an intervention model for k(t):

$$k(t) = k(t-1) + c + d \cdot I(t = 1918) + \sigma e_t$$

Estimates (standarderror):

 $\hat{c} = -0.365 \ (0.069), \ \hat{d} = 5.24 \ (0.461), \ \hat{\sigma} = 0.655$ 



Figure 1. Actual U.S. Life Expectancy and Forecasts (95% Confidence Intervals With and Without Uncertainty From Trend Term). The forecasts use a (0, 1, 0) model with a flu dummy estimated on mortality data from 1900 to 1989. The 95% confidence intervals are shown with and without uncertainty from drift.

Applied to Norway, data from 1900-2004. The simple Lee-Carter model did not fit the data satisfactorily. Needed to add one more *b.k* term in the model

Then the model fits the data well

 $\log m(x,t) = a(x) + b_1(x)k_1(t) + b_2(x)k_2(t) + \varepsilon(x,t)$ 

### Keilman og Pham (2005), Økonomiske analyser 6/2005



Figur 7. Forventet levealder ved fødsel og forventet gjenstående levetid på alder 65, 1900-2100

## Population size forecasts

- Need also to forecast fertility rates, can use a Lee-Carter model
- Need to forecast migration (emigration and immigration)

## R-packages for survey sampling

• Survey analysis in R:

http://r-survey.r-forge.r-project.org/survey/index.html

### Survey analysis in R

This is the homepage for the <u>"survey</u>" package, which provides facilities in <u>R</u> for analyzing data from complex surveys. The current version is 3.29. A much earlier version (2.2) was published in <u>Journal of Statistical Software</u>

An experimental package for very large surveys such as the American Community Survey can be found here

A port of a much older version of the survey package (version 3.6-8) to S-PLUS 8.0 is available from <u>CSAN</u> (thanks to Patrick Aboyoun at Insightful).

Features:

- Means, totals, ratios, quantiles, contingency tables, regression models, loglinear models, survival curves, rank tests, for the whole sample and for domains.
- Variances by Taylor linearization or by replicate weights (BRR, jackknife, bootstrap, multistage bootstrap, or user-supplied)
- Multistage sampling with or without replacement.
- · PPS sampling with or without replacement: Horvitz-Thompson and Yates-Grundy estimators and a range of approximations.
- · Post-stratification, generalized raking/calibration, GREG estimation, trimming of weights.
- · Two-phase designs. Estimated weights for augmented IPW estimators.
- Graphics
- · Support for using multiply imputed data
- · Database-backed design objects for large data sets (now with replicate weights, too)
- · Some support for parallel processing on multicore computers.
- · Multivariate analysis: principal components, factor analysis (experimental).
- · Likelihood ratio (Rao-Scott) tests for glms, Cox models, loglinear models.

The <u>NEWS</u> file gives a history of features and bug fixes.

#### **Comparison shopping:**

Alan Zaslavsky keeps a comprehensive list of survey analysis software for the ASA Section on Survey Research Methods.

User-generated ratings and reviews of this package (and others) at crantastic.

Using the survey package:

- Specifying a survey design
- Creating replicate weights
- Simple summary statistics
- Using supplied replicate weights
- Domain (subpopulation) estimation
- <u>Tables of summary statistics</u>
- Post-stratification and calibration
- Lonely PSUs
- <u>Regression models</u>
- Tests of association
- <u>Stratification within PSUs</u>
- Graphics
- Multiple imputation and ordinal logistic regression
- Database-backed survey objects
- Programming with survey objects