V. Statistical Demography

- Demography: Statistical study of human populations
- By *statistical:* using the language of probability and statistical modeling for the population processes involved: mortality, fertility, population projections
- In this course, the topics:
	- Mortality
	- Life expectancy
	- Population projections

Mortality topics

- Crude Death Rate
	- Annual number of deaths per 1000
- Standardized crude death rate
- Age- and gender specific death rates
- Probability of death
- Mortality table, life table (dødelighetstabell)
- Modeling mortality rates (population projections)

Crude death rate, *CDR*

- $D =$ number of deaths during one given year
- P_0 = population size at January 1
- P_1 = population size at December 31
- A measure of mortality: Annual number of deaths pr. 1000

$$
CDR = \frac{D}{\frac{1}{2}(P_0 + P_1)} \cdot 1000
$$

Mortality in the whole population regardless of age

CDR can be misleading with comparisons in time and space, because it does not take into account the age structure in the population

Standardize *CDR* for age and gender

- Example:
	- Norway 1950: *CDR =* 9,13
	- Norway 1987: *CDR* = 11,14
- *CDR* has increased by 2 per 1000, but has really the mortality increased?
- Age specific death rates in 1987 < 1950 for all ages
- Explanation: Population is older in 1987!

Age specific death or mortality **rate**:

Agegroupx,
$$
m(x) = \frac{D_x}{\frac{1}{2}(P_{0,x} + P_{1,x})}
$$

 D_x = number of deaths for agegroup *x*

 $P_{0,x}$ and $P_{1,x}$:

Size of population for agegroup *x* at the start- and endpopulation for age *x*

Standardized (hypothetical) *CDR*

• *CDR* in a hypothetical population with 1950 age structure and 1987 age specific death rates

• Alternatively: *CDR* in a hypothetical population with 1987 age structure and 1950 age specific death rates

 $CDR_{87}^{(30)}$

 $CDR_{50}^{(87)}$

 $m(x,87) = D_{87,x} / N_{87,x}$, $m(x,50) = D_{50,x} / N_{50,x}$ $D_{50,x}$ = number of deaths in the age group x $D_{87,x}$ = number of deaths in the age group x $N_{87,x} = (P_{0,x,87} + P_{1,x,87})/2$ and $N_{50,x} = (P_{0,x,50} + P_{1,x,50})/2$ Agespecific mortality ratesfor 1987 and1950 in age group : number of deathsin the age group x in 1987
number of deathsin the age group x in 1950 $(P_{0,x,87} + P_{1,x,87})/2$ and $N_{50,x} = (P_{0,x,50} + P_{1,x}$
number of deathsin the age group x in 1987 $=$

Population 1987 with 1950 death rates:

The hypothetical number of deaths in the age group *x*: $D_{87,x}^{(50)} = N_{87,x} m(x,0)$ (50) $N_{87,x}^{(50)}=N_{87,x}m(x,50)$

 $D_{87}^{(50)} = \sum D_{87,x}^{(50)}$ 87 (50) Total number of deaths: $D_{87}^{(5)}$

age groups x

Standardized *CDR*: $CDR_{87}^{(50)} = D_{87}^{(50)}/N_{87}$ (50) $\frac{1}{87}$ $CDR_{87}^{(50)} = D_{87}^{(50)}/N$

Population 1950 with 1987 death rates:

The hypothetical number of deaths in the age group *x*:

$$
D_{50,x}^{(87)} = N_{50,x} m(x,87)
$$

 $D_{50}^{(87)} = \sum D_{50,x}^{(87)}$ *age groups x* 50 (87) Total number of deaths: $D_{50}^{\left(8\right)}$

Standardized *CDR*: $CDR_{50}^{(87)} = D_{50}^{(87)}/N_{50}$ (87) ardized *CDR*: $CDR_{50}^{(87)} = D_{50}^{(87)}/N$
We find :

$$
D_{87}^{(50)} = 57821
$$
 (compared to observed $D_{87} = 46760$):
\n
$$
CDR_{87}^{(50)} = 57821 / 4198 = 13.77
$$

\n
$$
D_{50}^{(87)} = 23568
$$
 (compared to observed $D_{50} = 29930$):
\n
$$
CDR_{50}^{(87)} = 23568 / 3279 = 7.19
$$

Norway 1950 and 1987 standardized *CDR*

N: mean population size in 1000

D: number of deaths, *d = D*/*N* per 10 000, s.d. = *CDR*

Comparison of observed and standardized mortality rates

- Compare the four crude deaths rates (two unstandardized and two standarized)
- How much of the difference between the *CDR* in 1950 and 1987 is due to:
	- Age structure
	- Mortality
- The change in *CDR* of 2 per 1000 is the sum of these two components

Standardized *CDR*

1: *CDR* (Pop87&mortality50) – *CDR*(50): due to effect of age structure = 4,64 2: *CDR* (87) – *CDR* (Pop87&mortality 50): due to change in age specific mortality rates $= -2.63$

11

Effect of changing factors

- *CDR* increased by 2 from 1950 to 1987, but with constant age specific mortality it would have increased by 4,64
	- Effect of an aging population
- The reduced age specific mortality has reduced the increase in *CDR* to only 2: 2,6 reduced increase
	- Effect of lower age specific mortality

Alternative computation

1: *CDR* (Pop50&mortality87) – *CDR*(50): due to change in age specific mortality rates $= -1,94$

2: *CDR* (87) – *CDR* (Pop50&mortality 87): due to effect of age structure = 3,95

Some comments

- Standardized rates will vary with the standard use and so will the quantitative conclusion
- Can also control for gender
- When comparing two countries: A third country age structure can be used as standard
- Example:Mauritius vs England and Wales with Japan age structure as standard

				Mauritius		England and Wales				
	Standard population Japan 1985 ('000)		Age-specific death rates 1986 (per 1,000)		Expected deaths in standard population		Age-specific death rates 1987 (per 1,000)		Expected deaths in standard population	
	M	F	M		м	F	м	F	м	F
Under 1	732	698	30.8	23.1	22,546	16,124	10.4	7.9	7,613	5,514
$1 - 4$	3,087	2,942	1.2	1.3	3,704	3,825	0.5	0.4	1,544	1,177
$5 - 14$	9,520	9,054	0.5	0.4	4,760	3,622	0.2	0.1	1,904	905
$15 - 24$	8,766	8,414	1.1	1.0	9,643	8,414	0.7	0.3	6,136	2,524
$25 - 34$	8,507	8,371	2.1	1.4	17,865	11,719	0.9	0.5	7,656	4,186
$35 - 44$	9,950	9,923	4.5	2.3	44,775	22,823	1.7	1.1	16,915	10,915
45–54	8,019	8,151	11.7	5.0	93,822	40,755	5.0	3.2	40,095	26,083
55-64	5,789	6,616	27.8	13.7	160,934	90,639	15.7	9.0	90,887	59,544
$65 - 74$	3,285	4,472	57.3	39.6	188,231	177,091	41.7	22.8	136,985	101,962
$75 - 84$	1,560	2,367	123.0	83.5	191,880	197,645	98.8	60.7	154,128	143,677
85+	256	529	249.5	192.5	63,872	101,833	212.7	168.6	54,451	89,189
121,008				802,032	674,490			518,314	445,676	
Standardized death rate:		Mauritius $(802, 032 + 674, 490)$ \times 1,000				England and Wales $(518, 314 + 445, 676)$ \times 1,000 121,008,000 $$7.97$ per 1,000				
			121,008,000 \in 12.20 per 1,000							
Unstandardized (CDR)				6.7 per 1,000			per 1,000 ll.3			

Table 3.2 Calculation of standardized death rate, Mauritius and England and Wales

1. All age-specific death rates are higher in Mauritius for both men and women

- 2. Yet, unstandardized CDR is 6.7 compared to 11.3 for England and Wales
- 3. Reason: Population in Mauritius is much younger

4. The standardized *CDR*s are 12.20 for Mauritius and 7.97 for England and Wales, according to the age structure in Japan

Direct standardization

- Same age structures
- Different age specific mortality rates
- Here we "control" for age, as in the previous example
- Another example:
	- *CDR* for Kuwait in 1996: 2.18 per 1000
	- *CDR* for United Kingdom (England, Wales, Scotland and Northern Ireland): 10.0 per 1000
	- If we use UK 1996 age structure as standard: Kuwaits CDR is 12.75 per 1000

Indirect standardization

- The most common approach in studies of mortality
- A standard of age specific death rates, combined with age structure (f.ex. from censuses)
- 1. Compute expected number of deaths based on actual age structure and standard age specific death rates
- 2. Compute standardized mortality ratio (SMR) = observed number of deaths/ expected number of deaths
- SMR > 1: actual (but unknown) age specific death rates are higher than the standard
- SMR < 1: actual (but unknown) age specific death rates are lower than the standard

Example UK vs. Kuwait

- UK 1996 *CDR =* 10.0, Kuwait 1996 *CDR =* 2.2
- Standard age specific death rates: UK 1996
- 1. Compute expected number of deaths for Kuwait, based on Kuwaits age structure and standard death rates
- 2. Result: 3459
- 3. Observed number of deaths: 3815
- 4. Standardized mortality ratio SMR = 3815/3459 = 1.10
- 5. SMR >1: Age specific mortality in Kuwait must be higher than the standard UK

CDR Norway 1945- 1990, number of deaths per 1000

Age specific death rates, Norway 1900

20

Døde etter kjønn og alder. 1997 Deaths by sex and age 1997

Antall Number

Døde pr. 1000 Deaths per 1000 100 × 10 <u>. .</u> **The community of the contract of the contract** J. $\sqrt{2}$ 0.1 0.01 45 35 40 0 5 10 15 20 25 30 50 55 舫 70 75 80 Alder Age Menn Kvinner Maies Females Halvlogaritmisk skala Half logaritmic scale

Probability of death

*P*0,*^x* : number of persons alive at exact age *x* D_r = number of deaths for this agegroup *x* and *P*1,*^x* : population size for agegroup *x* at the end for age *x*

 $q(x)$ = estimated probability of dying before the age of $x+1$ given that the person is alive at age *x*, the one year death **probability**

If we observe D_x :

$$
q(x) = D_x \, / \, P_{0,x}
$$

Let $D_{\chi, total}$ be the <u>total</u> number of deaths for this agegroup

If only aggregated numbers are available: $q(x)$ is the ratio of $D_{x, total}$ to the "middle" population half-way:

Middle population:

$$
P_{0,x} + \frac{1}{2}(P_{1,x} - P_{0,x} + D_{x,total}) = \frac{1}{2}(P_{0,x} + P_{1,x} + D_{x,total})
$$

and $q(x) = \frac{D_{x,total}}{\frac{1}{2}(P_{0,x} + P_{1,x} + D_{x,total})}$

Age specific mortality rate

Agegroupx,
$$
m(x) = \frac{D_{x, total}}{\frac{1}{2}(P_{0,x} + P_{1,x})}
$$

$1 + \frac{1}{2} m(x)$) (x) 2 $\frac{1}{2}m(x)$ *m(x q x* $\ddot{}$ $=$ In either case: $q(x) = \frac{1}{1 + \frac{1}{2}n}$
Proof : a) no immigratio n in this age group, In either case:

 $D_x = D_{x, total}$

$$
P_{1,x} = P_{0,x} - D_x
$$

\n
$$
\Rightarrow m(x) = \frac{D_x}{P_{0,x} - \frac{1}{2}D_x}
$$

\nand
$$
\frac{m(x)}{1 + \frac{1}{2}m(x)} = \frac{D_x}{P_{0,x} - \frac{1}{2}D_x + \frac{1}{2}D_x} = q(x)
$$

\nb) immigration n and we do not know D_x , only the aggregated $P_{1,x}$ and $D_{x, total}$:

 $D_{\scriptscriptstyle\chi}$, only the aggregated $P_{\scriptscriptstyle\rm 1,x}$ and $D_{\scriptscriptstyle\chi, total}$

Then
$$
q(x) = \frac{D_{x, total}}{(P_{0,x} + P_{1,x} + D_{x, total})/2} = \frac{m(x)}{1 + m(x)/2}
$$

Example

At age 60 :
$$
P_{0,60} = 1000
$$
 and $D_{60} = 20$
Direct : $q(60) = 20 / 1000 = 0.02$
Note : $m(60) = 20 / \frac{1}{2}(1000 + 980) = 20/990$
and $m(60) / (1 + \frac{1}{2}m(60)) = 20/(10+990) = 20/1000 = 0.02$

With immigration n of 200 and only aggregated numbers:
\n
$$
P_{1,60} = 1000 + 200 - 20 = 1180
$$
:
\n $m(60) = 20 / \frac{1}{2}(1000 + 1180) = 0.01835 = 18.35$ per 1000
\n $q(60) = 0.01835 / (1 + 0.01835/2) = 0.01818 = 18.18$ per 1000

Individual data: *q*(60) can be calculated directly

Aggregated data, knows only P_0 , P_1 and the total number of deaths during one year of this age group: first mortality rate $m(x)$ and then $q(x)$

If $m(x) = 0$ then $q(x) = 0$,

While if all die, $m(x) = 2$ and $q(x) = 1$

When all die: $D_x = P_{0,x}$ and $P_{1,x} = 0$ and $m(x) = P_{0,x} / (P_{0,x}/2) = 2$.

Then: $q(x) = 2/(1+2/2) = 1$.

Otherwise: $q(x) < m(x)$

Mortality table (life table)

- First time: John Graunt in 1662
- A method for summarizing age dependent death rates/probabilities for a given year
- A hypothetical cohort (for example 100 000 persons) experience deaths in accordance with the mortality rates: simulate the lifecareer to a table population (life table population)
- Can answer several questions using a standard mortality table:
	- How many are alive after 1, 2, 3, …years?
	- What is the life expectancy (forventet levealder)?
	- What are the chance of dying between two given ages?

Life expectancy

- The number of years a person born today can be expected to live under the *current* age specific mortality rates.
- Specifically: Given age specific death rates (or death probabilities) for ages 0, 1, 2, 3, …
- **Remaining life expectancy** for a certain age *x,* under the current age specific death rates (death probabilities) for ages $x, x+1, x+2, ...$
- Notation: e_x for $x = 0, 1, 2, ...$
- Hence: e_0 is life expectancy at birth

NB!

- Life expectancy and remaining life expectancy is a hypothetical (also called synthetical : kunstig) measure of mortality.
- Example: In 2012 in Norway, for male of age 64:
	- $-e_{64} = 19.03$ years. So 64 year old Norwegian men can expect to be 83.03 years old
	- But mortality will decrease in the coming years so the true expected age will be higher than 83.03
- There is a difference between remaining life years based on synthetic mortality and actual given age cohort

Let X be the length of life for a person. *X*

Special case of variable *waiting time* until a specific event. Here the event is death. Let the density function of X be $f(x)$. Then Let X be the length of life for a person.
Special case of variable *waiting time* until a specific event.Here the event is death. Let the density function of X be $f(x)$. Then *waiting time*

Life expectancy is

\n
$$
E(X) = \int_{0}^{\infty} x f(x) dx
$$

Alternative expression:

We can represent X as: Indicator process: $I(t) = 1$ if $X > t$, and 0 otherwise.
We can represent X as:

$$
X = \int_{0}^{\infty} I(t)dt
$$

X the integral representation of

$$
E(X) = E\left[\int_{0}^{\infty} I(t)dt\right] = \int_{0}^{\infty} \left[\int_{0}^{\infty} I(t)dt\right] f(x)dx
$$

$$
= \int_{0}^{1} \left[\int_{0}^{1} I(t) f(x) dx \right] dt = \int_{0}^{1} \left[\int_{t}^{1} f(x) dx \right] dt = \int_{0}^{1} \left[P(X > t) \right] dt
$$

Let

$$
p(t) = P(X > t)
$$

such that

$$
e_0 = E(X) = \int_{0}^{\infty} p(t)dt
$$

32

Remaining life expectancy at age *x*:

$$
e_x = E(X - x / X > x)
$$

survival to age x: $x + t$ $e_x = E(X - x / X > x)$
Conditional probability of surviving age $x + t$ given

$$
P(X > x + t / X > x) = \frac{P(X > x + t \cap X > x)}{P(X > x)} = \frac{P(X > x + t)}{P(X > x)}
$$

Hence,

Hence,

$$
e_x = \int_0^\infty \frac{p(x+t)}{p(x)} dt
$$

Assume $p(x)$ is specified for the ages $x = 0, 1, 2, ...$

Approximation, assuming linearity of $p(t)$ in each interval $[x, x+1)$:

$$
e_x \approx 0.5 + \sum_{t=1}^{\infty} p(x+t) / p(x) = 0.5 + \frac{1}{p(x)} \sum_{t=1}^{\infty} p(x+t)
$$

This is the trapezoidal method of numerical integration

The trapezoidal method of numerical integration

The function (in blue) is approximated by a linear function (in red)

The area under the curve $f(x)$ is approximated by a trapezoid (only two parallell lines), norsk: trapes

Applied to e_x :

$$
e_x = \frac{1}{p(x)} \int_0^{\infty} p(x+t)dt = \frac{1}{p(x)} \sum_{k=0}^{\infty} \left[\int_k^{k+1} p(x+t)dt \right]
$$

\n
$$
\approx \frac{1}{p(x)} \sum_{k=0}^{\infty} \left[1 \cdot \frac{p(x+k) + p(x+k+1)}{2} \right]
$$

\n
$$
= \frac{1}{p(x)} \left[\frac{p(x) + p(x+1)}{2} + \frac{p(x+1) + p(x+2)}{2} + \dots \right]
$$

\n
$$
= 0.5 + \frac{1}{p(x)} [p(x+1) + p(x+2) + \dots]
$$

Estimation of $p(x + t) = P(X > x + t)$ **, the probability of survival at age** *x +t***.**

q(*x*) is the estimated probability of death at age *x*, i.e., the probability of death between the ages of *x* and *x +*1 so the probablity of death *before* age $x + t$ is the sum of $q(k)$ for $k =$ 0,…, *x+t-*1. Hence an estimate of the probability of survival at age $x + t$ is given by:

$$
\hat{p}(x+t) = 1 - \sum_{k=0}^{x+t-1} q(k).
$$

Based on these estimates, we can compute the number of persons alive at age $x+t$ based on a hypothetical (synthetic) population of 100 000.

For example, assume $q(0) = 2.73$ and $q(1) = 0.25$ per 1000. Then an estimate of $P(X>2) = 1 - (q(0) + q(1)) = 0.99702$ Then the number of persons remaining alive at age 2 will be $100\,000\cdot 0.99702 = 99702.$

Let I_{x+t} be the number of survivals at age $x + t$ in the synthetic population of 100 000. Then

$$
I_{x+t} = \hat{p}(x+t) \cdot 100000
$$

It follows that

$$
\hat{p}(x+t)/\hat{p}(x) = I_{x+t}/I_x
$$

Estimated life expectancy

$$
\hat{e}_x = 0.5 + \frac{1}{I_x} \sum_{t=1}^{K-x} I_{x+t}
$$

where K is the highest age recorded in the mortality table.

This is obtained from a life table or mortality table

Mortality table 2008 Norway

60,6% chance of reaching 83

40% chance of reaching 88

For a 90 year old, the chance of reaching the age of $100 =$ $2089/31274 = 6.7\%$.

Computation of remaining life expectancy –some examples:

For men and women :
$$
\hat{e}_{99} = 0.5 + \frac{1}{1979} (1335 + 814 + ... + 101)
$$

$$
= 0.5 + \frac{3213}{1979} = 0.5 + 1.62 = 2.12
$$

For women :

$$
\hat{e}_{99} = 0.5 + \frac{1}{3027} (2089 + 1266 + \dots + 157)
$$

$$
= 0.5 + \frac{5122}{3027} = 0.5 + 1.69 = 2.19
$$

Construction of life table

- Compute the age specific mortality rates *m*(*x*)
- Compute $q(x) = m(x)/[1+m(x)/2]$
- Derive the estimated $p(x + t)$
- Derive I_r in the synthetic population of 100 000

– Start with $I_0 = 100\,000$

- Compute the number of deaths d_x at the same time as I_x
- Finally compute estimated *e^x*

Historic development of life expectancy at birth, estimated e_0 Women

Men

Increase in life expectancy every decade for Norway

Norway. Difference between men and women in e_0 1850-2000

Record life expectancy: has increased approximately linearly the last 160 years (2,5 year each decade)

Kilde: Oeppen og Vaupel (2002) Science

38

Population projections: forecast life expectancy

•Need to predict mortality rates in the future. Shall describe a method suggested by Lee-Carter (1992), the most used approach

•To model and forecast mortality:

Standard methods for forecasting time series, together with a simple model for the age-time surface of the log of mortality. A forecast is produced for the probability distribution of each future age specific death rate

• We have data of mortality rates for the years $t = T_0, ..., T_1$

Lee-Carter model

where $E[\varepsilon(x,t)] = 0$ and $Var[\varepsilon(x,t)] = \sigma_x^2$ $_0$, $\mathbf{1}_1$ Standard Lee - Carter model : $\log m(x,t) = a(x) + b(x)k(t) + \varepsilon(x,t)$ Let $m(x,t)$ be the mortality rate for age x in the year t
and $a(x)$ be the average over time (T_0, T_1) of log $m(x,t)$ Lee-Carter model
Let $m(x,t)$ be the mortality rate for age x in the year. $a(x)$ be the average over time (T_0, T_1) of $\log m(x, t)$ $m(x,t)$ be the mortality rate for age x in the year t

Hence, $e^{a(x)}$ is the geometric mean of $m(x,t)$ over *t*

 $a(x)$: age-specific constants describing the general pattern of mortality for the whole base period

 $b(x)k(t)$ is an age(row) by time (column) matrix and the columns are *proportional*

Hence, the model will fit the data well, if the columns of $\{ \log m(x,t) - a(x) \}$ are close to proportional

k(*t*): index of the level of mortality capturing the main trend in death rates

 $b(x)$: age-specific constants describing the relative speed of change in mortality at each age

We see that
$$
\sum_{t} b(x)k(t) = \sum_{t} \{ \log m(x, t) - a(x) \} = 0
$$

$$
\Leftrightarrow \sum_{t=T_0}^{T_1} k(t) = 0
$$

The model is undetermined, e.g. if *b*(.) and *k*(.) are one solution, then so are $b(.)c$ and $k(.)/c$ for any constant c .

$$
ext{ Normalize } b(x): \sum_{x} b(x) = 1
$$

Estimation of the parameters in the Lee-Carter model

Unique least squares (LS) estimates :

LS estimates minimizes

$$
\sum_{x} \sum_{t} [log m(x,t) - a(x) - b(x)k(t)]^{2}
$$

Under conditions:

$$
\sum_{x} b(x) = 1 \text{ and } \sum_{t} k(t) = 0
$$

Forecasting

Having fitted the demographic model we need a model for the mortality index *k*(*t*)

Typical model, in most applications: random walk with drift fits very well:

 $k(t) = k(t-1) + c + e(t)\sigma$

where $e(t) \sim N(0,1)$ and uncorrelated

The drift term *c* represents an assumed linear trend in the change of $k(t)$ while $e(t)$ *o* represents the deviations from this linear trend as random fluctuations

Negative *c* corresponds to a constant rate of decline for $m(x,t)$, reflecting a stable reduction of mortality

Seen as follows:

n as follows:
\n
$$
log \frac{m(x,t)}{m(x,t-1)} = log m(x,t) - log m(x,t-1)
$$
\n
$$
= b(x)k(t) - b(x)k(t-1) = b(x)[k(t) - k(t-1)] = b(x) \cdot c
$$
\nand\n
$$
\frac{m(x,t)}{m(x,t-1)} = e^{c \cdot b(x)}, \text{ independent of } t
$$

Estimation of *c*: the average of all observed $k(t)$ - $k(t-1)$

Since [*k*(*t*)-*k*(*t*-1)] are i.i.d with mean *c* and standard deviation σ

$$
\hat{c} = \frac{1}{T_1 - T_0} \sum_{t = T_0 + 1}^{T_1} [k(t) - k(t-1)] = \frac{k(T_1) - k(T_0)}{T_1 - T_0}
$$

and

$$
\hat{\sigma}^2 = \frac{1}{T_1 - T_0} \sum_{t = T_0 + 1}^{T_1} [k(t) - k(t-1) - \hat{c}]^2
$$

and

and
\n
$$
SE(\hat{c}) = \hat{\sigma} / \sqrt{(T_1 - T_0)}
$$

Point forecasts of mortality rates
\nFor
$$
t > T_1 : k(t) = k(t-1) + \hat{c}
$$

\n $= k(t-2) + \hat{c} + \hat{c} = k(t-2) + 2\hat{c}$
\n $= ... = k(T_1) + (t - T_1)\hat{c}$
\n \Rightarrow
\n $\log m(x,t) - \log m(x,T_1) = b(x)[k(t) - k(T_1)]$
\nand hence:

 $=$ **log**m(x,T₁) + b(x)[t - T₁] \hat{c} $log m(x,t) = log m(x,T_1) + b(x)[k(t) - k(T_1)]$

Stochastic forecasts of mortality
\n
$$
\hat{c} \sim N(c, \hat{\sigma} / \sqrt{T_1 - T_0}), \quad SE(\hat{c}) = \hat{\sigma} / \sqrt{T_1 - T_0}
$$

\n $\Rightarrow \hat{c} = c + SE(\hat{c})Z \text{ where } Z \sim N(0,1)$
\n $\Rightarrow k(t) = k(T_1) + c(t - T_1) + \hat{\sigma} \sum_{s=T_1+1}^{t} e(s)$
\n $= k(T_1) + [\hat{c} - SE(\hat{c})Z](t - T_1) + \hat{\sigma} \sum_{s=T_1+1}^{t} e(s)$

and

$$
logm(x,t) = logm(x,T_1) + b(x)[k(t) - k(T_1)]
$$

Usually as basis for prediction intervals, 1000 simulations

Forecasting life expectancy

For each $t > T_1$: Derive life table with I_x = the number of survivals at age *x* and use the formula for estimating *e^x*

Applied to US data 1900-1989, from Lee-Carter (1992) Was an influenza epidemic in 1918, used an intervention model for $k(t)$:

$$
k(t) = k(t-1) + c + d \cdot I(t = 1918) + \sigma e_t
$$

Estimates (standarderror) :

 $\hat{c} = -0.365$ (0.069), $\hat{d} = 5.24$ (0.461), $\hat{\sigma} = 0.655$

Figure 1. Actual U.S. Life Expectancy and Forecasts (95% Confidence Intervals With and Without Uncertainty From Trend Term). The forecasts use a (0, 1, 0) model with a flu dummy estimated on mortality data from 1900 to 1989. The 95% confidence intervals are shown with and without uncertainty from drift.

Applied to Norway, data from 1900-2004. The simple Lee-Carter model did not fit the data satisfactorily. Needed to add one more *b.k* term in the model

Then the model fits the data well

 $\log m(x,t) = a(x) + b_1(x)k_1(t) + b_2(x)k_2(t) + \varepsilon(x,t)$

Keilman og Pham (2005), Økonomiske analyser 6/2005

Population size forecasts

- Need also to forecast fertility rates, can use a Lee-Carter model
- Need to forecast migration (emigration and immigration)

R-packages for survey sampling

• Survey analysis in R:

http://r-survey.r-forge.r-project.org/survey/index.html

Survey analysis in R

This is the homepage for the "survey" package, which provides facilities in R for analyzing data from complex surveys. The current version is 3.29. A much earlier version (2.2) was published in Journal of Statistical Software

An experimental package for very large surveys such as the American Community Survey can be found here

A port of a much older version of the survey package (version 3.6-8) to S-PLUS 8.0 is available from CSAN (thanks to Patrick Aboyoun at Insightful).

Features:

- Means, totals, ratios, quantiles, contingency tables, regression models, loglinear models, survival curves, rank tests, for the whole sample and for domains
- Variances by Taylor linearization or by replicate weights (BRR, jackknife, bootstrap, multistage bootstrap, or user-supplied)
- Multistage sampling with or without replacement.
- PPS sampling with or without replacement: Horvitz-Thompson and Yates-Grundy estimators and a range of approximations.
- Post-stratification, generalized raking/calibration, GREG estimation, trimming of weights.
- Two-phase designs. Estimated weights for augmented IPW estimators.
- Graphics
- Support for using multiply imputed data
- Database-backed design objects for large data sets (now with replicate weights, too)
- Some support for parallel processing on multicore computers.
- · Multivariate analysis: principal components, factor analysis (experimental).
- Likelihood ratio (Rao-Scott) tests for glms, Cox models, loglinear models.

The NEWS file gives a history of features and bug fixes.

Comparison shopping:

Alan Zaslavsky keeps a comprehensive list of survey analysis software for the ASA Section on Survey Research Methods.

User-generated ratings and reviews of this package (and others) at crantastic.

Using the survey package:

- Specifying a survey design
- Creating replicate weights
- Simple summary statistics
- Using supplied replicate weights
- Domain (subpopulation) estimation
- Tables of summary statistics
- Post-stratification and calibration
- Lonely PSUs
- Regression models
- Tests of association
- Stratification within PSUs
- Graphics
- Multiple imputation and ordinal logistic regression
- Database-backed survey objects
- Programming with survey objects