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Examination in: STK4900 — Statistical methods and applications.

Day of examination: Wednesday June 4th 2014.

Examination hours: 14.30 – 18.30.

This problem set consists of 5 pages.

Appendices: Tables for normal, t-, χ2- and F-distributions

Permitted aids: All printed and hand-written resources. Approved calculator.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

a) The correlation between ozone and temperature equals +
√
R2 =

+
√
0.488 = 0.699. The correlation is positive since β̂1 = 2.4391 > 0.

The Wald-statistic for testing H0 : β1 = 0 is given by t = β̂1/se(β̂1) =
2.4391/0.2393 = 10.2. Under the null hypothesis this statistic has t-
distribution with n − 2 = 109 degrees of freedom, thus approximately
standard normal. Since |t| > 3 this association between temperature
and ozone is strongly significant.

b) R2 is proportion of the variation in the responses that is explained by

the regression. Specifically R2 = 1 −
∑

i(Yi−Ŷi)
2∑

i(Yi−Ȳ )2
. A high R2 indicates

that the covariates predict the outcome well.

Here the R2 is increase from 0.488 to 0.581, and prediction power is
clearly increased by including the covariate wind. Also we see that
wind is clearly significant, p¡0.001, so including wind in the model is
obviously an improvement.

The estimate for temp has changed from 2.44 to 1.83. Then there
must be a (non-zero) correlation between wind and temperature and
in the simple linear regression the estimated regression coefficient is
confounded with the effect of wind through this correlation.

c) The assumption for the linear regression is that Yi = β0 + β1x1i +
β2x2i + εi where the xji are the two covariates and the error term εi is
normal with mean zero and a variance σ2 and independent. This can
be written out in four issues:

(Continued on page 2.)
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– Linearity E[Yi] = beta0 + β1x1i + β2x2i

– Constant variance: Var[Yi] = σ2 for all i

– Independence of the Yi

– εi are N(0, σ2) normally distributed

The first plot of residuals versus predicted variables, i.e. (Ŷi, ϵ̂i) =
(β̂0 + β̂1x1i + β̂2x2i, Yi − Ŷi) shows some curvature. This indicates that
the second order terms or other transformations of the covariates can
improve on the model. (We can also see some negative predicted values,
which does not make sense, this also indicates potential for improving
the model).

The Normal Q-Q plot are the ordered residuals versus theoretical
percentiles in the normal distribution should lie close to a straight line
if the error terms were normally distributed. Here we see that there is
a somewhat heavy upper, relative to the normal, tail in distribution. A
transformation, for instance log, of the outcome ozone could improve
this assumption. There might also be an outlier, observation 77, as
can be seen also from other plots. A separate analysis omitting this
observation could be a good idea.

The third plot is used to check if the variance is constant. If the
variation in the (square root of the) absolute value of the residuals
on seems to be roughly the same over all predicted values along the
x-axis then this assumption is OK. Here there is not a clear indication
of non-constant variance.

The two last plot are ”component plus residual” plots. In these the
covariates are along the x-axes and the points are βjxij + ε̂i. The
dashed lines are simply the linear component βjxij. If there is a clear
non-linearity in the plots this indicates a need for quadratic terms or
(log-)transformations of the covariates. In accordence with the first plot
there are indications of deviation from linearity for both covariates.

d) Since the data are taken over time it could be reason to think that
observations taken close in time correspond better than observation
farther apart, thus there are dependencies in the data, which is the third
assumption on the list in question c). This could have the consequence
that the standard errors are biased and hence confidence intervals and
hypothesis test may be in error.

Problem 2

a) The lizards can choose to stay either in the shade or in the sun, thus
the outcome is binary and a logistic regression is the standard model
for binary data.

(Continued on page 3.)
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The model used in the problem has two factor covariates, time of day
with 3 levels and species with two levels. Thus the model can be stated

Pij = P( A lizard prefers the sun | levels i and j) =
exp(α+βi+γj)

1+exp(α+βi+γj)

where βi is the effect of time of day, level i (β1 = 0) and γj the effect
of species (γ1 = 0)

Then exp(βi) and γj has interpretations as odds-ratios

exp(βi) =
Pij/(1−Pij)

P1j/(1−P1j)
and exp(γj) =

Pij/(1−Pij)

Pi1/(1−Pi1)

relative to the reference category i = 1 or j = 1 which in the output is
the early in the day and species Grahami. (exp(α) is the odds in the
reference group, i = j = 0.)

When all Pij are small we have that odds-ratios approximate relative
risks (such as Pij/P1j). Here we have that Pij range from about 5% to
about 25%, so odds-ratios should deviate somewhat more from 1 (=no
difference) than relative risks.

b) Odds-ratios for time Midday versus time Early: exp(−1.484) = 0.22,
so lizards tend to stay in the sun much less during midday than early
in the day (and with a relative risk interpretation only one fourth as
often).

Similarly Odds-ratios for time late versus time early: exp(0.2429) =
1.28, thus somewhat more, maybe about 25% more.

And for Opalinus vs Grahami: exp(−0.748) = 0.47, thus Opalinus is
more rarely in the sun, maybe about only half as often.

The 95% confidence interval for the log-odds of Opalinus vs
Grahami is given as γ̂2 ± 1.96se(γ̂2) = −0.748 + 1.96 ∗ 0.3037 =
(−1.34,−0.15), thus the 95% confidence interval for the odds-ratio
becomes exp(−1.34), exp(−0.15)) = (0.26, 0.86). Since this confidence
interval does not contain the value one, the difference is significant
with a p-value less than 5 percent (from the output we find a p-value
of 1.4%).

c) Deviances are generalizations of sums of squares for linear regression
models. With l being the log-likelihood of a given model and l̃ the
log-likelihood of a saturated model, that is a model with as many
parameters as observations, the deviance is defined as D = 2(l̃ − l).

When comparing two nested models M0 and M1 (with M0 a special
case of M1) with deviances D0 and D1 respectively we have that
G = D1−D0 is approximately χ2-distributed with degrees of freedom
given as the difference in the number of parameters under the null
hypothesis that M0 is true.

Here we get a change in deviance G = 43.624 comparing a model with
differences over the day to a model where lizards are equally likely

(Continued on page 4.)
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to be in the sun any time of the day. The upper 0.5% cutoff for
the χ2 distribution with 2 degrees of freedom (three groups, with one
reference) is found in the chi-square table to be 10.6, thus much smaller
thanG and hence there is a strongly significant difference between times
of the day.

d) A model with interaction can be written as Pij =
exp(α+βi+γj+(αβ)ij)

1+exp(α+βi+γj+(αβ)ij)
.

Here we must require that several of the interaction parameters
(αβ)ij = 0. This corresponds to model with different probabilities
for each combination of time and species.

However with grouped data the saturated model is actually the one
with different probabilities Pij not satisfying the equation in question
a). Thus the residual deviance for the interaction model equals 0 and
hence the change in deviance G from the model with the main effect
to the interaction model is the residual deviance in the table, thus
G = 0.733. Furthermore there are two residual degrees of freedom
left after including the main effects, thus the degrees of freedom for G
equals 2. From the table this gives a p-value between 5% and 95%,
thus the interaction is not significant (from R: p=0.69).

END

Problem 3

23 patients with acute myeloid leukemia were included in a study. The
patient were randomized into 11 given chemotherapy and 12 who were not
given this treatment. They were followed until time of remission, that is until
they were free of cancer, or to a censoring time.

a) The Kaplan-Meier estimates, in the presence of censored data, the
probabilities that survival time exceed different values. (Censored data
occur when some lifetimes are only known to exceed given censoring
times). Thus when the Kaplan-Meier in one groups lies above another,
as for the chemotherapy group compared to the non-chemo group here,
then the survival in the chemo group is higher than in the non-chemo.
Thus survival is higher in the chemo group.

We estimate medians as the times when the Kaplan-Meiers cross the
value 0.5. Here we then get a median about 31 for the chemo group
and about 23 for the non-chemo, thus a difference of 9 (months, days,
years? I will check) in favor of the chemotherapy group.

b) The Cox proportional hazards model with one covariate is given by
hx(t) = h0(t) exp(betax). Here hx(t) is a hazard function, with the
interpretation that the probability of an event in a short interval

(Continued on page 5.)
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(t, t+dt] given no event before t is approximately hx(t)dt. The h0(t) is
thus the hazard with x = 0. We thus get that exp(beta) = h1(t)/h0(t) =
HR is the hazard ratio between the exposed (x = 1, non-chemo) group
and the reference (x = 0, chemotherapy). (typo in Problem, have
fixed).

Cox-regression gives β̂ = 0.916 and HR = 2.5. Thus we estimate
that the non-chemotherapy group has 2.5 times higer hazard than the
chemotherapy group.

However, when considering the confidence interval for the hazard ratio
we find it to be

exp(β̂ ± 1.96se(β̂)) = exp(0.916 ± 1.96 ∗ 0.512) = (0.91, 6.81), thus
overlapping 1 and we can not conclude that the survival is significantly
higher without chemotherapy.


