
Solutions to exam questions

STK9900 June 8th, 2010

Problem 1

a) To test if there is a significant effect of mother’s age, we use the t-test
statistic

t =
β̂age
ŝeage

,

where β̂age is the estimated effect of AGE and ŝeage is the corresponding
standard error. Using the output for Model 1, the test statistic takes the
value t = 0.00854/0.00399 = 2.14. The value 2.14 shall be compared with
the t-distribution with n − p − 1 = 500 − 3 − 1 = 496 degrees of freedom,
which is (almost) the same as the standard normal distribution. Using the
table for the standard normal distribution, we get the (two-sided) P-value
3.2%, so there is a significant effect of the age of the mother.

b) Using the output for Model 2, the t-test statistic now takes the value
t = 0.00206/0.00425 = 0.48. Comparing this value of the test statistic
with the t-distribution with 500 − 4 − 1 = 495 degrees of freedom, which
is (almost) the same as the standard normal distribution, we now get the
P-value 63%. Thus the effect of mother’s age is not significant in Model 2.

From Model 2, however, we see that there is a significant effect of FIRST,
showing that the first child of a woman on average has a lower birth weight
than later children. Moreover, since a woman who gets her first child tends
to be younger than a woman who has got at least one child, there will be
a positive correlation between AGE and FIRST. This implies that FIRST is a
confounder in Model 1, and that the effect of FIRST is taken up by AGE for
this model.

c) The estimated effects of the covariates in Model 3 have the following
interpretation:

• SEX: If we consider newborn boys and girls with the same values of the
covariates WEEKS and FIRST, the girls will on average weigh 0.114 kg
less than the boys.

• WEEKS: If we consider two groups of newborn babies with the same
values of the covariates SEX and FIRST, but where the pregnancies for
one of the groups lasted one week longer than for the other group, then
the group with the longest pregnancies will on average weigh 0.160 kg
more than the other group. Thus babies on average put on 0.160 kg
per week towards the end of the pregnancy.
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• FIRST: If we consider two groups of newborn babies with the same
values of the covariates SEX and WEEKS, but where one group is first-
born babies and the other groups is not, then the babies who are not
firstborn will on average weigh 0.173 kg more than the firstborn babies.

We predict the weight of a newborn girl who is the second child of her
mother, and where the length of the pregnancy is 40 weeks, to be

ŷ = −2.857− 0.114 + 0.1597 · 40 + 0.173 = 3.590 kg

Problem 2

a) We consider a situation where the outcome for a worker is 0 or 1, with 0
corresponding to absence of byssinosis and 1 corresponding to presence of
the disease1. For such a situation it is appropriate to use a regression model
that relates the probability p that a worker suffers from byssinosis to the
covariates, and this is achieved by using a logistic regression model.

b) When DUST is the only covariate, the logistic regression model takes
the form

p =
eβ0+β1 x1+β2x2

1 + eβ0+β1 x1+β2x2
.

Here x1 = 1 if there is medium dustiness of the workplace (x1 = 0 otherwise),
while x2 = 1 if there is low dustiness of the workplace (x2 = 0 otherwise).
From the output for Model 1, we find that the (estimated) probability p̂ that
a worker suffers from byssinosis depends on the dustiness of the workplace
in the following way:

• If the workplace has high dustiness we have

p̂ =
eβ̂0

1 + eβ̂0

=
e−1.681

1 + e−1.681
= 0.157

• If the workplace has medium dustiness we have

p̂ =
eβ̂0+β̂1

1 + eβ̂0+β̂1

=
e−1.681−2.585

1 + e−1.681−2.585
= 0.014

• If the workplace has low dustiness we have

p̂ =
eβ̂0+β̂2

1 + eβ̂0+β̂2

=
e−1.681−2.715

1 + e−1.681−2.715
= 0.012

1The data in the problem are given on aggregated form. For each combination of the
levels for the factors, we know the total number of workers and the number of workers
who suffer from byssinosis.
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Thus while the probability of suffering from byssinosis is 15.7% for a worker
in a workplace with heavy dustiness, it is only 1.4% if the dustiness is mod-
erate and 1.2% if the dustiness is low.

c) We here consider a model with the factors DUST and EMPLOY. The logistic
regression model then takes the form

p =
eβ0+β1 x1+β2x2+β3x3+β4x4

1 + eβ0+β1 x1+β2x2+β3x3+β4x4
.

Here x1 and x2 are given as in question b, while x3 = 1 for a worker who
has been employed between 10 and 20 years (x3 = 0 otherwise), and x4 = 1
for a worker who has been employed more than 20 years (x4 = 0 otherwise).

Let p1 and p2 denote the probabilities of suffering from byssinosis for two
workers, labeled 1 and 2, who have a workplace with the same level of
dustiness (i.e. the same values of x1 and x2). Worker 2 has been employed
between 10 and 20 years, while worker 1 has been employed less than 10
years. The odds ratio between worker 2 and worker 1 is given by

OR =

p2
1−p2
p1

1−p1

=
eβ0+β1 x1+β2x2+β3

eβ0+β1 x1+β2x2
= eβ3

Using the output from Model 2, the estimated odds ratio becomes

ÔR = eβ̂3 = e0.564 = 1.76.

Thus the odds for a worker who has been employed 10 to 20 year is 76%
higher than the odds for a worker who has been employed less than 10 years.

Further, let p3 denote the probability of suffering from byssinosis for a
worker, labeled 3, who has a workplace with the same level of dustiness
as worker 2, and who has been employed more than 20 years. The odds
ratio between worker 3 and worker 2 is given by

OR =

p3
1−p3
p2

1−p2

=
eβ0+β1 x1+β2x2+β4

eβ0+β1 x1+β2x2+β3
= eβ4−β3 .

An estimate for the odds ratio becomes

ÔR = eβ̂4−β̂3 = e0.673−0.564 = 1.12.

Thus the odds for a worker who has been employed more than 20 years is
12% higher than the odds for a worker who has been employed between 10
to 20 years.

d) To test the null hypothesis that smoking has no effect for the risk of
suffering from byssinosis, we look at the difference in deviance for Model 2
and Model 3. More precisely, we look at

G = D∗ − D̂,
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whereD∗ is the (residual) deviance for the model without smoking (Model 2)
and D̂ is the (residual) deviance for the model with smoking (Model 3).

If there is no effect of smoking, G will be approximately chi-square dis-
tributed with 1 degree of freedom. Using the output from Models 2 and 3
we find that G = 23.53 − 12.09 = 11.44. Using the table for the chi square
distribution with 1 degree of freedom this gives a P-value of less than 0.5%,
so smoking has a significant effect on the risk of suffering from byssinosis.

Problem 3

a) The Kaplan-Meier curves are estimates of the survival function S(t),
i.e. the probability that an individual will be alive t days after the start of
the study. From the plot we see that the cirrhosis patients with no ascites
have better survival than those with ascites. After 1000 days, for example,
the survival probability is about 70% for patients without ascites, while it
is about 40% for those with ascites. After 2000 day the corresponding sur-
vival probabilities are about 50% and 20%, respectively. By looking at the
median survival time (i.e. the time when the survival probability is 50%) we
get another illustration of the difference in survival for the two groups. For
patients without ascites the median survival time is about 2000 days, while
it is only 3-400 days for patients with ascites.

b) For the cirrhosis patients we do not know all the survival times – for
some patients we only know that they were still alive at the end of the study.
This gives rise to censored observations.

If there had been no censoring, an option would be to use multiple linear
regression for the logarithms of the survival times. Due to censoring, this is
not feasible, however. Cox regression is an appropriate method for handling
censored survival data. For Cox’s model one relates the hazard of an indi-
vidual to its covariates.

In this problem we have two binary covariates: x1 = 1 for a male and x1 = 0
for a female, while x2 = 1 for a patient with ascites and x2 = 0 for a pa-
tient without ascites. Then Cox’s regression model specifies the hazard for
a patient with covariates x1 and x2 to be of the form

λx1,x2(t) = λ0(t) e
β1x1+β2x2 .

Here λ0(t) is the hazard for a reference individual – a female without ascites.

c) Let λ1(t) and λ2(t) denote the hazards for two cirrhosis patients, labeled
1 and 2, who are of the same gender (i.e. have the same value of x2). Patient 1
has no ascites, while patient 2 has ascites. Then the hazard ratio between
patient 2 and patient 1 is given by:

RR =
λ2(t)

λ1(t)
=

λ0(t) e
β1+β2x2

λ0(t) eβ2x2
= eβ1 .
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This is the hazard ratio between patients (of the same gender) with and
without ascites.

Using the output given in the problem, we get the estimated hazard ratio

R̂R = eβ̂1 = e0.894 = 2.44.

Thus the hazard for patient with ascites is more than twice as high as the
hazard for a patient without ascites.

A 95% confidence interval for the hazard ratio is given by (with ŝe1 the
standard error corresponding to β̂1):

eβ̂1 ± 1.96 · ŝe1 = e0.894± 1.96 · 0.132 = e0.894± 0.259.

Thus we are 95% confident that the hazard ratio is between e0.894−0.259 =
e0.635 = 1.89 and e0.894+0.259 = e1.153 = 3.17.
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